© European Mathematical Society

Kuratowski's Measure of Noncompactness with Respect to Thompson's Metric

Gerd Herzog and Peer Chr. Kunstmann

Abstract. It is known that the interior of a normal cone K in a Banach space is a complete metric space with respect to Thompson's metric d. We prove that Kuratowski's measure of noncompactness τ in (K°, d) has the Mazur-Darbo property and that, as a consequence, an analog of Darbo-Sadovskii's fixed point theorem is valid in (K°, d) . We show that the properties of τ partly differ to the classical case. Among others τ is nicely compatible with the multiplication in ordered Banach algebras.

Keywords. Ordered Banach spaces, Thompson metric, measure of noncompactness, fixed points

Mathematics Subject Classification (2010). 46B40, 47H09, 47H10

1. Introduction

Let $(E, \|\cdot\|)$ be a real Banach space ordered by a normal cone K, that is K is a closed convex subset of E such that $\lambda K \subseteq K$ ($\lambda \ge 0$), $K \cap (-K) = \{0\}$, inducing an ordering by $x \le y : \iff y - x \in K$, and

$$\exists c \ge 1: \ 0 \le x \le y \ \Rightarrow \ \|x\| \le c\|y\|.$$

Moreover we assume that K is solid, that is K has nonempty interior K° , and we set $x \ll y : \iff y - x \in K^{\circ}$. In this situation K° endowed with the Thompson metric [12]

$$d(x,y) := \log(\min\{\alpha \ge 1 : x \le \alpha y, \ y \le \alpha x\})$$

is a complete metric space. Let \mathcal{B} denote the set of all bounded sets in (K°, d) . In this paper we investigate the corresponding Kuratowski measure of noncompactness $\tau : \mathcal{B} \to [0, \infty)$ defined by

$$\tau(A) = \inf \left\{ \lambda \ge 0 : \exists n \in \mathbb{N}, A_1, \dots, A_n \in \mathcal{B} : \operatorname{diam}(A_k) \le \lambda, \ A \subseteq \bigcup_{k=1}^n A_k \right\}.$$

G. Herzog, P. C. Kunstmann: Institut für Analysis, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany; gerd.herzog2@kit.edu; peer.kunstmann@kit.edu

Of course, τ shares the general properties of Kuratowski's measure of noncompactness on a complete metric space, see Proposition 2.1. But in addition we will see that τ has the Mazur-Darbo property, that is

$$\tau(A) = \tau(\operatorname{conv}(A)) \quad (A \in \mathcal{B}).$$

This fact allows a version of Darbo-Sadovskii's fixed point theorem with respect to Thompson's metric. Moreover τ is nicely compatible with the multiplication in ordered Banach algebras. We will see that then

$$\tau(A \cdot B) \le \tau(A) + \tau(B) \quad (A, B \in \mathcal{B}).$$

In Section 5 we prove a fixed point theorem in Banach algebras, which can be applied to certain functional-integral equations, for example.

2. Properties of d and τ

For $A \in \mathcal{B}$ and r > 0 we set

$$A_r := \bigcup_{a \in A} \{ x \in K^\circ : d(x, a) \le r \}.$$

For the following basic properties of Kuratowski's measure of noncompactness (which hold in general complete metric spaces) see [2].

Proposition 2.1. For all $A, B \in \mathcal{B}$:

1. $\tau(A) \leq \operatorname{diam}(A);$ 2. $A \subseteq B \Rightarrow \tau(A) \leq \tau(B);$ 3. $\tau(A \cup B) = \max\{\tau(A), \tau(B)\};$ 4. $\tau(\overline{A}) = \tau(A);$ 5. A is compact $\iff A = \overline{A}, \tau(A) = 0;$ 6. $\tau(A_r) \leq \tau(A) + 2r \ (r > 0).$

Next, let $p \in K^\circ$ be fixed and let $\|\cdot\|_p$ denote the Minkowski functional

$$||x||_p = \min\{\alpha \ge 0 : -\alpha p \le x \le \alpha p\} \quad (x \in E).$$

Then $\|\cdot\|_p$ is an equivalent norm on E [5, Prop.19.9].

