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Kuratowski’s Measure of Noncompactness
with Respect to Thompson’s Metric
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Abstract. It is known that the interior of a normal cone K in a Banach space
is a complete metric space with respect to Thompson’s metric d. We prove that
Kuratowski’s measure of noncompactness τ in (K◦, d) has the Mazur-Darbo property
and that, as a consequence, an analog of Darbo-Sadovskii’s fixed point theorem is valid
in (K◦, d). We show that the properties of τ partly differ to the classical case. Among
others τ is nicely compatible with the multiplication in ordered Banach algebras.
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1. Introduction

Let (E, ‖ · ‖) be a real Banach space ordered by a normal cone K, that is K
is a closed convex subset of E such that λK ⊆ K (λ ≥ 0), K ∩ (−K) = {0},
inducing an ordering by x ≤ y :⇐⇒ y − x ∈ K, and

∃c ≥ 1 : 0 ≤ x ≤ y ⇒ ‖x‖ ≤ c‖y‖.

Moreover we assume that K is solid, that is K has nonempty interior K◦, and
we set x � y : ⇐⇒ y − x ∈ K◦. In this situation K◦ endowed with the
Thompson metric [12]

d(x, y) := log(min{α ≥ 1 : x ≤ αy, y ≤ αx})

is a complete metric space. Let B denote the set of all bounded sets in (K◦, d).
In this paper we investigate the corresponding Kuratowski measure of noncom-
pactness τ : B → [0,∞) defined by

τ(A) = inf

{
λ ≥ 0 : ∃n ∈ N, A1, . . . , An ∈ B : diam(Ak) ≤ λ, A ⊆

n⋃
k=1

Ak

}
.
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Of course, τ shares the general properties of Kuratowski’s measure of noncom-
pactness on a complete metric space, see Proposition 2.1. But in addition we
will see that τ has the Mazur-Darbo property, that is

τ(A) = τ(conv(A)) (A ∈ B).

This fact allows a version of Darbo-Sadovskii’s fixed point theorem with respect
to Thompson’s metric. Moreover τ is nicely compatible with the multiplication
in ordered Banach algebras. We will see that then

τ(A ·B) ≤ τ(A) + τ(B) (A,B ∈ B).

In Section 5 we prove a fixed point theorem in Banach algebras, which can be
applied to certain functional-integral equations, for example.

2. Properties of d and τ

For A ∈ B and r > 0 we set

Ar :=
⋃
a∈A

{x ∈ K◦ : d(x, a) ≤ r}.

For the following basic properties of Kuratowski’s measure of noncompactness
(which hold in general complete metric spaces) see [2].

Proposition 2.1. For all A,B ∈ B :

1. τ(A) ≤ diam(A);

2. A ⊆ B ⇒ τ(A) ≤ τ(B);

3. τ(A ∪B) = max{τ(A), τ(B)};
4. τ(A) = τ(A);

5. A is compact ⇐⇒ A = A, τ(A) = 0;

6. τ(Ar) ≤ τ(A) + 2r (r > 0).

Next, let p ∈ K◦ be fixed and let ‖ · ‖p denote the Minkowski functional

‖x‖p = min{α ≥ 0 : −αp ≤ x ≤ αp} (x ∈ E).

Then ‖ · ‖p is an equivalent norm on E [5, Prop.19.9].

Example 2.2. Consider E = C[0, 1] with maximum norm ‖ · ‖∞ and

K = {x ∈ E : x(t) ≥ 0 (t ∈ [0, 1])}.

Then ‖ · ‖∞ = ‖ · ‖p for p(·) = 1 ∈ K◦ and, for x, y ∈ K◦ one has

d(x, y) = max
t∈[0,1]

∣∣∣∣log
x(t)

y(t)

∣∣∣∣ =

∥∥∥∥log

(
x

y

)∥∥∥∥
∞
.

