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Regularity Results for a
Cahn-Hilliard-Navier-Stokes System

with Shear Dependent Viscosity

Maurizio Grasselli and Dalibor Pražák

Abstract. We analyze a diffuse interface model describing the behavior of a mixture
of two incompressible fluids. More precisely, we consider Navier-Stokes type equations
with power-law like shear dependent viscosity. Such equations are nonlinearly coupled
with a convective Cahn-Hilliard equation for the order parameter. The resulting
system is endowed with no-slip and no-flux boundary conditions. We prove some
regularity properties of weak solutions under rather general conditions. This is a
generalization of previous results already proven for single fluids. Some consequences
of such results are also addressed.
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1. Introduction

Diffuse interface methods are widely used in Fluid Mechanics to describe multi-
phase flows (see, e.g., [4, 16]). A typical model, known as model H (see [12, 13,
20]), consists of the Navier-Stokes equations coupled with a convective Cahn-
Hilliard equation. The goal is to model the behavior of an isothermal binary
mixture of incompressible fluids which are partially miscible in the diffuse in-
terface (cf., for instance, [11]). If we assume that the density of the mixture is
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constant (and equal to one), then the model reduces to the following system

∂tuuu+ (uuu · ∇)uuu−∇ · T (φ, e(uuu)) +∇π = kµ∇φ+ fff(t),

∇ · uuu = 0,

∂tφ+ (uuu · ∇)φ−∆µ = 0,

µ = −ε∆φ+ αF ′(φ),

(1)

in Ω× (0, T ), where Ω ⊂ R3 is a bounded Lipschitz domain and T > 0 is given.
Here uuu is the (average) velocity, φ is the difference of the two concentrations, µ
is the chemical potential and F : R → R is a (regular) double-well potential
(for instance, F (y) = (y2 − 1)2). The constants κ, ε and α are all positive. We
recall that ε represents the thickness of the diffuse interface, while κ and α are
proportional to ε and ε−1, respectively.

The stress tensor T is defined by the constitutive relation

T (φ, e(uuu)) =
(
ν1(φ) + ν2(φ)|e(uuu)|p−2

)
e(uuu). (2)

Here νi are strictly positive given functions, e(uuu) is the usual symmetric velocity
gradient and p > 1. Of course, in the case p = 2 we obtain the so-called Cahn-
Hilliard-Navier-Stokes system which has been theoretically analyzed in several
contributions (see, e.g., [1, 6, 9, 23, 24]).

In the case p 6= 2 the model for a single fluid is known as Ladyzhenskaya
model (cf. [15]). However, it seems that this kind of assumption was first pro-
posed in [22] to describe the behavior of a large class of non-Newtonian fluids.
We recall that the degenerate case p ∈ (1, 2) accounts for shear-thinning fluids,
while p > 2 corresponds to shear-thickening ones. Let us briefly review the
results related to Ladyzhenskaya model. Basic existence theory, under the con-
dition p ≥ 11

5
, is due to Ladyzhenskaya [15] who also observed that uniqueness

holds if p ≥ 5
2
; more generally, any solution with the regularity (39) is unique

in the class of weak solutions. The existence of a weak solution is obtained by
the method of monotone operators in the space (7)1. It is worth observing that
even for 11

5
> p > 6

5
it is possible to establish the existence of a weak solution

by using the method of Lipschitz truncation (cf. [8]).
According to the current state-of-the-art, it seems that if p > 11

5
strictly, one

can get one (and only one) more derivative (or strong solution) both in time and
space. Spatial regularity was proven in [17, Chapter 5] in the periodic setting.
Apparently, in the no-slip setting, one needs the slightly stronger condition
p > 9

4
(see [18]). Higher time regularity was established in [7], for any p > 11

5

and for the physically more relevant boundary conditions. All these additional
regularity estimates entail the unique continuation property of weak solutions
as well as the existence of a finite-dimensional exponential attractor (see [7]).
However, further regularity (or even uniqueness) of weak solutions for smaller p
seems out of reach or, perhaps, as difficult as for the Navier-Stokes equations.
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On the other hand, the situation is rather satisfactory in dimension two, where
the Ladyzhenskaya model enjoys full regularity.

The above results are mostly paralleled in the literature about the binary
fluid mixtures; more precisely, system (1) with (2). Basic existence theory (for
p ≥ 11

5
) was obtained in [14], and it has been recently extended to p > 6

5
in [2].

Higher regularity in space, for p > 11
5

, in the periodic setting, can be found
in [10]. The same system with a singular potential has been recently analyzed
in [5]. In this case F is defined on a finite interval with F ′ unbounded at
the endpoints. This includes, for instance, the physically relevant logarithmic
potential.

The main aim of the present paper is to extend the result of [7] to (1)
with (2) subject to no-slip and no-flux boundary conditions for uuu and φ, µ,
respectively. More precisely, we assume

uuu = 000,
∂φ

∂nnn
=
∂µ

∂nnn
= 0, (3)

on ∂Ω× (0, T ), where nnn stands for its outward normal and ∂Ω is as smooth as
needed.