Example 2.2. Consider E = C[0, 1] with maximum norm $\|\cdot\|_{\infty}$ and

$$K = \{ x \in E : x(t) \ge 0 \ (t \in [0, 1]) \}$$

Then $\|\cdot\|_{\infty} = \|\cdot\|_p$ for $p(\cdot) = 1 \in K^{\circ}$ and, for $x, y \in K^{\circ}$ one has

$$d(x,y) = \max_{t \in [0,1]} \left| \log \frac{x(t)}{y(t)} \right| = \left\| \log \left(\frac{x}{y} \right) \right\|_{\infty}.$$

It would be interesting to study also Hausdorff's measure of noncompactness in this setting and to obtain representations in the spirit of, e.g. the results in [2].

We write

$$\operatorname{dist}_p(x,\partial K) := \inf\{\|x - y\|_p : y \in \partial K\}$$

for the distance to the boundary of K with respect to this norm. We have the following

Lemma 2.3. For any $x \in K$:

 $x - \operatorname{dist}_p(x, \partial K) p \ge 0.$

Proof. The assertion is clear for $x \in \partial K$. So assume that $x \in K^{\circ}$. Since K is convex and closed, the set $\{s \ge 0 : x - sp \in K\}$ is then a compact interval [0, t] where t > 0. Let $x_0 := x - tp \in \partial K$. For $s \in [0, t)$ we have

$$x - sp = x_0 + (t - s)p \ge (t - s)p,$$

so $x - sp \in K^{\circ}$.

Clearly, $\operatorname{dist}_p(x, \partial K) \leq ||x - x_0||_p = t$. If, on the other hand, $\operatorname{dist}_p(x, \partial K) < t$, we would find $\alpha \in (\operatorname{dist}_p(x, \partial K), t)$ and $y \in \partial K$ with

$$\|x - y\|_p \le \alpha \quad \Longleftrightarrow \quad -\alpha p \le x - y \le \alpha p.$$

But then $x - \alpha p \leq y$, which would imply $y \in K^{\circ}$, a contradiction.

The following proposition lists some properties of d and its connection to $\|\cdot\|_p$, and inequalities concerning convex combinations. For not exactly these, but quite related inequalities, see [11, Section 2.2.].

Proposition 2.4. For all $x, y, x_1, ..., x_n, y_1, ..., y_m \in K^\circ$: 1. $||x - y||_p \le (\exp(d(x, y)) - 1) \exp(\max\{d(x, p), d(y, p)\});$ 2. $d(x, y) \le \frac{||x - y||_p}{\min\{\operatorname{dist}_p(x, \partial K), \operatorname{dist}_p(y, \partial K)\}};$ 3. $-\log(\operatorname{dist}_p(x, \partial K)) \le d(x, p);$ 4. $x \in \operatorname{conv}\{x_1, ..., x_n\}, y \in \operatorname{conv}\{y_1, ..., y_m\} \Rightarrow$ $d(x, y) \le \max\{d(x_j, y_k) : j = 1, ..., n, k = 1, ..., m\};$

5. if $x = \sum_{k=1}^{n} \alpha_k x_k$, $y = \sum_{k=1}^{n} \beta_k x_k$ are convex combinations, then

$$d(x,y) \le \exp(\max\{d(x_j, x_k) : j, k = 1, \dots, n\}) \sum_{k=1}^n |\alpha_k - \beta_k|.$$

Proof. 1.) We have

$$\begin{aligned} x - y &\leq (\exp(d(x, y)) - 1)y \\ &\leq (\exp(d(x, y)) - 1) \exp(d(y, p))p \\ &\leq (\exp(d(x, y)) - 1) \exp(\max\{d(x, p), d(y, p)\})p. \end{aligned}$$