It would be interesting to study also Hausdorff’s measure of noncompactness in
this setting and to obtain representations in the spirit of, e.g. the results in [2].
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We write
distp(x, ∂K) := inf{‖x− y‖p : y ∈ ∂K}

for the distance to the boundary of K with respect to this norm. We have the
following

Lemma 2.3. For any x ∈ K :

x− distp(x, ∂K)p ≥ 0.

Proof. The assertion is clear for x ∈ ∂K. So assume that x ∈ K◦. Since K is
convex and closed, the set {s ≥ 0 : x− sp ∈ K} is then a compact interval [0, t]
where t > 0. Let x0 := x− tp ∈ ∂K. For s ∈ [0, t) we have

x− sp = x0 + (t− s)p ≥ (t− s)p,

so x− sp ∈ K◦.
Clearly, distp(x, ∂K)≤‖x−x0‖p= t. If, on the other hand, distp(x, ∂K)< t,

we would find α ∈ (distp(x, ∂K), t) and y ∈ ∂K with

‖x− y‖p ≤ α ⇐⇒ −αp ≤ x− y ≤ αp.

But then x− αp ≤ y, which would imply y ∈ K◦, a contradiction.

The following proposition lists some properties of d and its connection to
‖ · ‖p, and inequalities concerning convex combinations. For not exactly these,
but quite related inequalities, see [11, Section 2.2.].

Proposition 2.4. For all x, y, x1, . . . , xn, y1, . . . , ym ∈ K◦ :

1. ‖x− y‖p ≤ (exp(d(x, y))− 1) exp(max{d(x, p), d(y, p)});

2. d(x, y) ≤ ‖x− y‖p
min{distp(x, ∂K), distp(y, ∂K)}

;

3. − log(distp(x, ∂K)) ≤ d(x, p);

4. x ∈ conv{x1, . . . , xn}, y ∈ conv{y1, . . . , ym} ⇒

d(x, y) ≤ max{d(xj, yk) : j = 1, . . . , n, k = 1, . . . ,m};

5. if x =
∑n

k=1 αkxk, y =
∑n

k=1 βkxk are convex combinations, then

d(x, y) ≤ exp(max{d(xj, xk) : j, k = 1, . . . , n})
n∑
k=1

|αk − βk|.

Proof. 1.) We have

x− y ≤ (exp(d(x, y))− 1)y

≤ (exp(d(x, y))− 1) exp(d(y, p))p

≤ (exp(d(x, y))− 1) exp(max{d(x, p), d(y, p)})p.
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Analogously y − x ≤ (exp(d(x, y))− 1) exp(max{d(x, p), d(y, p)})p, thus

‖x− y‖p ≤ (exp(d(x, y))− 1) exp(max{d(x, p), d(y, p)}).
2.) From y − distp(y, ∂K)p ≥ 0 (see Lemma 2.3) we obtain

x = x− y + y ≤ ‖x− y‖pp+ y ≤
(

1 +
‖x− y‖p

distp(y, ∂K)

)
y,

consequently

x ≤
(

1 +
‖x− y‖p

min{distp(x, ∂K), distp(y, ∂K)}

)
y,

and analogously

y ≤
(

1 +
‖x− y‖p

min{distp(x, ∂K), distp(y, ∂K)}

)
x.

Hence

d(x, y) ≤ log

(
1 +

‖x− y‖p
min{distp(x, ∂K), distp(y, ∂K)}

)
≤ ‖x− y‖p

min{distp(x, ∂K), distp(y, ∂K)}
.

3.) For each z ∈ ∂K we have

x−z ≤ ‖x−z‖pp ≤ ‖x−z‖p exp(d(x, p))x ⇒ (1−‖x−z‖p exp(d(x, p)))x ≤ z.

Since x ∈ K◦ we conclude 1 ≤ ‖x− z‖p exp(d(x, p)), and by taking the infimum
over all z ∈ ∂K we obtain 1 ≤ distp(x, ∂K) exp(d(x, p)).

