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Asymptotic Behaviour of Solutions
for p-Laplacian Wave Equation
with m-Laplacian Dissipation
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Abstract. In this paper we study decay properties of solutions to the p-Laplacian
wave equation with m-Laplacian weak dissipation and source term. Meanwhile, we
investigate the decay estimate of the energy of the global solutions to this problem
by using a different inequalities.
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1. Introduction

We consider the initial boundary value problem for the nonlinear wave equation
of p-Laplacian type with a weak nonlinear dissipation, that is

(P )


utt−div(|∇xu|p−2∇xu)−a div(|∇xut|m−2∇xut)=b|u|r−2u in Ω×[0,+∞[

u=0 on Γ×[0,+∞[

u(x, 0)=u0(x), ut(x, 0)=u1(x) on Ω.

where Ω is a bounded domain in Rn with smooth boundary Γ = ∂Ω, a, b > 0
and p,m, r ≥ 2 are real numbers.

Problem (P ) can be considered as a system governing the longitudinal mo-
tion of a viscoelastic configuration obeying a nonlinear voight model. In this
context we can cite the works of Andrews [1], Andrews and Ball [2], Kawashima
and Shibata [8], Ang and Dinh [3], and Messaoudi [14], among others.
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The global existence was discussed in Nakao and Nanbu [15]. Later Bi-

azutti [4] extended this result and gave the global existence and uniqueness of a

weak solution by using monotonicity and compactness arguments. The asymp-

totic behavior of solutions have been studied by Yang [18]. Moreover, energy

decay property (E(t) ≤ (1 + t)−
1
2p for t ≥ 0) is also given.

More recently Messaoudi [13] improved the result of Yang by giving more

precise decay rates. His proof is based on perturbed energy methods. He showed

that the energy related to the problem (P ) decays exponentially when p = 2.

On the other hand and when p > 2, E(t) ≤ C(1 + t)−
2
p−2 for t ≥ 0.

In the same context and with considering δ|u′|m−2u′ (δ > 0,m ≥ 2) instead

of −div(|∇xu′|m−2∇xu′), Ye [19] proved that the energy decay rate of prob-

lem (P ) is E(t) ≤ (1 + t)−
p

mp−m−1 for t ≥ 0, for which he used the general

method of energy decay introduced by Nakao [16].

Chen, Yao and Shao [5] investigated the global existence and uniqueness of a
solution to an initial boundary problem utt−div(|∇xu|p−2∇xu)−∆ut+g(x, u) =
f(x) under certain assumptions on g where 2 ≤ p < n. In the same direction
and considering f = 0 it is important to mention the result of Ma and Soriano
in [12].

Our purpose in this paper is to extend the results obtained by Ye ([20]
and [21]) to the case of m-Laplacian weak dissipation equations. On the one
hand, by the argument in [21], as well as combining it with the potential well
theory introduced by sattinger [17], we proved that the global solution for the
problem (P ) exists as long as (u0, u1) ∈ W 1,p

0 (Ω) × L2(Ω) and u0 belong the
stable set H. On the other hand we show the asymptotic behavior of global
solutions through the use the integral inequality given by Komornik [9].

Our paper is organized as follows. In Section 2, some assumptions and the
main result are stated. And the proof of the global existence of solution and
asymptotic behavior is given in Section 3.

Throughout this paper the functions considered are all real valued. For

simplicity of notation, hereafter we denote by ‖ · ‖p the Lebesgue space Lp(Ω)

norm, and ‖ · ‖2 denotes L2(Ω) norm and we write equivalent norm ‖∇ · ‖p
instead of W 1,p

0 (Ω) norm ‖ · ‖W 1,p
0 (Ω). We also denote by (·, ·) the inner product

of L2(Ω). As usual, we write respectively u(t) and ut(t) instead u(x, t) and

ut(t, x). All along this paper we denote C various positive constants which may

be different at different occurrences.
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2. Preliminaries and main result

We begin by introducing some definition that will be used throught this work.
We first define the following functionals:

K(u) = ‖∇u‖pp − b‖u‖rr, J(u) =
1

p
‖∇xu‖pp −

b

r
‖u‖rr,

for u ∈ W 1,p
0 (Ω). Then, for the problem (P ), we are able to define the stable

set
H ≡ {u ∈ W 1,p

0 (Ω), K(u) > 0} ∪ {0}.
We define the total energy associated to the solution of the problem (P ) by the
formula

E(t) =
1

2
‖ut‖2

2 +
1

p
‖∇u‖pp −

b

r
‖u‖rr =

1

2
‖ut‖2

2 + J(u),

for u ∈ W 1,p
0 (Ω) and t ≥ 0. We first state some well-known lemmas.

Lemma 2.1 (Energy identity). Let u(t, x) be a solution to the problem (P ) on
[0,∞). Then we have

E(t) +

∫
Ω

∫ t

0

a|∇ut(s)|m ds dx = E(0),

for all t ∈ [0,∞).

Remark 2.2. It is clear that E(t) is a non-increasing function for t > 0 and
we have

d

dt
E(t) = −a‖∇ut‖mm ≤ 0.

Lemma 2.3 (Sobolev-Poincaré inequality). Let r be a number with 2 ≤ r < +∞
(n = 1, 2, . . . , p) or 2 ≤ r ≤ np

n−p (n ≥ p + 1). Then there is a constant

c∗ = c∗(Ω, r) such that

‖u‖r ≤ c∗‖∇u‖p for u ∈ W 1,p
0 (Ω).

Lemma 2.4 ([9]). Let E : R+ → R+ be a non-increasing function such that
there are nonnegative constants β and A > 0 with∫ +∞

S

E(t)β+1 dt ≤ AE(S), 0 ≤ S < +∞,

then we have

E(t) ≤
(
A

(
1 +

1

β

)) 1
β

t
−1
β ∀t > 0, if β > 0,

and

E(t) ≤ E(0) exp

(
1− t

A

)
∀t ≥ 0, if β = 0.
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This lemma is due to Haraux and its proof can be found in [6, 7] or [9–11].

Now we recall the following local existence theorem, which can be estab-
lished by using the argument in [18].

Theorem 2.5. Let 2 < p < r < np
n−p , n > p and 2 < p < r < ∞, n ≤ p and

assume that 2 ≤ m ≤ p, (u0, u1) ∈ W 1,p
0 (Ω) × L2(Ω) and u0 belong the stable

set H. Then there exists T > 0 such that the problem (P ) has a unique local

solution u(t) in the class

u ∈ L∞
(
[0, T );W 1,p

0 (Ω)
)
,

ut ∈ L∞
(
[0, T );L2(Ω)

)
∩ Lm ([0, T );Lm(Ω)) .

We list up some useful lemmas before stating the global existence theorem
and decay property. From now on, we denote the life span of the solution u(t)
of the problem (P ) by Tmax.

Lemma 2.6. Assume that the hypotheses in Theorem 2.5 hold, then

r − p
rp
‖∇xu‖pp ≤ E(t), (1)

for u ∈ H.

Proof. The definition of K(u) and J(u) assume that

K(u) +
r − p
p
‖∇xu‖pp = rJ(u). (2)

Since u ∈ H, so we have K(u) ≥ 0. Hence we deduce from (2) that

r − p
rp
‖∇xu‖pp ≤ J(u) ≤ E(t).

Lemma 2.7 ([21]). Let u(t) be a solution to problem (P ) on [0, Tmax). Suppose
that 2 ≤ p < r ≤ np

n−p , n ≥ p and 2 < p < r < +∞, n ≤ p. If u0 ∈ H and

u1 ∈ L2(Ω) satisfy

θ = bCr

(
r − p
rp

E(0)

) r−p
p

< 1, (3)

then u(t) ∈ H, for each t ∈ [0, Tmax).

Now we are in position to state our main result.
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Theorem 2.8. Let u(t, x) be a local solution of problem (P ) on [0, Tmax) with
initial data u0 ∈ H, u1 ∈ L2(Ω) and sufficiently small initial energy E(0) so
that

bCr

(
r − p
rp

E(0)

) r−p
p

< 1.