Analogously $y - x \leq (\exp(d(x, y)) - 1) \exp(\max\{d(x, p), d(y, p)\})p$, thus $\|x - y\|_p \leq (\exp(d(x, y)) - 1) \exp(\max\{d(x, p), d(y, p)\}).$ 2.) From $y - \operatorname{dist}_p(y, \partial K)p \geq 0$ (see Lemma 2.3) we obtain

$$x = x - y + y \le ||x - y||_p p + y \le \left(1 + \frac{||x - y||_p}{\operatorname{dist}_p(y, \partial K)}\right) y,$$

consequently

$$x \le \left(1 + \frac{\|x - y\|_p}{\min\{\operatorname{dist}_p(x, \partial K), \operatorname{dist}_p(y, \partial K)\}}\right) y_p$$

and analogously

$$y \le \left(1 + \frac{\|x - y\|_p}{\min\{\operatorname{dist}_p(x, \partial K), \operatorname{dist}_p(y, \partial K)\}}\right) x.$$

Hence

$$d(x,y) \le \log\left(1 + \frac{\|x-y\|_p}{\min\{\operatorname{dist}_p(x,\partial K),\operatorname{dist}_p(y,\partial K)\}}\right)$$
$$\le \frac{\|x-y\|_p}{\min\{\operatorname{dist}_p(x,\partial K),\operatorname{dist}_p(y,\partial K)\}}.$$

3.) For each $z \in \partial K$ we have

$$\begin{split} x-z &\leq \|x-z\|_p p \leq \|x-z\|_p \exp(d(x,p))x \ \Rightarrow \ (1-\|x-z\|_p \exp(d(x,p)))x \leq z. \\ \text{Since } x \in K^\circ \text{ we conclude } 1 \leq \|x-z\|_p \exp(d(x,p)), \text{ and by taking the infimum over all } z \in \partial K \text{ we obtain } 1 \leq \operatorname{dist}_p(x,\partial K) \exp(d(x,p)). \end{split}$$

4.) Let

$$x = \sum_{j=1}^{n} \alpha_j x_j, \quad y = \sum_{k=1}^{m} \beta_k y_k$$

be convex combinations, and set

$$\gamma := \max\{d(x_j, y_k) : j = 1, \dots, n, \ k = 1, \dots, m\}.$$

Now

$$x = \sum_{j=1}^{n} \sum_{k=1}^{m} \beta_k \alpha_j x_j$$

$$\leq \sum_{j=1}^{n} \sum_{k=1}^{m} \beta_k \alpha_j \exp(d(x_j, y_k)) y_k$$

$$\leq \exp(\gamma) \sum_{k=1}^{m} \sum_{j=1}^{n} \alpha_j \beta_k y_k$$

$$= \exp(\gamma) \sum_{k=1}^{m} \beta_k y_k$$

$$= \exp(\gamma) y.$$

Analogously $y \leq \exp(\gamma)x$ and therefore $d(x, y) \leq \gamma$.

5.) Set $\delta := \max\{d(x_j, x_k) : j, k = 1, \dots, n\}$. For each $j \in \{1, \dots, n\}$ we have

$$x-y \leq \sum_{k=1}^{n} |\alpha_k - \beta_k| x_k \leq \sum_{k=1}^{n} |\alpha_k - \beta_k| \exp(d(x_k, x_j)) x_j \leq \left(\exp(\delta) \sum_{k=1}^{n} |\alpha_k - \beta_k| \right) x_j.$$

Thus $x - y = \sum_{j=1}^{n} \beta_j (x - y) \le (\exp(\delta) \sum_{k=1}^{n} |\alpha_k - \beta_k|) \sum_{j=1}^{n} \beta_j x_j$ which implies

$$x \le \left(1 + \exp(\delta) \sum_{k=1}^{n} |\alpha_k - \beta_k|\right) y.$$

Analogously

$$y \le \left(1 + \exp(\delta) \sum_{k=1}^{n} |\alpha_k - \beta_k|\right) x,$$

and therefore

$$d(x,y) \le \log\left(1 + \exp(\delta)\sum_{k=1}^{n} |\alpha_k - \beta_k|\right) \le \exp(\delta)\sum_{k=1}^{n} |\alpha_k - \beta_k|.$$