4.) Let

x =
n∑
j=1

αjxj, y =
m∑
k=1

βkyk

be convex combinations, and set

γ := max{d(xj, yk) : j = 1, . . . , n, k = 1, . . . ,m}.
Now

x =
n∑
j=1

m∑
k=1

βkαjxj

≤
n∑
j=1

m∑
k=1

βkαj exp(d(xj, yk))yk

≤ exp(γ)
m∑
k=1

n∑
j=1

αjβkyk

= exp(γ)
m∑
k=1

βkyk

= exp(γ)y.
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Analogously y ≤ exp(γ)x and therefore d(x, y) ≤ γ.

5.) Set δ := max{d(xj, xk) : j, k = 1, . . . , n}. For each j ∈ {1, . . . , n} we
have

x−y≤
n∑
k=1

|αk−βk|xk≤
n∑
k=1

|αk−βk| exp(d(xk, xj))xj≤

(
exp(δ)

n∑
k=1

|αk − βk|

)
xj.

Thus x−y =
∑n

j=1 βj(x−y) ≤ (exp(δ)
∑n

k=1 |αk − βk|)
∑n

j=1 βjxj which implies

x ≤

(
1 + exp(δ)

n∑
k=1

|αk − βk|

)
y.

Analogously

y ≤

(
1 + exp(δ)

n∑
k=1

|αk − βk|

)
x,

and therefore

d(x, y) ≤ log

(
1 + exp(δ)

n∑
k=1

|αk − βk|

)
≤ exp(δ)

n∑
k=1

|αk − βk|.

The next proposition delineates some compatibility of τ and the algebraic
operations on E. Let us arrange that we call E an ordered Banach algebra if it
is Banach algebra with unit 1 and if K satisfies in addition

1 ∈ K, K ·K ⊆ K.

Proposition 2.5. Let A,B ∈ B and α > 0. Then

1. τ(A+B) ≤ max{τ(A), τ(B)};
2. τ(αA) = τ(A);

3. if in addition E is an ordered Banach algebra, then

τ(A ·B) ≤ τ(A) + τ(B).

Proof. Let ε > 0 and let A1, . . . , An and B1, . . . , Bm be finite covers of A and B,
respectively, with

diam(Aj) ≤ τ(A) + ε (j = 1, . . . , n), diam(Bk) ≤ τ(B) + ε (k = 1, . . . ,m).

1.) We have

A+B ⊆
n,m⋃

j=1,k=1

(Aj +Bk).
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Now, let a1, a2 ∈ Aj, b1, b2 ∈ Bk. Then

a1 + b1 ≤ exp(d(a1, a2))a2 + exp(d(b1, b2))b2

≤ exp(max{d(a1, a2), d(b1, b2)})(a2 + b2)

≤ exp(max{τ(A), τ(B)}+ ε)(a2 + b2),

and analogously

a2 + b2 ≤ exp(max{τ(A), τ(B)}+ ε)(a1 + b1).

Thus d(a1 + b1, a2 + b2) ≤ max{τ(A), τ(B)}+ ε, and therefore

diam(Aj +Bk) ≤ max{τ(A), τ(B)}+ ε.

Since ε > 0 was arbitrary we get τ(A+B) ≤ max{τ(A), τ(B)}.
2.) First note that d(x, y) = d(αx, αy) (x, y ∈ K◦). We have

αA ⊆
n⋃
j=1

αAj, diam(αAj) = diam(Aj) (j = 1, . . . , n).

Thus τ(αA) = τ(A).

3.) We first prove that A ·B ⊆ K◦: If a ∈ A, b ∈ B then a ∈ K◦ implies

∃λ > 0 : 1 ≤ λa ⇒ b ≤ λab ⇒ 1

λ
b ≤ ab,

and since b
λ
∈ K◦ we have ab ∈ K◦. Next,

A ·B ⊆
n,m⋃

j=1,k=1

Aj ·Bk.