This paper is organized as follows. In the next section we introduce the
functional setting for weak solutions, recalling the existence result and state
our main regularity theorem. In Section 3, we briefly review the Nikolskii
spaces and we also observe that any weak solution is already endowed with
certain fractional time regularity. The proof of the main Theorem 2.3 is carried
out in Section 4 (regularity of φ) and Section 5 (regularity of uuu). Some of its
consequences (i.e. uniqueness, existence of a finite-dimensional attractor) are
discussed in Section 6.

2. Problem setting and main result

Let us begin with the assumptions on the nonlinearities. In particular, the stress
tensor will be allowed to be more general that the one given by relation (2).
More precisely we require

• T (z,S) is (locally) Lipschitz with respect to z and p-elliptic in S, i.e.(
T (z,S1)−T (z,S2)

)
·(S1−S2) ≥

{
c(1+|S1|+|S2|)p−2|S1−S2|2

c|S1−S2|2+c|S1−S2|p.
|T (z,S1)−T (z,S2)| ≤ c(1+|S1|+|S2|)p−2|S1−S2|,
|T (z1,S)−T (z2,S)| ≤ c(1+|S|)p−1|z1−z2|,

(4)

• F has a polynomially controlled growth and is convex close to infinity, i.e.

F ∈ C3(R,R), lim inf
|y|→∞

F ′′(y) > 0, |F (3)(y)| ≤ c(1 + |y|r−1). (5)
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• The key assumptions in view of the growth of the nonlinearities read

p ≥ 11

5
, r ≤ 3. (6)

Throughout the paper, we use Lp, W 1,s to denote the standard Lebesgue
and Sobolev spaces of (scalar, vector- or tensor-valued) functions on Ω. In
particular, we set

H = L2 ∩ {div = 0}, Vp = W 1,p
0 ∩ {div = 0},

where the subscript 0 indicates the vanishing of the trace. We will use 〈·, ·〉X
for the duality between X∗ and X (in this order); without any subscript, the
symbol stands for the scalar product in L2.

Definition 2.1. Let fff ∈ Lp′(0, T ;V ∗p ). A pair (uuu, φ) such that

uuu ∈ L∞(0, T ;H) ∩ Lp(0, T ;Vp),

φ ∈ L∞(0, T ;W 1,2) ∩ L2(0, T ;W 3,2),
(7)

is called weak solution to (1), (3) if the following identities are satisfied

d

dt
〈uuu,vvv〉+

∫
Ω

T (φ, e(uuu)) : e(vvv)− (uuu⊗ uuu) : ∇vvv − kµ∇φ · vvv dx = 〈fff(t), vvv〉Vp ,

d

dt
〈φ, η〉 −

∫
Ω

φuuu · ∇η +∇µ : ∇η dx = 0, (8)∫
Ω

ε∇φ · ∇η + αF ′(φ)η dx = 〈µ, η〉

for any pair (vvv, η) ∈ Vp ×W 1,2, in the sense of distributions on (0, T ).

Some remarks are in order. Assumptions (4), (6) ensure that integrals in (8)
are well defined. We will see – cf. (22), (24) in the proof of Theorem 3.2 below –
that (7) and (8) actually entail that

∂tuuu ∈ Lp
′
(0, T ;V ∗p ), ∂tφ ∈ L2(0, T ;W−1,2). (9)

Thus uuu and φ, ∆φ are admissible test functions for the first and third equation
in (1), respectively. Hence, weak solutions have continuous representatives in
the class

uuu ∈ C([0, T ];H), φ ∈ C([0, T ];W 1,2), (10)

and one is allowed to take vvv = k−1uuu(t), η = µ(t) in (8) to deduce the usual
dissipative estimate (cf., e.g., [10, Theorem 3.1]).

Boundary condition for uuu is incorporated in the function space Vp, while
boundary conditions for φ and µ follow from (8) by the usual argument based
on the fact that any η ∈ W 1,2 can be used as a test function. We will employ
this repeatedly without explicit mentioning, while integrating by parts. Observe
also that taking η ≡ 1 implies that 〈φ(t), 1〉 is a conserved quantity.

The existence of a weak solution is given by
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Theorem 2.2. Let T > 0, uuu0 ∈ H, φ0 ∈ W 1,2 and fff ∈ Lp′(0, T ;V ∗p ) be given.
Let (4)–(6) be satisfied. Then (1)–(3) has at least one weak solution in the sense
of Definition 2.1, satisfying uuu(0) = uuu0, φ(0) = φ(0).