If the hypotheses in Theorem 2.5 are valid and 2 < m < np
n−p , n > p and

2 < m < ∞, n ≤ p, then Tmax = ∞. Furthermore, the global solution of the
problem (P ) satisfies the following energy decay estimates

(i) If p = m = 2, then there exists a positive constant ω independent of E(0)
such that

E(t) ≤ E(0) exp (1− ω t) ∀t > 0.

(ii) If m = 2, p > 2, then there exists a positive constant τ depending contin-
uously on E(0) such that

E(t) ≤
(τ
t

) p
p−2 ∀t > 0.

(iii) If p ≥ m ≥ 3, then there exists a positive constant τ depending continu-
ously on E(0) such that

E(t) ≤
(τ
t

) 2
m−2 ∀t > 0.

(iv) If 2 < m < 3, then there exists a positive constant τ depending continu-
ously on E(0) such that

E(t) ≤
(τ
t

) 2
m−2 ∀t > 0 if m ≤ p ≤ 2

3−m
,

E(t) ≤
(τ
t

) p−m
p(m−1) ∀t > 0 if p >

2

3−m
.

3. Proof of main result

3.1. The global existence. Since E(t) in a nonincreasing function on t, we
have from (1) that

1

2
‖ut‖2 +

r − p
rp
‖∇u‖pp ≤

1

2
‖ut‖2 + J(u) = E(t) ≤ E(0). (4)

Hence, we get

‖ut‖2 + ‖∇u‖pp ≤ max

(
2,

rp

r − p

)
E(0) < +∞.

Then the above inequality and the continuation principle complete the proof of
the global existence of solution, that is Tmax =∞.
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3.2. Decay estimate. Now, we shall derive the decay estimate for the solutions
in Theorem 2.8. For this we use the method of multipliers. From now on, C
denotes various positive constants depending on the known constants and may
be different at each appearance.

Multiplying the first equation in (P ) by E(t)qu and integrating over
Ω× [T, S], where 0 ≤ S ≤ T ≤ ∞. We obtain that

0=

∫ T

S

∫
Ω

E(t)qu[utt− div(|∇xu|p−2∇xu)− a div(|∇xut|m−2∇xut)− bu|u|r−2]dxdt.

Since∫ T

S

∫
Ω

E(t)quutt dx dt

=

∫
Ω

E(t)quutdx

∣∣∣∣T
S

−
∫ T

S

∫
Ω

E(t)q|ut|2dx dt− q
∫ T

S

∫
Ω

E(t)q−1E ′(t)uut dx dt,

we deduce that

0 =

∫ T

S

∫
Ω

E(t)q
(
|ut|2 +

2

p
|∇u|p − 2b

r
|u|r
)
dx dt

− 2

∫ T

S

∫
Ω

E(t)q|ut|2 dx dt+

∫
Ω

E(t)quut dx

∣∣∣∣T
S

− q
∫ T

S

∫
Ω

E(t)q−1E ′(t)uut dx dt+

(
1− 2

p

)∫ T

S

∫
Ω

E(t)q|∇u|pdx dt

+

(
2b

r
− b
)∫ T

S

E(t)q
∫

Ω

|u|r dx dt+ a

∫ T

S

∫
Ω

E(t)q|∇ut|m−2∇ut∇u dx dt.

(5)

From Lemma 2.3, (1) and (3) we get

b

(
1− 2

r

)∫ T

S

E(t)q‖u‖rr dt

≤ b

(
1− 2

r

)∫ T

S

E(t)qCr‖∇u‖rp dt

= b

(
1− 2

r

)∫ T

S

E(t)qCr‖∇u‖r−pp ‖∇u‖pp dt

≤ b

(
1− 2

r

)∫ T

S

E(t)qCr

(
rp

r − p
E(0)

) r−p
p rp

r − p
E(t)dt

= θ
(r − 2)p

r − p

∫ T

S

E(t)q+1dt,

(6)

and
p− 2

p

∫ S

T

E(t)q‖∇u‖pp dt ≤
r(p− 2)

r − p

∫ S

T

E(t)q+1dt. (7)
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Consequently, from (5)–(7), it follows that

4r − p[(r − 2)θ + r + 2]

r − p

∫ S

T

E(t)q+1dt

≤ 2

∫ T

S

∫
Ω

E(t)q|ut|2 dx dt−
∫

Ω

E(t)quut dx

∣∣∣∣T
S

+ q

∫ T

S

∫
Ω

E(t)q−1E ′(t)uut dx dt− a
∫ T

S

∫
Ω

E(t)q|∇ut|m−2∇ut∇u dx dt.