Let a1, a2 ∈ Aj, b1, b2 ∈ Bk. Then

a1b1 ≤ exp(d(a1, a2) + d(b1, b2))a2b2 ≤ exp(τ(A) + τ(B) + 2ε)a2b2,

and analogously

a2b2 ≤ exp(τ(A) + τ(B) + 2ε)a1b1.

Thus d(a1b1, a2b2) ≤ τ(A) + τ(B) + 2ε, and so

diam(Aj ·Bk) ≤ τ(A) + τ(B) + 2ε.

Since ε > 0 was arbitrary we get τ(A ·B) ≤ τ(A) + τ(B).
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3. Convex hulls

We now prove that τ has the Mazur-Darbo property:

Theorem 3.1. For all A ∈ B
1. diam(A) = diam(conv(A));

2. τ(A) = τ(conv(A)).

Proof. 1.) Let A ∈ B and let

x =
n∑
j=1

αjxj, y =
m∑
k=1

βkyk

be convex combinations of elements of A. According to Proposition 2.4 we have

d(x, y) ≤ max{d(xj, yk) : j = 1, . . . , n, k = 1, . . . ,m} ≤ diam(A).

Thus conv(A) ∈ B and

diam(conv(A)) ≤ diam(A).

Since clearly diam(A) ≤ diam(conv(A)) the assertion follows.

2.) Again let A ∈ B. According to Proposition 2.1, we have τ(A) ≤
τ(conv(A)). Let ε > 0 and let A1, . . . , An ∈ B be such that

A ⊆
n⋃
k=1

Ak, diam(Ak) ≤ τ(A) + ε (k = 1, . . . , n).

Without loss of generality we may assume A ∩ Ak 6= ∅ and that Ak is convex
(k = 1, . . . , n). For

λ ∈ Λ :=

{
λ = (λ1, . . . , λn) ∈ [0,∞)n :

n∑
k=1

λk = 1

}
we set

M(λ) :=
n∑
k=1

λkAk, M :=
∑
λ∈Λ

M(λ).

Since all Ak are convex, a short calculation shows that M is convex too. Since
A ⊆M we obtain conv(A) ⊆M . Since Λ is compact we can find a finite subset S
of Λ such that Λ ⊆

⋃
λ∈S Bε(λ), with Bε(λ) the open ball with center λ and

radius ε in Rn, endowed with the l1-norm ‖ · ‖1. Now let x ∈M , thus x ∈M(λ)
for some λ ∈ Λ, that is

∃(a1, . . . , an) ∈ A1 × · · · × An : x =
n∑
k=1

λkak.



342 G. Herzog and P. C. Kunstmann

Let µ ∈ S with ‖λ− µ‖1 < ε. Set

δ := max{d(aj, ak) : j, k = 1, . . . , n}.

First note that A ∩ Ak 6= ∅ (k = 1, . . . , n) implies δ ≤ diam(A) + 2(τ(A) + ε).
By means of Proposition 2.4, we get

d

(
x,

n∑
k=1

µkak

)
= d

(
n∑
k=1

λkak,
n∑
k=1

µkak

)
≤ exp(δ)‖µ− λ‖1

≤ ε exp(diam(A) + 2(τ(A) + ε)) =: r(ε).

This means x ∈ (M(µ))r(ε), therefore conv(A) ⊆ M ⊆
⋃
µ∈S(M(µ))r(ε). By

means of Propositions 2.1, 2.4, and 2.5, we conclude

τ(conv(A)) ≤ τ

(⋃
µ∈S

(M(µ))r(ε)

)
= max

µ∈S
τ
(
(M(µ))r(ε)

)
≤ 2r(ε) + max

µ∈S
τ(M(µ))

= 2r(ε) + max
µ∈S

τ

(
n∑
k=1

µkAk

)
≤ 2r(ε) + max

k=1,...,n
τ(Ak)

≤ 2r(ε) + τ(A) + ε.