The next proposition delineates some compatibility of τ and the algebraic operations on E. Let us arrange that we call E an ordered Banach algebra if it is Banach algebra with unit **1** and if K satisfies in addition

$$1 \in K, \quad K \cdot K \subseteq K.$$

Proposition 2.5. Let $A, B \in \mathcal{B}$ and $\alpha > 0$. Then

- 1. $\tau(A+B) \le \max\{\tau(A), \tau(B)\};$
- 2. $\tau(\alpha A) = \tau(A);$
- 3. if in addition E is an ordered Banach algebra, then

$$\tau(A \cdot B) \le \tau(A) + \tau(B).$$

Proof. Let $\varepsilon > 0$ and let A_1, \ldots, A_n and B_1, \ldots, B_m be finite covers of A and B, respectively, with

diam
$$(A_j) \le \tau(A) + \varepsilon$$
 $(j = 1, ..., n),$ diam $(B_k) \le \tau(B) + \varepsilon$ $(k = 1, ..., m).$

1.) We have

$$A + B \subseteq \bigcup_{j=1,k=1}^{n,m} (A_j + B_k).$$

Now, let $a_1, a_2 \in A_j, b_1, b_2 \in B_k$. Then

$$a_{1} + b_{1} \leq \exp(d(a_{1}, a_{2}))a_{2} + \exp(d(b_{1}, b_{2}))b_{2}$$

$$\leq \exp(\max\{d(a_{1}, a_{2}), d(b_{1}, b_{2})\})(a_{2} + b_{2})$$

$$\leq \exp(\max\{\tau(A), \tau(B)\} + \varepsilon)(a_{2} + b_{2}),$$

and analogously

$$a_2 + b_2 \le \exp(\max\{\tau(A), \tau(B)\} + \varepsilon)(a_1 + b_1)$$

Thus $d(a_1 + b_1, a_2 + b_2) \le \max\{\tau(A), \tau(B)\} + \varepsilon$, and therefore

 $\operatorname{diam}(A_j + B_k) \le \max\{\tau(A), \tau(B)\} + \varepsilon.$

Since $\varepsilon > 0$ was arbitrary we get $\tau(A + B) \le \max\{\tau(A), \tau(B)\}.$

2.) First note that $d(x,y) = d(\alpha x, \alpha y)$ $(x, y \in K^{\circ})$. We have

$$\alpha A \subseteq \bigcup_{j=1}^{n} \alpha A_j, \quad \operatorname{diam}(\alpha A_j) = \operatorname{diam}(A_j) \quad (j = 1, \dots, n).$$

Thus $\tau(\alpha A) = \tau(A)$.

3.) We first prove that $A \cdot B \subseteq K^{\circ}$: If $a \in A, b \in B$ then $a \in K^{\circ}$ implies

$$\exists \lambda > 0: \ \mathbf{1} \le \lambda a \ \Rightarrow \ b \le \lambda a b \ \Rightarrow \ \frac{1}{\lambda} b \le a b,$$

and since $\frac{b}{\lambda} \in K^{\circ}$ we have $ab \in K^{\circ}$. Next,

$$A \cdot B \subseteq \bigcup_{j=1,k=1}^{n,m} A_j \cdot B_k.$$

Let $a_1, a_2 \in A_j, b_1, b_2 \in B_k$. Then

$$a_1b_1 \le \exp(d(a_1, a_2) + d(b_1, b_2))a_2b_2 \le \exp(\tau(A) + \tau(B) + 2\varepsilon)a_2b_2,$$

and analogously

$$a_2b_2 \le \exp(\tau(A) + \tau(B) + 2\varepsilon)a_1b_1$$

Thus $d(a_1b_1, a_2b_2) \leq \tau(A) + \tau(B) + 2\varepsilon$, and so

$$\operatorname{diam}(A_j \cdot B_k) \le \tau(A) + \tau(B) + 2\varepsilon_k$$

Since $\varepsilon > 0$ was arbitrary we get $\tau(A \cdot B) \le \tau(A) + \tau(B)$.