We omit the proof. The reader can consult [14, Theorem 1] which deals with
a slightly more general system. The key observation, namely, that sequences of
weak solutions with convergent initial conditions are compact, is also proven in
[10, Theorem 2.4] for the case of periodic boundary conditions. The argument
uses standard tools – monotonicity of D 7→ T (·, D) and compactness for the
lower-order nonlinearities. We remark that, by replacing the first of (6) with
the weaker condition p > 6

5
, the existence can still be established; however,

since uuu is not longer an admissible test function, a much more refined argument
is needed, see [2].

The main result of this contribution is the following – we refer to Section 3
below for definition of the spaces N s,p.

Theorem 2.3. Let (uuu, φ) be an arbitrary weak solution in the sense of Defini-

tion 2.1. Let moreover fff ∈ N
1
p′ ,p
′
(0, T ;V ∗p ) and p > 11

5
. Then for almost every

t0 ∈ (0, T ), one also has

uuu ∈ N
1
2
,∞(t0, T ;L2) ∩N

1
2
,2(t0, T ;V2) ∩N

1
p
,p(t0;Vp), (11)

φ ∈ N
1
2
,∞(t0, T ;W 1,2) ∩N

1
2
,2(t0, T ;W 3,2). (12)

We mention in passing that analogous conclusions can be proven in the 2d
setting, under the conditions p > 2 and r <∞ in place of (6).

3. Nikolskii spaces

Let I ⊂ R be interval and X be a (real) Banach space. For arbitrary s ∈ (0, 1]
and p ≥ 1 the Nikolskii space N s,p(I;X) of functions u : I → X is defined
through the norm

‖u‖Lp(I;X) + sup
h>0

h−s‖dhu‖Lp(Ih;X). (13)

Here and in the sequel we set

Ih = {t ∈ I; t+ h ∈ I},
(dhu)(t) = u(t+ h)− u(t), t ∈ Ih,
(τhu)(t) = u(t+ h), t ∈ Ih.

It is not difficult to check that for s = 1, the supremum in (13) is finite if and
only if d

dt
u ∈ Lp(I;X). In other words, N1,p = W 1,p. For s ∈ (0, 1) these spaces
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are a possible description of fractional regularity of the time derivative. The
embedding theorems hold as expected, i.e.

N s,p(I;X) ⊂ Lq(I;X), if
1

q
>

1

p
− s > 0,

N s,p(I;X) ⊂ C0,α(I;X), if α = s− 1

p
> 0.

(14)

We remark that Nikolskii spaces are a special instance of the so-called Besov
spaces, which are covered in a number of books, see, e.g., [3, Chapter 7]. It is
worth mentioning [21], which develops the whole theory in a rather elementary
fashion.

For a later reference, it will be useful to observe that weak solutions are
already endowed with some fractional time regularity (cf. (7) and (9)). Let us
formulate it in terms of the following abstract “interpolation” lemma which can
be easily proven through Hölder’s inequality.

Lemma 3.1. Let Y ⊂ X ⊂ Z be such that ‖u‖2
X ≤ c‖u‖Y ‖u‖Z for some

positive constant c. Let

u ∈ N s1,p1(I;Y ) ∩N s2,p2(I;Z)

Then

u ∈ N s,p(I;X), s =
s1 + s2

2
,

2

p
=

1

p1

+
1

p2

.

In particular, we have that any weak solution satisfies

uuu ∈ N
1
2
,2(0, T ;H), φ ∈ N

1
2
,2(0, T ;W 1,2). (15)

Indeed, just take s1 = 0, s2 = 1 and p1 = p, p2 = p′, X = H, Y = Vp, Z = V ∗p
or p1 = p2 = 2, X = W 1,2, Y = W 3,2, Z = (W 1,2)∗, respectively.

We remark that one usually employs the duality between uuu and ∂tuuu to
deduce the continuity of solutions (10). Property (15) is slightly weaker, as N

1
2
,2

just falls short of being embedded into L∞. On the other hand, it contains
certain quantitative estimate on the time continuity of solutions, namely,∫ T−h

0

‖uuu(t+ h)− uuu(t)‖2
2dt+

∫ T−h

0

‖φ(t+ h)− φ(t)‖2
2dt = O(h), h→ 0. (16)

Moreover, by employing the structure of the equation, that is to say, the func-
tional relationship between uuu, ∂tuuu, and φ, ∂tφ, respectively, we will be able
to show that integrands in (16) actually admit analogous estimates for almost
every t, cf. (20) below.
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Let ψ : I → R be a (scalar) integrable function. Extending ψ by zero
outside I, the Hardy-Littlewood maximal function is defined as

Mψ(t) := sup
h>0

1

2h

∫ t+h

t−h
|ψ(s)| ds. (17)

We recall that

|ψ(t0)| ≤Mψ(t0), for almost any t0 ∈ I,∣∣∣ ∫ h

0

ψ(t0 + s) ds
∣∣∣ ≤ hMψ(t0), for any t0 ∈ I, h > 0.