(8)

Here, we have 4r−p[(r−2)θ+r+2]
r−p > 0 as long as 0 < θ < 1.

Using the Hölder inequality, we get the estimate∣∣∣∣−a∫ T

S

∫
Ω

E(t)q|∇ut|m−2∇ut∇u dx
∣∣∣∣ ≤ a

∫ T

S

E(t)q‖∇ut‖m−1
p(m−1)
p−1

‖∇u‖p,

and
‖∇ut‖m−1

p(m−1)
p−1

≤ |Ω|
p−m
pm ‖∇ut‖m−1

m .

Set ε1 > 0; thanks to Young’s inequality, Lemma 2.3 and the energy identity
from Lemma 2.1, we get∣∣∣∣−a ∫ T

S

∫
Ω

E(t)q|∇ut|m−2∇ut∇u dx
∣∣∣∣

≤ a

∫ T

S

E(t)q
(

rp

r − p
E(t)

) 1
p
(
−E ′(t)
a

)m−1
m

dt

≤ 1

a
1
m

C

(
rp

r − p

) 1
p

εm1
1

m

∫ T

S

E(t)(q+ 1
p

)mdt+ C
1

ε
m
m−1

1

m− 1

m
E(S).

(9)

Therefore, we have

2

∫ T

S

∫
Ω

E(t)q|ut|2 dx dt

≤ C

∫ T

S

E(t)q‖∇ut‖2
mdt

≤ C

∫ T

S

E(t)q
(
−E

′

a

) 2
m

dt

≤ Cε
m
m−2

2

m− 2

m

∫ T

S

E(t)q
m
m−1dt+ C

1

ε
m
2

2

2

m

∫ T

S

(−E ′) dt

≤ Cε
m
m−2

2

m− 2

m

∫ T

S

E(t)q
m
m−1dt+ C

1

ε
m
2

2

2

m
(E(S)− E(T ))

≤ Cε
m
m−2

2

m− 2

m

∫ T

S

E(t)q
m
m−1dt+ C

1

ε
m
2

2

2

m
E(S),

(10)
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where we have also used Lemma 2.1 and the Young inequality for ε2 > 0. Also,
using Hölder’s inequality, Lemma 2.1 and (4) we have∣∣∣∣q ∫ T

S

∫
Ω

E(t)q−1E ′(t)uut dx dt

∣∣∣∣
≤ q

∫ T

S

E(t)q−1|E ′(t)|
(
Cprp

r − p
r − p
rp
‖∇u‖pp +

1

2
‖ut‖2

2

)
dt

≤ −qmax

(
Cprp

r − p
, 1

)∫ T

S

E(t)qE ′(t)dt

≤ CE(S)q+1,

(11)

and ∣∣∣∣∣−
∫

Ω

E(t)quut dx

∣∣∣∣T
S

∣∣∣∣∣ ≤ max

(
Cprp

r − p
, 1

)
E(t)q+1

∣∣∣∣T
S

≤ CE(S)q+1. (12)

We have five cases related to the parameters p and m.

Case 1 : p ≥m ≥ 3. We choose q such that

q + 1 = q
m

m− 2
.

Giving q = m−2
2

and hence q + 1 + α = (q + 1/p)m with

α =
(m− 2)(m− 1)

2
+
m

p
− 1 > 0.