3. Convex hulls

We now prove that τ has the Mazur-Darbo property:

Theorem 3.1. For all $A \in \mathcal{B}$

1. diam(A) = diam(conv(A)); 2. $\tau(A) = \tau(conv(A))$.

Proof. 1.) Let $A \in \mathcal{B}$ and let

$$x = \sum_{j=1}^{n} \alpha_j x_j, \quad y = \sum_{k=1}^{m} \beta_k y_k$$

be convex combinations of elements of A. According to Proposition 2.4 we have

$$d(x,y) \le \max\{d(x_j, y_k) : j = 1, \dots, n, k = 1, \dots, m\} \le \operatorname{diam}(A).$$

Thus $\operatorname{conv}(A) \in \mathcal{B}$ and

$$\operatorname{diam}(\operatorname{conv}(A)) \le \operatorname{diam}(A).$$

Since clearly $\operatorname{diam}(A) \leq \operatorname{diam}(\operatorname{conv}(A))$ the assertion follows.

2.) Again let $A \in \mathcal{B}$. According to Proposition 2.1, we have $\tau(A) \leq \tau(\operatorname{conv}(A))$. Let $\varepsilon > 0$ and let $A_1, \ldots, A_n \in \mathcal{B}$ be such that

$$A \subseteq \bigcup_{k=1}^{n} A_k$$
, diam $(A_k) \le \tau(A) + \varepsilon$ $(k = 1, \dots, n)$.

Without loss of generality we may assume $A \cap A_k \neq \emptyset$ and that A_k is convex (k = 1, ..., n). For

$$\lambda \in \Lambda := \left\{ \lambda = (\lambda_1, \dots, \lambda_n) \in [0, \infty)^n : \sum_{k=1}^n \lambda_k = 1 \right\}$$

we set

$$M(\lambda) := \sum_{k=1}^{n} \lambda_k A_k, \quad M := \sum_{\lambda \in \Lambda} M(\lambda).$$

Since all A_k are convex, a short calculation shows that M is convex too. Since $A \subseteq M$ we obtain $\operatorname{conv}(A) \subseteq M$. Since Λ is compact we can find a finite subset S of Λ such that $\Lambda \subseteq \bigcup_{\lambda \in S} B_{\varepsilon}(\lambda)$, with $B_{\varepsilon}(\lambda)$ the open ball with center λ and radius ε in \mathbb{R}^n , endowed with the l^1 -norm $\|\cdot\|_1$. Now let $x \in M$, thus $x \in M(\lambda)$ for some $\lambda \in \Lambda$, that is

$$\exists (a_1, \dots, a_n) \in A_1 \times \dots \times A_n : \ x = \sum_{k=1}^n \lambda_k a_k.$$

Let $\mu \in S$ with $\|\lambda - \mu\|_1 < \varepsilon$. Set

$$\delta := \max\{d(a_j, a_k) : j, k = 1, \dots, n\}.$$

First note that $A \cap A_k \neq \emptyset$ (k = 1, ..., n) implies $\delta \leq \text{diam}(A) + 2(\tau(A) + \varepsilon)$. By means of Proposition 2.4, we get

$$d\left(x,\sum_{k=1}^{n}\mu_{k}a_{k}\right) = d\left(\sum_{k=1}^{n}\lambda_{k}a_{k},\sum_{k=1}^{n}\mu_{k}a_{k}\right)$$

$$\leq \exp(\delta)\|\mu - \lambda\|_{1}$$

$$\leq \varepsilon \exp(\operatorname{diam}(A) + 2(\tau(A) + \varepsilon)) =: r(\varepsilon)$$

This means $x \in (M(\mu))_{r(\varepsilon)}$, therefore $\operatorname{conv}(A) \subseteq M \subseteq \bigcup_{\mu \in S} (M(\mu))_{r(\varepsilon)}$. By means of Propositions 2.1, 2.4, and 2.5, we conclude

$$\tau(\operatorname{conv}(A)) \leq \tau \left(\bigcup_{\mu \in S} (M(\mu))_{r(\varepsilon)} \right)$$