(18)

Theorem 3.2. Let (uuu, φ) be an arbitrary weak solution and set

Φ(t) := 1 + ‖uuu(t)‖p1,p + ‖φ(t)‖2
3,2 + ‖fff(t)‖p

′

V ∗p
. (19)

Then
‖uuu(t0 + h)− uuu(t0)‖2

2 + ‖φ(t0 + h)− φ(t0)‖2
1,2 ≤ chMΦ(t0), (20)

where the constant c only depends on the norms of

uuu ∈ L∞(0, T ;H), φ ∈ L∞(0, T ;W 1,2). (21)

Proof. We first establish that

‖∂tuuu(t)‖V ∗p ≤ c
(
1 + ‖uuu(t)‖p−1

1,p + ‖φ(t)‖3,2 + ‖fff(t)‖V ∗p
)
. (22)

Omitting t for the sake of brevity, we invoke (1) to bound

〈∂tuuu,vvv〉Vp =

∫
Ω

(uuu⊗ uuu) : ∇vvv − T (φ, e(uuu)) : e(vvv) + kµ∇φ · vvv dx+ 〈fff,vvv〉Vp
= R1 +R2 +R3 +R4,

independently of vvv ∈ Vp with unit norm. We start with the convective term,
which is the critical term here. Using the interpolation inequality

‖v‖2p′ ≤ ‖v‖1−a
2 ‖v‖ap∗ , a =

3

5p− 6
, 1− a =

5p− 9

5p− 6
, (23)

one has |R1| ≤ ‖uuu‖2
2p′‖∇vvv‖p ≤ c‖uuu‖2(1−a)

2 ‖uuu‖2a
1,p ≤ c

(
1 + ‖uuu‖p−1

1,p

)
. Here we have

used that 2a ≤ p − 1 which is just the first condition in (6). The constant c
depends on the norms in (21). Analogous estimate for R2 is immediate by (4).
To deal with R3, observe that by (1), (5) and (7)

|∇µ| ≤ c
(
|∇3φ|+ (1 + |φ|3)|∇φ|

)
, φ ∈ L∞(0, T ;L6) ∩ L2(0, T ;W 1,∞).
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Thus it follows that ‖∇µ‖2 ≤ c
(
1 + ‖φ‖3,2

)
, whence it is easy to obtain

|R3| ≤ c‖µ‖6‖∇φ‖2‖vvv‖3 ≤ c
(
1 + ‖φ‖3,2

)
.

The estimate of R4 being trivial, (22) follows. Analogously and in a simpler
manner, one gets

‖∂tφ(t)‖(W 1,2)∗ ≤ c
(
1 + ‖φ(t)‖3,2

)
. (24)

To finish the proof, we write

‖uuu(t0 + h)− uuu(t0)‖2
2 =

∫ h

0

〈∂tuuu(t0 + s),uuu(t0 + s)− uuu(t0)〉Vp ds.

Thus, owing to (22) and (18), we deduce

‖uuu(t0 + h)− uuu(t0)‖2
2 ≤

∫ h

0

‖∂tuuu(t0 + s)‖V ∗p
(
‖uuu(t0 + s)‖Vp + ‖uuu(t0)‖Vp

)
ds

≤ c

∫ h

0

Φ(t0 + s) + Φ(t0) ds

≤ chMΦ(t0).

In a similar way, one shows the estimate for ‖φ(t0 + h)− φ(t0)‖2
1,2, starting from

‖φ(t0 + h)− φ(t0)‖2
1,2 =

∫ h

0

〈∂tφ(t0 + s), φ(t0 + s)− φ(t0)〉W 3,2 ds.

This completes the proof.

4. Improving the regularity of φ

Theorem 4.1. Let (uuu, φ) be an arbitrary weak solution. Then, for almost any
t0 ∈ (0, T ), one has

φ ∈ N
1
2
,∞(t0, T ;W 1,2) ∩N

1
2
,2(t0, T ;W 3,2), (25)

φ ∈ L∞(t0, T ;W 1,∞). (26)

The bounds depend on the norms of (7) as well as on MΦ(t0), where Φ has
been defined in (19).

Proof. For h > 0 and t ∈ (0, T − h), we apply dh to (1)3 and test the resulting
equation by dhφ to deduce

1

2

d

dt
‖dhφ‖2

2+ε‖dh∆φ‖2
2 =

∫
Ω

dh
(
φuuu
)
·dh∇φ+αdh

(
∇F ′(φ)

)
·dh∇φ dx =: D1+D2.
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We observe that it is possible to integrate by parts in the terms D1, D2. We
thus estimate

D1 = −
∫

Ω

(dhuuu · ∇)τhφdhφ dx

=

∫
Ω

τhφdhuuu · ∇dhφ dx

≤ ‖τhφ‖6‖dhuuu‖ 3
2
‖∇dhφ‖6

≤ c‖τhφ‖1,2‖dhuuu‖2‖dhφ‖2,2

≤ c0ε

8
‖dhφ‖2

2,2 + C‖dhuuu‖2
2,

using (7)2 and standard embeddings. The constant c0 is taken small enough
such that (27) below holds. By (5)3 one has

F ′(φ1)− F ′(φ2) =

∫ φ1

φ2

F ′′(s)ds ≤ c
(
1 + |φ1|3 + |φ2|3

)
|φ1 − φ2|.