Set ε1 = εE(0)−
α
m . Choosing ε, ε1 small enough, then substituting the estimates

(9)–(12) into (8) we get∫ T

S

E(t)1+qdt ≤ CE(S)q+1 + C ′E(S) + C ′′E(0)
(m−2)

2
+ m−p
p (m−1)E(S)

≤
(
C ′ + CE(0)q + C ′′E(0)

(m−2)
2

+ m−p
p (m−1)

)
E(S),

where C,C ′ and C ′′ are different positive constants independent of E(0). Hence,
we deduce from Lemma 2.4 that

E(t) ≤
(
C ′ + CE(0)q + C ′′E(0)

(m−2)
2

+ m−p
p (m−1)

) 1
q

(
1 +

1

q

) 1
q

t−
1
q .
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Case 2 : 2 <m < 3 and m ≤ p ≤ 2
3−m . We have m−2

2
≥ p−m

p(m−1)
. Thus we

take q = m−2
2

and

α =
(m− 2)(m− 1)

2
+
m

p
− 1 ≥ 0.

Set ε1 = εE(0)−
α
m . Choosing ε, ε1 small enough, then substituting the estimates

(9)–(12) into (8) we get∫ T

S

E(t)1+qdt ≤ CE(S)q+1 + C ′E(S) + C ′′E(0)
(m−2)

2
+ m−p
p(m−1)E(S)

≤
(
C ′ + CE(0)q+1 + C ′′E(0)

(m−2)
2

+ m−p
p (m−1)

)
E(S),

where C,C ′ and C ′′ are different positive constants independent of E(0). Hence,
we deduce from Lemma 2.4 that

E(t) ≤
(
C ′ + CE(0)q + C ′′E(0)

(m−2)
2

+ m−p
p (m−1)

) 1
q

(
1 +

1

q

) 1
q

t−
1
q .

Case 3 : 2 <m < 3 and p > 2
3−m . We have m−2

2
< p−m

p(m−1)
. We choose q such

that

q + 1 =

(
q +

1

p

)
m.

Giving q = p−m
p(m−1)

and hence q + 1 + α1 = q m
m−2

with

α1 =
m(3p− pm− 2)

p(m− 1)(m− 2)
> 0.

Set ε2 = εE(0)−
(m−2)α1

m . Choosing ε, ε2 small enough, then substituting the
estimates (9)–(12) into (8) we get∫ T

S

E(t)1+qdt ≤ CE(S)q+1 + C ′E(S) + C ′′E(0)
m(3p−p m−2)

2p(m−1) E(S)

≤
(
C ′ + CE(0)q + C ′′E(0)

m(3p−p m−2)
2p(m−1)

)
E(S),

where C,C ′ and C ′′ are different positive constants independent of E(0). Hence,
we deduce from Lemma 2.4 that

E(t) ≤
(
C ′ + CE(0)q + C ′′E(0)

m(3p−pm−2)
2p(m−1)

) 1
q

(
1 +

1

q

) 1
q

t−
1
q .
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Case 4 : m = 2 and p > 2. We obtain instead of (10) that

2

∫ T

S

Eq

∫
Ω

|u′|2 dxdt ≤ C

∫ T

S

E(t)q
(
−E

′

a

)
dt ≤ C

q + 1
E(S)q+1. (13)

So, we choose q such that

q + 1 = 2

(
q +

1

p

)
,

so that q = p−2
p

. Choosing ε1 small enough, then substituting the estimates (9),

(11)–(13) into (8) we get∫ T

S

E(t)1+qdt ≤ CE(S) + C ′E(S)q+1 ≤ (C + C ′E(0)q)E(S),

where C, C ′ and C ′′ are different positive constants independent of E(0). Hence,
we deduce from Lemma 2.4 that

E(t) ≤ (C + C ′E(0)q)
1
q

(
1 +

1

q

) 1
q

t−
1
q .

Case 5 : m = p = 2. We choose q = 0. Choosing ε1 small enough, then sub-
stituting the estimates (9)–(12) into (8) we get

∫ T
S
E(t)dt ≤ CE(S), where C is

a positive constant independent of E(0). Hence, we deduce from Lemma 2.4,
that

E(t) ≤ E(0) exp

(
1− t

C

)
.

This ends the proof of Theorem 2.8.
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