= $\max_{\mu \in S} \tau \left((M(\mu))_{r(\varepsilon)} \right)$
 $\leq 2r(\varepsilon) + \max_{\mu \in S} \tau (M(\mu))$
= $2r(\varepsilon) + \max_{\mu \in S} \tau \left(\sum_{k=1}^{n} \mu_k A_k \right)$
 $\leq 2r(\varepsilon) + \max_{k=1,\dots,n} \tau (A_k)$
 $\leq 2r(\varepsilon) + \tau(A) + \varepsilon.$

Since $r(\varepsilon) \to 0$ ($\varepsilon \to 0+$) we have $\tau(\operatorname{conv}(A)) \le \tau(A)$.

4. Fixed points of condensing mappings

Let $C \subseteq K^{\circ}$ and let $f: C \to K^{\circ}$ be a function. As usual we call f condensing (with respect to τ), if

$$A \in \mathcal{B}, \ A \subseteq C, \ \tau(A) > 0 \ \Rightarrow \ f(A) \in \mathcal{B}, \ \tau(f(A)) < \tau(A).$$

Since Darbo's result on the measure of noncompactness of convex sets is the key to Darbo-Sadovskii's fixed point theorem [5, Theorem 9.1], [13, Chapter 11.5], one expects by means of Theorem 3.1 an analog result with respect to τ . Note that all topological properties in the following theorem are meant with respect to the topology in (K°, d) .

Theorem 4.1. Let $\emptyset \neq C \subseteq K^{\circ}$ be closed, convex and bounded, and let $f : C \rightarrow C$ be continuous and condensing with respect to τ . Then f has a fixed point.

Remark 4.2. According to Proposition 2.4, a set $M \subseteq K^{\circ}$ is closed and bounded in (K°, d) if and only if M is norm-closed, norm-bounded and

$$\inf_{x \in M} \operatorname{dist}_p(x, \partial K) > 0$$

Moreover, if (x_n) is a sequence in K° and $x_0 \in K^\circ$, then

$$d(x_n, x_0) \to 0 \ (n \to \infty) \quad \iff \quad ||x_n - x_0|| \to 0 \ (n \to \infty).$$

This can also be seen from Proposition 2.4, or compare [9, Chapter 2.3]. In particular, for any set $M \subseteq K^{\circ}$ a function $f: M \to K^{\circ}$ is *d*-continuous if and only if f is norm-continuous.

The proof of Theorem 4.1 follows the classical proof of the Darbo-Sadovskii theorem and is repeated here for convenience of the reader.

Proof. We fix $x_0 \in C$ and set

$$\mathcal{C} = \{M : x_0 \in M \subseteq C, \ M = \overline{\operatorname{conv}}(M), \ f(M) \subseteq M\}$$

Clearly $\mathcal{C} \subseteq \mathcal{B}, C \in \mathcal{C}$ and

$$C_1 := \bigcap_{M \in \mathcal{C}} M \in \mathcal{C}$$

Let

$$C_2 := \overline{\operatorname{conv}}(\{x_0\} \cup f(C_1)).$$

Then $x_0 \in C_2$ and C_2 is closed and convex. Since $x_0 \in C_1$ and $f(C_1) \subseteq C_1$ we get $\{x_0\} \cup f(C_1) \subseteq C_1$, thus also $C_2 \subseteq C_1$. Therefore

$$f(C_2) \subseteq f(C_1) \subseteq \{x_0\} \cup f(C_1) \subseteq C_2,$$

hence $C_2 \in \mathcal{C}$. We conclude $C_1 = C_2$. Assume by contradiction that $\tau(C_1) > 0$. Then, according to Theorem 3.1,

$$\tau(C_1) = \tau(\overline{\text{conv}}(\{x_0\} \cup f(C_1))) = \tau(\{x_0\} \cup f(C_1)) = \tau(f(C_1)) < \tau(C_1).$$

Thus $\tau(C_1) = 0$. Summing up $C_1 \neq \emptyset$ is convex, compact in (K°, d) , and $f(C_1) \subseteq C_1$. Proposition 2.4 shows that C_1 is also norm-compact, and since f is continuous, Schauder's fixed point theorem proves the existence of a fixed point of f in C_1 .