Hence, arguing similarly, we have

D2 = −α
∫

Ω

dhF ′(φ)dh∆φ dx ≤ c0ε

8
‖dhφ‖2

2,2 +C

∫
Ω

(
1 + |φ|6 + |τhφ|6

)
|dhφ|2 dx.

The last integral can be estimated as c
(
1+‖φ‖6

6+‖τhφ‖6
6

)
‖dhφ‖2

∞ ≤ c‖dhφ‖2
∞ ≤

‖dhφ‖2ε
2 ‖dhφ‖

2(1−ε)
2,2 ≤ c0ε

8
‖dhφ‖2

2,2 + C‖dhφ‖2
2 – cf. (31) below. Finally, for c0

small enough
c0‖ψ‖2

2,2 ≤ ‖∆ψ‖2
2 + ‖ψ‖2

2 ; (27)

this follows by the usual regularity for the Laplacian with homogeneous Neu-
mann boundary condition. Therefore we deduce

d

dt
‖dhφ‖2

2 + c0ε‖dhφ‖2
2,2 ≤ C

(
‖dhuuu‖2

2 + ‖dhφ‖2
2

)
. (28)

Integrating (28) over (t0, t) ⊂ (0, T − h) yields

‖dhφ(t)‖2
2 + c

∫ t

t0

‖dhφ‖2
2,2 ≤ ‖dhφ(t0)‖2

2 + C

∫ t

t0

(
‖dhuuu‖2

2 + ‖dhφ‖2
2

)
. (29)

Invoking (15) and (20), we see that the right hand side of (29) is O(h) for
h→ 0, and thus

φ ∈ N
1
2
,∞(t0, T ;L2) ∩N

1
2
,2(t0, T ;W 2,2). (30)

Let us take ε sufficiently small so that W 2(1−ε),2 ⊂ L∞; that is to say, we need
2(1− ε) > 3

2
or 0 ≤ ε < 1

4
. Interpolation inequality

‖v‖2(1−ε),2 ≤ c‖v‖ε2‖v‖1−ε
2,2 , (31)
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elementary estimates and (14) yield

φ ∈ N
1
2
, 2
1−ε (t0, T ;W 2(1−ε),2) ⊂ L∞(t0, T ;L∞). (32)

We will now repeat essentially the same argument with one more spatial deriva-
tive. Test the equation for dhφ by dh∆φ. The latter is an admissible test
function. Moreover, we can write

∇µ = −ε∇∆φ+ αF ′′(φ)∇φ.

We thus obtain

1

2

d

dt
‖∇dhφ‖2

2 + ε‖dh∇∆φ‖2
2

=

∫
Ω

dh
(
φuuu
)
· dh(∇∆φ) + dh

(
αF ′′(φ)∇φ

)
· dh(∇∆φ) dx

=: E1 + E2.

(33)

With the help of (32), it is easy to find

E1 −
ε

4
‖dh∇∆φ‖2

2 ≤ C

∫
Ω

|dhφ|2|uuu|2 + |τhφ|2|dhuuu|2 dx

≤ C
(
‖dhφ‖2

∞‖uuu‖2
2 + ‖τhφ‖2

∞‖dhuuu‖2
2

)
≤ C

(
‖dhφ‖2

2,2 + ‖dhuuu‖2
2

)
.

Similarly, invoking also (5), we have

E2 −
ε

4
‖dh∇∆φ‖2

2 ≤ C

∫
Ω

|dhF ′′(φ)|2|∇φ|2 + |τhF ′′(φ)|2|dh∇φ|2 dx

≤ C
(
‖dhφ‖2

∞‖∇φ‖2
2 + (1 + ‖τhφ‖2

∞)‖∇dhφ‖2
2

)
≤ C‖dhφ‖2

2,2.

In view of the left hand side of (33), we recall that, for some c0 > 0,

c0‖ψ‖2
1,2 ≤ ‖∇ψ‖2

2 +

∣∣∣∣∫
Ω

ψ dx

∣∣∣∣2 , (34)

c0‖ψ‖2
3,2 ≤ ‖∇∆ψ‖2

2 + ‖∆ψ‖2
2 +

∣∣∣∣∫
Ω

ψ dx

∣∣∣∣2 . (35)

While (34) is simply a Poincaré type inequality (and, moreover,
∫

Ω
φ dx is a

constant of motion), (35) follows from standard regularity estimates for the
Laplace equation.
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Altogether, we deduce for any t ∈ (t0, T − h)

‖dhφ(t)‖2
1,2 + c0ε

∫ t

t0

‖dhφ‖2
3,2 ≤ C

(
‖dhφ(t0)‖2

1,2 +

∫ t

t0

‖dhφ‖2
2,2 + ‖dhuuu‖2

2

)
.