Since r(ε)→ 0 (ε→ 0+) we have τ(conv(A)) ≤ τ(A).

4. Fixed points of condensing mappings

Let C ⊆ K◦ and let f : C → K◦ be a function. As usual we call f condensing
(with respect to τ), if

A ∈ B, A ⊆ C, τ(A) > 0 ⇒ f(A) ∈ B, τ(f(A)) < τ(A).

Since Darbo’s result on the measure of noncompactness of convex sets is the key
to Darbo-Sadovskii’s fixed point theorem [5, Theorem 9.1], [13, Chapter 11.5],
one expects by means of Theorem 3.1 an analog result with respect to τ . Note
that all topological properties in the following theorem are meant with respect
to the topology in (K◦, d).
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Theorem 4.1. Let ∅ 6= C ⊆ K◦ be closed, convex and bounded, and let f :
C → C be continuous and condensing with respect to τ . Then f has a fixed
point.

Remark 4.2. According to Proposition 2.4, a set M ⊆ K◦ is closed and
bounded in (K◦, d) if and only if M is norm-closed, norm-bounded and

inf
x∈M

distp(x, ∂K) > 0.

Moreover, if (xn) is a sequence in K◦ and x0 ∈ K◦, then

d(xn, x0)→ 0 (n→∞) ⇐⇒ ‖xn − x0‖ → 0 (n→∞).

This can also be seen from Proposition 2.4, or compare [9, Chapter 2.3]. In
particular, for any set M ⊆ K◦ a function f : M → K◦ is d-continuous if and
only if f is norm-continuous.

The proof of Theorem 4.1 follows the classical proof of the Darbo-Sadovskii
theorem and is repeated here for convenience of the reader.

Proof. We fix x0 ∈ C and set

C = {M : x0 ∈M ⊆ C, M = conv(M), f(M) ⊆M}.

Clearly C ⊆ B, C ∈ C and

C1 :=
⋂
M∈C

M ∈ C.

Let
C2 := conv({x0} ∪ f(C1)).

Then x0 ∈ C2 and C2 is closed and convex. Since x0 ∈ C1 and f(C1) ⊆ C1 we
get {x0} ∪ f(C1) ⊆ C1, thus also C2 ⊆ C1. Therefore

f(C2) ⊆ f(C1) ⊆ {x0} ∪ f(C1) ⊆ C2,

hence C2 ∈ C. We conclude C1 = C2. Assume by contradiction that τ(C1) > 0.
Then, according to Theorem 3.1,

τ(C1) = τ(conv({x0} ∪ f(C1))) = τ({x0} ∪ f(C1)) = τ(f(C1)) < τ(C1).

Thus τ(C1) = 0. Summing up C1 6= ∅ is convex, compact in (K◦, d), and
f(C1) ⊆ C1. Proposition 2.4 shows that C1 is also norm-compact, and since f
is continuous, Schauder’s fixed point theorem proves the existence of a fixed
point of f in C1.
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5. Example

A recurrent type of condensing mappings are certain perturbations of contrac-
tions [1], [5, Chapter 9], [13, Chapter 11.6]. There are several results on contrac-
tions with respect to the Thompson metric, in particular for mixed monotone
mappings, see [6–8, 11], [9, Chapter 2.3] and the references given there. Using
a condition given by Guo [6] we have

Lemma 5.1. Let l ≥ 0 and let g : K◦ ×K◦ → K◦ satisfy

1. x 7→ g(x, y) is monotone increasing (y ∈ K◦);
2. y 7→ g(x, y) is monotone decreasing (x ∈ K◦);
3. g(αx, y

α
) ≤ αlg(x, y) (α ≥ 1, x, y ∈ K◦).

