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Abstract. In this paper we present a convergence result for the successive approx-
imations for a nonlinear fractional differential equation of Caputo type in Banach
spaces. Also an example is given to illustrate our result.
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1. Introduction

Assume that I = [0, a], E is a Banach space, B = {x ∈ E : ‖x − x0‖ ≤ b}
and f : I ×B 7→ E is a bounded continuous function. We consider the Cauchy
problem

Dβx = f(t, x)

x(0) = x0,
(1)

where 0 < β < 1 and Dβ denotes the fractional derivative of order β in the
Caputo sense (cf. [1, 5]).

Recently, the theory of fractional differential equations has gained consid-
erable popularity and importance, and as a result, several research papers and
monographs have been published in this field (see, for example, [7, 12, 13] and
the references therein).

It is our object in this paper to establish a convergence theorem for the
successive approximations for the nonlinear fractional initial value problem (1)
under the generalized Osgood type condition.

In what follows we shall need the following result of W. Mydlarczyk given
in [11].
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Theorem 1.1. Let α > 0 and let ω : IR+ 7→ IR+ be a nondecreasing function
such that ω(0) = 0, ω(t) > 0 for t > 0. Then the equation

u(t) =

∫ t

0

(t− s)α−1ω(u(s))ds (t ≥ 0)

has a nontrivial continuous solution if and only if

∫ δ

0

1

s

[
s

ω(s)

] 1
α

ds <∞ (δ > 0).

2. Results

Let M = sup{‖f(t, x)‖ : t ∈ I, x ∈ B}. We choose a positive number d

such that d ≤ a and M dβ

Γ(β+1)
≤ b. Denote by C = C(J,E) the Banach space

of continuous functions x : J 7→ E with usual supremum norm ‖ · ‖, where

J = [0, d]. Let B̃ ⊂ C(J,E) be the subset of those functions with values in B.

The problem (1) is equivalent to the Volterra integral equation (cf. [6])

x(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds (t ∈ I).

We define a mapping F by

F (x)(t) = x0 +
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s))ds (t ∈ J, x ∈ B̃).

It is known (cf. [2,10]) that F is a continuous mapping B̃ 7→ B̃. Moreover,

if z = F (x), then z′(t) = β−1
Γ(β)

∫ t
0
(t− s)β−2f(s, x(s))ds, so that

‖z′(t)‖ ≤ K for t ∈ J,

where K = Mdβ−1

Γ(β)
. By the mean value theorem this implies that

‖F (x)(t)− F (x)(τ)‖ ≤ K|t− τ | for t, τ ∈ J and x ∈ B̃. (2)

We shall now state our main result:
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Theorem 2.1. Let ω : [0, 2b] 7→ IR+ be a continuous nondecreasing function
such that ω(0) = 0, ω(r) > 0 for r > 0 and∫ δ

0

1

s

[
s

ω(s)

] 1
β

ds =∞ (δ > 0). (3)

If
‖f(t, x)− f(t, y)‖ ≤ ω(‖x− y‖) for t ∈ I, x, y ∈ B, (4)

then the successive approximations un, defined by

u0 = x0, un+1 = F (un) for n ∈ N, (5)

converge uniformly on J to the unique solution u of (1).

Proof. We first show (similarly as in the proof of [8, Theorem 9.1 III]), that

lim
n→∞

‖un(t)− un−1(t)‖ = 0 for t ∈ J. (6)

Put φ(t) = limn→∞‖un(t)− un−1(t)‖. From (1) and (2) it is clear that

‖un(t1)− un−1(t1)‖ ≤ ‖un(t2)− un−1(t2)‖+ 2K|t1 − t2|.

For any ε > 0 there is n0 ∈ N such that

‖un(t2)− un−1(t2)‖ ≤ φ(t2) + ε for n ≥ n0.

Therefore

‖un(t1)− un−1(t1)‖ ≤ φ(t2) + ε+ 2K|t1 − t2| for n ≥ n0

and consequently, φ(t1) ≤ φ(t2) + ε+ 2K|t1 − t2|. As ε is arbitrary, we get

φ(t1) ≤ φ(t2) + 2K|t1 − t2|.

Since t1, t2 can be interchanged, we obtain

|φ(t1)− φ(t2)| ≤ 2K|t1 − t2| for t1, t2 ∈ J

which proves the continuity of φ(·). Further, from (5) it follows that

‖un+1(t)− un(t)‖ = ‖F (un)(t)− F (un−1)(t)‖

≤ 1

Γ(β)

∫ t

0

(t− s)β−1‖f(s, un(s))− f(s, un−1(s))‖ds.

By (4) this implies

‖un+1(t)− un(t)‖ ≤ 1

Γ(β)

∫ t

0

(t− s)β−1ω(‖un(s)− un−1(s)‖)ds. (7)
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Since the sequence (‖un(·)−un−1(·)‖) is equicontinuous and uniformly bounded,
from the definition of φ(·) and Arzela’s Lemma we deduce that for fixed t ∈ J
there exists a subsequence (nk) such that limk→∞ ‖unk+1(t) − unk(t)‖ = φ(t)
and ‖unk(s)− unk−1(s)‖ → φ1(s) uniformly in s ∈ J . Replacing n by nk in (7)
and passing to the limit as k →∞, we obtain the inequality

φ(t) ≤ 1

Γ(β)

∫ t

0

(t− s)β−1ω(φ1(s))ds.