By some previous estimates, namely (15), (20) and (30), the right hand side
is O(h) for h → 0. We have established (25). This also implies that ∇φ ∈
L∞(t0, T ;L∞) along the lines of the estimates preceding (32). This finishes the
proof.

Remark 4.2. It follows from (32) that φ ∈ C0,ε(t0, T ;L∞), where we could
have taken an arbitrary ε ∈ (0, 1

4
). For future reference, it is worth recording

that in fact we have

φ ∈ C0,ε(t0, T ;L∞), for any ε ∈
[
0,

3

4

)
. (36)

Indeed, we just replace (31) by

‖v‖3−2ε,2 ≤ c‖v‖ε1,2‖v‖1−ε
3,2

in the above argument. It suffices to have 3− 2ε > 3
2
, i.e. ε ∈ [0, 3

4
).

5. Improving the regularity of uuu

Theorem 5.1. Let (uuu, φ) be an arbitrary weak solution. Let moreover

fff ∈ N
1
p′ ,p
′
(0, T ;V ∗p ), p >

11

5
. (37)

Then for almost every t0 ∈ (0, T ), one has

uuu ∈ N
1
2
,∞(t0, T ;L2) ∩N

1
2
,2(t0, T ;V2) ∩N

1
p
,p(t0;Vp). (38)

The bounds depend on the norms of (7) as well as on MΦ(t0), where Φ has
been defined in (19).

The key step towards the proof is improved time-integrability of ‖∇uuu‖p
which is given by

Lemma 5.2. Let (uuu, φ) be arbitrary weak solution, let (37) hold. Then for
almost every t0 ∈ (0, T ), one has

uuu ∈ Lpuniq(t0, T ;Vp), puniq =
2p

2p− 3
. (39)
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Proof. If p ≥ 5
2
, then puniq ≤ p and (39) is immediate for any t0 ∈ [0, T ). So we

can assume that p ∈ (11
5
, 5

2
). Fix t0 ∈ (0, T ) such that MΦ(t0) <∞.

The proof is based on an iterative scheme. We start with

uuu ∈ Lq(t0, T ;Vp), for some q ∈
(

11

5
, puniq

)
, (40)

and show that the integrability exponent q can be improved. To this end, test
the equation for dhuuu by dhuuu, deducing

1

2

d

dt
‖dhuuu‖2

2 +

∫
Ω

dh
(
T (φ, e(uuu))

)
: dhe(uuu) dx

=

∫
Ω

−dh
(
(uuu · ∇)uuu

)
· dhuuu+ kdh

(
µ∇φ

)
· dhuuu+ dhfff · dhuuu dx

=: D1 +D2 +D3.

(41)

By (4), the Young and Korn inequalities, the integral on the left hand side is
estimated from below as follows∫

Ω

(
T (φ, τhe(uuu))− T (φ, e(uuu))

)
· dhe(uuu)

+
(
T (τhφ, τhe(uuu))− T (φ, τhe(uuu))

)
· dhe(uuu) dx

≥
∫

Ω

c1

(
1 + |τhe(uuu)|+ |e(uuu)|

)p−2|dhe(uuu)|2

− c2(1 + |τhe(uuu)|)p−1|dhφ||dhe(uuu)| dx

≥
∫

Ω

c3

(
1 + |τhe(uuu)|+ |e(uuu)|

)p−2|dhe(uuu)|2 − c4

(
1 + |τhe(uuu)|

)p|dhφ|2 dx
≥ c0

(
‖dhuuu‖2

1,2 + ‖dhuuu‖p1,p
)
− C

(
1 + ‖τhuuu‖p1,p

)
‖dhφ‖2

∞.

(42)

We further deal with D1, coming from the convective term. This is the most
difficult term. We write

D1 =

∫
Ω

(
τhuuu·τh∇uuu−uuu·∇uuu

)
·dhuuu dx =

∫
Ω

(dhuuu·τh∇uuu)·dhuuu dx ≤ ‖τh∇uuu‖p‖dhuuu‖2
2p′ .

We use interpolation inequality (23) to obtain

D1 ≤ c‖τhuuu‖1,p‖dhuuu‖
2(1−a)
2 ‖dh∇uuu‖2a

p ≤
c0

4
‖dh∇uuu‖pp + C‖τhuuu‖Q1

1,p‖dhuuu‖
Q2

2 ,

where c0 comes from last line of (42) and

Q1 =
p(5p− 6)

p(5p− 6)− 6
, Q2 =

2p(5p− 9)

p(5p− 6)− 6
. (43)
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Observe that Q1 < p (this is equivalent to p > 11
5

) and Q2 < 2. Secondly, we
have

D2 ≤
∫

Ω

|dhµ||∇φ||dhuuu|+ |τhµ||dh∇φ||dhuuu| dx. (44)

On account of (26) and

|µ| ≤ c
(
|∆φ|+ 1

)
, |dhµ| ≤ c

(
|dh∆φ|+ |dhφ|

)
,

inequality (44) entails, together with obvious embeddings,

D2 ≤ c
(
‖dhµ‖2‖dhuuu‖2 + ‖τhµ‖4‖dh∇φ‖2‖dhuuu‖4

)
(45)

≤ c0

2
‖dhuuu‖2

1,2 + C
(
‖dhφ‖2

2,2 + (1 + ‖τhφ‖2
3,2)‖dhφ‖2

1,2

)
.