Then x 7→ g(x, x) is d-Lipschitz continuous with Lipschitz constant l.

Proof. Let x, y ∈ K◦. Then

g(x, x) ≤ g(exp(d(x, y))y, exp(−d(x, y))y) ≤ exp(ld(x, y))g(y, y),

and

g(y, y) ≤ g(exp(d(x, y))x, exp(−d(x, y))x) ≤ exp(ld(x, y))g(x, x).

Thus d(g(x, x), g(y, y)) ≤ ld(x, y).

In the following theorem let E be an ordered Banach algebra, and for x ≤ y
let [x, y] denote the order interval {z ∈ E : x ≤ z ≤ y}. For applications of the
classical measures of noncompactness in Banach algebras see [3, 4].

Theorem 5.2. Let g : K◦ ×K◦ → K◦ satisfy the assumptions in Lemma 5.1
with l < 1, let 0 � q1 ≤ q2 and let h : K◦ → [q1, q2] be continuous and norm-
compact (i.e. h(K◦) is relativly compact in (E, ‖ · ‖)). Then f : K◦ → K◦,
f(x) = g(x, x) · h(x) has a fixed point.

Proof. First note that each order interval in K◦ is bounded and closed in norm
and with respect to d, so h(K◦) is relatively compact in (K◦, d). Next, we fix
w ∈ K◦. Then, for α ≥ 1

g(αw, w
α

)q2

α
≤ αl−1g(w,w)q2 → 0 (α→∞).

Moreover, for α ≥ 1 we have g(w,w) = g(αw
α
, αw
α

) ≤ αlg(w
α
, αw). Thus

αg
(w
α
, αw

)
q1 ≥ α1−lg(w,w)q1 (α ≥ 1).

Hence, there exists α0 ≥ 1 such that

g

(
α0w,

w

α0

)
q2 ≤ α0w, g

(
w

α0

, α0w

)
q1 ≥

w

α0

.
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For C := [ w
α0
, α0w] we get f(C) ⊆ C: Let w

α0
≤ x ≤ α0w. Then

w

α0

≤ g

(
w

α0

, α0w

)
q1 ≤ f(x) ≤ g

(
α0,

w

α0

)
q2 ≤ α0w.

By Lemma 5.1, x 7→ g(x, x) is continuous, hence f|C : C → C is continuous,
and C is a convex closed and bounded subset of (K◦, d). Finally we show
that f|C is a τ -set contraction, hence condensing: By setting g̃(x) = g(x, x) we
get from Lemma 5.1 and Proposition 2.5 that for each A ⊆ C

τ(f(A)) ≤ τ(g̃(A) · h(A)) ≤ τ(g̃(A)) + τ(h(A)) ≤ lτ(A) + 0 = lτ(A).

Now, application of Theorem 4.1 proves the existence of a fixed point of f
in C.

The authors are grateful to the referee for the observation that Theorem 5.2
can also be proved by a suitable modification of the proof of a fixed point
theorem by Krasnoselskii [10] (cf., e.g. [5, p. 71, paragraph after Theorem 1]).

Example 5.3. Take for example E = C([0, 1],R), endowed with the maximum
norm and ordered by the natural cone

K := {x ∈ C([0, 1],R) : x(t) ≥ 0 (t ∈ [0, 1])},

with

K◦ = {x ∈ C([0, 1],R) : x(t) > 0 (t ∈ [0, 1])}.

By setting

g(x, y)(t) =
√
x(1− t) +

1√
y(t2)

, h(x) =

∫ 1

0

exp(λts sinx(s)) ds,

q1(t) = exp(−|λ|), q2(t) = exp(|λ|) (t ∈ [0, 1]),

Theorem 5.2 proves the existence of a positive solution of the functional-integral
equation

x(t) =

(√
x(1− t) +

1√
x(t2)

)∫ 1

0

exp(λts sinx(s)) ds

for each λ ∈ R.
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