5. Example

A recurrent type of condensing mappings are certain perturbations of contractions [1], [5, Chapter 9], [13, Chapter 11.6]. There are several results on contractions with respect to the Thompson metric, in particular for mixed monotone mappings, see [6–8, 11], [9, Chapter 2.3] and the references given there. Using a condition given by Guo [6] we have

Lemma 5.1. Let $l \ge 0$ and let $g: K^{\circ} \times K^{\circ} \to K^{\circ}$ satisfy

- 1. $x \mapsto g(x, y)$ is monotone increasing $(y \in K^{\circ})$;
- 2. $y \mapsto g(x, y)$ is monotone decreasing $(x \in K^{\circ})$;
- 3. $g(\alpha x, \frac{y}{\alpha}) \leq \alpha^l g(x, y) \ (\alpha \geq 1, \ x, y \in K^\circ).$

Then $x \mapsto g(x, x)$ is d-Lipschitz continuous with Lipschitz constant l.

Proof. Let $x, y \in K^{\circ}$. Then

$$g(x,x) \leq g(\exp(d(x,y))y, \exp(-d(x,y))y) \leq \exp(ld(x,y))g(y,y),$$

and

$$g(y,y) \le g(\exp(d(x,y))x, \exp(-d(x,y))x) \le \exp(ld(x,y))g(x,x).$$

Thus $d(g(x, x), g(y, y)) \le ld(x, y)$.

In the following theorem let E be an ordered Banach algebra, and for $x \leq y$ let [x, y] denote the order interval $\{z \in E : x \leq z \leq y\}$. For applications of the classical measures of noncompactness in Banach algebras see [3,4].

Theorem 5.2. Let $g: K^{\circ} \times K^{\circ} \to K^{\circ}$ satisfy the assumptions in Lemma 5.1 with l < 1, let $0 \ll q_1 \leq q_2$ and let $h: K^{\circ} \to [q_1, q_2]$ be continuous and normcompact (i.e. $h(K^{\circ})$ is relatively compact in $(E, \|\cdot\|)$). Then $f: K^{\circ} \to K^{\circ}$, $f(x) = g(x, x) \cdot h(x)$ has a fixed point.

Proof. First note that each order interval in K° is bounded and closed in norm and with respect to d, so $h(K^{\circ})$ is relatively compact in (K°, d) . Next, we fix $w \in K^{\circ}$. Then, for $\alpha \geq 1$

$$\frac{g(\alpha w, \frac{w}{\alpha})q_2}{\alpha} \le \alpha^{l-1}g(w, w)q_2 \to 0 \quad (\alpha \to \infty).$$

Moreover, for $\alpha \geq 1$ we have $g(w, w) = g(\alpha \frac{w}{\alpha}, \frac{\alpha w}{\alpha}) \leq \alpha^l g(\frac{w}{\alpha}, \alpha w)$. Thus

$$\alpha g\left(\frac{w}{\alpha}, \alpha w\right) q_1 \ge \alpha^{1-l} g(w, w) q_1 \quad (\alpha \ge 1).$$

Hence, there exists $\alpha_0 \geq 1$ such that

$$g\left(\alpha_0 w, \frac{w}{\alpha_0}\right) q_2 \le \alpha_0 w, \quad g\left(\frac{w}{\alpha_0}, \alpha_0 w\right) q_1 \ge \frac{w}{\alpha_0}.$$

For $C := [\frac{w}{\alpha_0}, \alpha_0 w]$ we get $f(C) \subseteq C$: Let $\frac{w}{\alpha_0} \le x \le \alpha_0 w$. Then

$$\frac{w}{\alpha_0} \le g\left(\frac{w}{\alpha_0}, \alpha_0 w\right) q_1 \le f(x) \le g\left(\alpha_0, \frac{w}{\alpha_0}\right) q_2 \le \alpha_0 w.$$