Here c0 again comes from (42). We also have

D3 ≤ ‖dhfff‖V ∗p ‖d
huuu‖Vp ≤

c0

2
‖dhuuu‖p1,p + C‖dhfff‖p

′

V ∗p
.

Taking the above estimates into account and integrating over time, from (41)
we deduce

‖dhuuu(t)‖2
2 + c0

∫ t

t0

(
‖dhuuu‖2

1,2 + ‖dhuuu‖p1,p
)

≤ ‖dhuuu(t0)‖2
2 +

∫ t

t0

H(s)ds+ c

∫ t

t0

‖τhuuu‖Q1

1,p‖dhuuu‖
Q2

2 ,

(46)

where

H(s) ≤ C
{(

1 + ‖τhuuu(s)‖p1,p
)
‖dhφ(s)‖2

∞

+ ‖dhφ(s)‖2
2,2 + (1 + ‖τhφ(s)‖2

3,2)‖dhφ(s)‖2
1,2 + ‖dhfff(s)‖p

′

V ∗p

}
.

It follows from previous results, namely (20), (36), (25) and (37), that the first
two terms on the right hand side of (46) are O(h) for h→ 0.

Concerning the last term in (46), more care is needed. It will be convenient
to set

q =
p

1− g
, (47)

cf. (40). In view of our assumptions 0 ≤ g < 5
2
− p, where the upper bound lies

strictly between 10
3

(for p = 11
5

) and 0 (if p = 5
2
). We apply Hölder’s inequality

with

r =
p

(1− g)Q1

=
p(5p− 6)− 6

(1− g)(5p− 6)
, r′ =

2p(5p− 9)

p(5p− 11) + g(5p− 6)
, (48)
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to deduce ∫ T−h

t0

‖τhuuu‖Q1

1,p‖dhuuu‖
Q2

2 ≤ c

(∫ T−h

t0

‖dhuuu‖R2
2

) 1
r′

,

where

R2 = Q2r
′ =

2p(5p− 9)

p(5p− 11) + g(5p− 6)
.

We claim that R2 > 2 – indeed, this is equivalent to g < 2p
5p−6

, which is in

our situation weaker than the already mentioned condition g < 5
2
− p. On the

other hand, ‖dhuuu(s)‖2 is a bounded function, simply because uuu ∈ L∞(0, T ;L2).
Hence we can further estimate(∫ T−h

t0

‖dhuuu‖R2
2

) 1
r′

≤ C

(∫ T−h

t0

‖dhuuu‖2
2

) 1
r′

≤ Ch
1
r′ .

Obviously 1
r′
< 1, and thus we deduce uuu ∈ N

1
pr′ ,p(t0, T ;Vp). In view of the

embedding (14)1 and recalling (47) and (48), we eventually arrive at

uuu ∈ Lq̃(t0, T ;Vp), q̃ <
qp

Q1

. (49)

We recall that p
Q1

> 1 iff p > 11
5

– cf. (43). Thus the conclusion of Lemma,

namely (39), follows by iterating (40) and (49), starting from q = p in the
zero-th step.

Proof of Theorem 5.1. Take t0 ∈ (0, T ) such that MΦ(t0) is finite. We test the
equation for dhuuu by dhuuu, and proceed just as in the proof of the latter lemma.
The only difference now is in the estimate of the convective term, namely,

D1 ≤ ‖τh∇uuu‖p‖dhuuu‖2
2p′

≤ c‖τh∇uuu‖p‖dhuuu‖2a
2 ‖dhuuu‖

2(1−a)
1,2

≤ c0

4
‖dhuuu‖2

1,2 + C‖τhuuu‖puniq1,p ‖dhuuu‖2
2,

where the interpolation inequality (23) was replaced by

‖v‖2p′ ≤ c‖v‖a2‖v‖1−a
6 , a =

2p− 3

2p
, 1− a =

3

2p
.

We obtain

‖dhuuu(t)‖2
2 + c0

∫ t

t0

(
‖dhuuu‖2

1,2 + ‖dhuuu‖p1,p
)

≤ ‖dhuuu(t0)‖2
2 +

∫ t

t0

H(s)ds+ c

∫ t

t0

‖τhuuu‖puniq1,p ‖dhuuu‖2
2.