As φ1(s) ≤ lim‖un(s)− un−1(s)‖ = φ(s) and ω(r) is nondecreasing, we see that

0 ≤ φ(t) ≤ 1

Γ(β)

∫ t

0

(t− s)β−1ω(φ(s))ds for t ∈ J. (8)

By Theorem 1.1 and assumption (3) the integral equation

z(t) =
1

Γ(β)

∫ t

0

(t− s)β−1ω(z(s))ds for t ∈ J

has the unique solution z(t) ≡ 0, which is also the maximal solution. Applying
now the theorem on integral inequalities ([3, Theorem 2]), from (8) we deduce
that φ(t) ≤ z(t) for t ∈ J . Thus φ(t) ≡ 0 for t ∈ J , which proves (6).

On the other hand, (4) implies that

α (f(t,X)) ≤ ω(α(X)) for t ∈ J and X ⊂ B, (9)

where α is the Kuratowski measure of noncompactness (cf. [4]). Now we shall
show that the sequence (un) has a limit point.

Let V = {un : n ∈ N}. Then, by (2), V is a bounded equicontinuous subset

of B̃. Denote by v the function defined by v(t) = α(V (t)) for t ∈ J , where
V (t) = {un(t) : n ∈ N}. It is well known that the function v is continuous. As
V = F (V ) ∪ {0}, we have

V (t) = F (V )(t) ∪ {0}

and consequently α(V (t)) = α(F (V )(t)). Since

F (V )(t) ⊂ 1

Γ(β)

{∫ t

0

(t− s)β−1f(s, un(s))ds : n ∈ N
}
,

Heinz’s lemma [9] proves that

α(F (V )(t)) ≤ 1

Γ(β)
α

({∫ t

0

(t− s)β−1f(s, un(s))ds : n ∈ N
})

≤ 2

Γ(β)

∫ t

0

α({(t− s)β−1f(s, un(s)) : n ∈ N})ds

≤ 2

Γ(β)

∫ t

0

(t− s)β−1α({f(s, un(s)) : n ∈ N})ds.
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Moreover, in view of (9), we have α({f(s, un(s)) : n ∈ N}) ≤ ω(α(V (s))).
Hence

v(t) ≤ α(F (V )(t)) ≤ 2

Γ(β)

∫ t

0

(t− s)β−1ω(v(s))ds for t ∈ J.

Applying Theorem 1.1, assumption (3) and the theorem on integral inequalities
([3, Theorem 2]), repeating arguments from the above we deduce that v(t) = 0
for t ∈ J . Consequently α(V (t)) = 0 for t ∈ J . Therefore for each t ∈ J the set
V (t) is relatively compact in E and by Ascoli’s theorem the set V is relatively
compact in C. Hence the sequence (un) has a subsequence (unk) which converges
to a limit u. This fact, together with (5) and (6), implies that u = F (u), i.e. u
is a solution of (1).

Suppose that u is another solution of (1). Then

‖u(t)− u(t)‖ = ‖F (u)(t)− F (u)(t)‖

≤ 1

Γ(β)

∫ t

0

(t− s)β−1ω(‖u(s)− u(s)‖)ds for t ∈ J,

and using once more Theorem 1.1 and the theorem on integral inequalities we
get ‖u(t)− u(t)‖ ≡ 0 on J . Thus u = u.

From the above considerations it is clear that the sequence (un) has a unique
limit point u, and hence limn→∞ un(t) = u(t) uniformly on J .

Example 2.2. As an example, which illustrate the assumptions related to (1),
we consider the function ω(ξ) = ξ| ln ξ|β for 0 < ξ ≤ e−β, 0 < β < 1 and
ω(0) = 0. It can be easily verified that ω is continuous, nondecreasing and

|ω(ξ)− ω(η)| ≤ ω(|ξ − η|) for 0 ≤ ξ, η ≤ e−β. (10)

Moreover, ∫
0+

1

s

[
s

ω(s)

] 1
β

=

∫
0+

ds

s| ln s|
=∞.

Let E = C(0, 1) and B = {x ∈ E : ‖ x ‖≤ 1
2
e−β}.

We define a function f : B 7→ E by

f(x)(τ) = ω(|x(τ)|) for τ ∈ [0, 1] and x ∈ B.

By (10) we get ‖ f(x) − f(y) ‖≤ ω(‖ x − y ‖) for x, y ∈ B. Therefore, our
equation has the form:

Dβx = f(x), 0 < β < 1.

By Theorem 2.1, it follows that the corresponding sequence of successive ap-
proximations (un(t)) converges uniformly to the unique solution u(t) ≡ 0.
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