By Lemma 5.1, $x \mapsto g(x, x)$ is continuous, hence $f_{|C} : C \to C$ is continuous, and C is a convex closed and bounded subset of (K°, d) . Finally we show that $f_{|C}$ is a τ -set contraction, hence condensing: By setting $\tilde{g}(x) = g(x, x)$ we get from Lemma 5.1 and Proposition 2.5 that for each $A \subseteq C$

$$\tau(f(A)) \le \tau(\widetilde{g}(A) \cdot h(A)) \le \tau(\widetilde{g}(A)) + \tau(h(A)) \le l\tau(A) + 0 = l\tau(A).$$

Now, application of Theorem 4.1 proves the existence of a fixed point of f in C.

The authors are grateful to the referee for the observation that Theorem 5.2 can also be proved by a suitable modification of the proof of a fixed point theorem by Krasnoselskii [10] (cf., e.g. [5, p. 71, paragraph after Theorem 1]).

Example 5.3. Take for example $E = C([0, 1], \mathbb{R})$, endowed with the maximum norm and ordered by the natural cone

$$K := \{ x \in C([0,1], \mathbb{R}) : x(t) \ge 0 \ (t \in [0,1]) \},\$$

with

$$K^{\circ} = \{ x \in C([0,1],\mathbb{R}) : x(t) > 0 \ (t \in [0,1]) \}.$$

By setting

$$g(x,y)(t) = \sqrt{x(1-t)} + \frac{1}{\sqrt{y(t^2)}}, \quad h(x) = \int_0^1 \exp(\lambda ts \sin x(s)) \, ds,$$
$$q_1(t) = \exp(-|\lambda|), \quad q_2(t) = \exp(|\lambda|) \quad (t \in [0,1]),$$

Theorem 5.2 proves the existence of a positive solution of the functional-integral equation

$$x(t) = \left(\sqrt{x(1-t)} + \frac{1}{\sqrt{x(t^2)}}\right) \int_0^1 \exp(\lambda ts \sin x(s)) \, ds$$

for each $\lambda \in \mathbb{R}$.

References

- [1] Appell, J., Measures of noncompactness, condensing operators and fixed points: an application-oriented survey. *Fixed Point Theory* 6 (2005), 157 – 229.
- [2] Banaś, J. and Goebel, K., Measures of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math. 60. New York: Marcel Dekker 1980.
- [3] Banaś, J. and Olszowy, L., On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Z. Anal. Anwend. 28 (2009), 475 – 498.
- [4] Banaś, J. and Sadarangani, K., Solutions of some functional-integral equations in Banach algebra. Math. Comput. Modelling 38 (2003), 245 – 250.
- [5] Deimling, K., Nonlinear Functional Analysis. Berlin: Springer 1985.
- [6] Guo, D., Fixed points of mixed monotone operators with applications. Appl. Anal. 31 (1988), 215 – 224.
- [7] Guo, D., Yeol Je C. and Jiang Z., Partial Ordering Methods in Nonlinear Problems. Hauppauge (NY): Nova Science Publishers 2004.
- [8] Huang, C.-Y., Fixed point theorems for a class of positive mixed monotone operators. Math. Nachr. 285 (2012), 659 – 669.
- [9] Hyers, D. H., Isac, G. and Rassias, T. M., Topics in Nonlinear Analysis and Applications. Singapore: World Scientific 1997.
- [10] Krasnoselskii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations. Oxford: Pergamon Press 1964.
- [11] Rus, M.-D., The method of monotone iterations for mixed monotone operators. Ph. D. Thesis Summary. Faculty of Mathematics and Computer Science. Babes-Bolyai University Cluj-Napoca (Romania) 2010.
- [12] Thompson, A. C., On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963), 438 – 443.
- [13] Zeidler, E., Nonlinear Functional Analysis and its Applications. Vol. I: Fixed-Point Theorems. New York: Springer 1993.

Received May 28, 2013; revised January 16, 2014