By (39), the function ‖τhuuu(s)‖puniq1,p is integrable over t0, T − h. Hence (38)
follows by Gronwall’s lemma.
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6. Final remarks

Having established the main Theorem 2.3, here we discuss, without entering
the details, some of its implications and possible extensions.

6.1. Unique continuation property. Let (uuu, φ), (ũuu, φ̃) be arbitrary weak so-
lutions, and let ` ∈ (0, T ) such that (uuu, φ) ≡ (ũuu, φ̃) on [0, `]. Then (uuu, φ) ≡ (ũuu, φ̃)
on [0, T ]. Indeed, it is enough to take t0 ∈ (0, `) such that MΦ(t0) < ∞,
cf. (19). It follows that (uuu, φ) has the regularity (11), (12). As a matter of fact,
MΦ̃(t0) = MΦ(t0), hence (ũuu, φ̃) has the same regularity. Thus it is straight-
forward to prove that the solutions coincide for all t > t0. We remark that
the critical regularity for the uniqueness in the velocity component is already
contained in Lemma 5.2.

6.2. Uniform bounds. The maximal operator is of weak (1, 1) type, i.e.∣∣{t ∈ (0, `); Mψ(t) > λ}
∣∣ ≤ c

λ
‖ψ‖L1(0,`).

Hence, one can choose t0 ∈ (0, `) such that MΦ(t0) is bounded in terms of `
and the basic norms of (7) only. More precisely, on account of Theorems 3.2,
4.1 and 5.1, it can be shown that the estimates obtained in Theorem 2.3 are
uniform with respect to the norms (21).

6.3. Large time behavior. As (uuu, µ) is an admissible test function pair for
the weak formulation, one can prove the existence of a bounded absorbing set
in H ×W 1,2 (see, e.g., [10, Theorem 3.1] for the periodic case). Assuming for
simplicity that the external force fff is independent of time, i.e. fff(t)=fff ∈V ∗p , one
can investigate the global dynamics. This issue can be conveniently analyzed
by using the so-called “method of `-trajectories” (see [19]). More precisely, one
introduces a dynamical system (X`, Lt) in the following way

X` =
{

(uuu, φ) : [0, `]→ H ×W 1,2; (uuu, φ) is weak solution on [0, `]
}
, (50)

Lt : X` → X`,
(
Ltχ
)
(s) = χ(t+ s), s ∈ [0, `]. (51)

Note that χ(t + s) = (uuu(t + s), φ(t + s)) is well defined thanks to the unique
continuation property (see above).

On account of the fact that the trajectories are regular in the sense of
Theorem 2.3, except possibly for some (uniformly) small neighborhood of t = 0,
one proves that Lt are continuous, and even have the smoothing property for
t > 0. We omit further details, referring to [10, Section 3], where the same
system with periodic boundary conditions is analyzed. We just point out that
existence of an exponential attractor and, in particular, of the global attractor
with finite fractal dimension can be proven (see [10, Theorem 3.3].
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6.4. Further regularity. Similarly as in [7], we can further improve the reg-
ularity of uuu to what might be called maximal time regularity. As a matter
of fact, we can employ the results of [7] directly, thus by-passing the proof
of Theorem 5.1. Indeed, observe that uuu is a weak solution to a generalized
Ladyzhenskaya system

∂tuuu+ (uuu · ∇)uuu−∇ · T̃ (t, x, e(uuu)) +∇π = f̃ff(t), ∇ · uuu = 0,

where we set

T̃ (t, x, e(uuu)) := T (φ(t, x), e(uuu)),

f̃ff(t) := kµ∇φ(t) + fff(t).

It follows from (36) that T̃ is uniformly κ-Hölder continuous with respect to
time, for any κ < 3

4
, cf. [7, assumption (4)]. By arguments analogous to those

preceding (36), one establishes that µ∇φ ∈ Nκ,2
loc (0, T ;L2), for any κ < 3

4
as

well.1 Thus, assuming in addition that

fff ∈ Nκ,2
loc (0, T ;L2) (52)

for some κ < 3
2
, if follows from [7, Theorem 1.2] that

uuu ∈ Nκ,∞(t0, T ;H) ∩Nκ,2(t0, T ;V2) ∩N2κ
p
,p(t0, T ;Vp).

In particular, for κ = 1
2

we have the conclusion of Theorem 5.1. However, we
believe that it is of some interest to provide self-contained, if weaker result,
also for the readers’ benefit. In addition, note that our assumption (37) on fff is
weaker than (52) with regard to spatial regularity.
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Solutions to Evolutionary PDEs. Appl. Math. Math. Comput. 13. London:
Chapman & Hall 1996.

[18] Málek, J., Nečas, J. and Růžička, M., On weak solutions to a class of non-
Newtonian incompressible fluids in bounded three-dimensional domains: the
case p ≥ 2. Adv. Diff. Equ. 6 (2001)(3), 257 – 302.



288 M. Grasselli and D. Pražák
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