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Abstract. We consider the semilinear coupled system of parabolic-elliptic partial
differential equations arising in chemotaxis involving forcing source of exponential
growth type and homogeneous Dirichlet boundary conditions. The local existence
and uniqueness of nonnegative classical solutions are proved. Also, a lower bound
for the blow-up time if the solution blows up in finite time is derived. Moreover, the
exponential decay of the associated energies are also studied. The results we obtained
here essentially extend some existing results in this area.
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1. Introduction and motivation

There is an extensive literature on the theory of coupled systems of partial
differential equations, some contributions along this line have been made, among
them for instance are [10,14,15,22,23] and the references therein. In the study of
the biological relevance of chemotaxis, a coupled system of partial differential
equations, which describes the aggregation of certain types of bacteria, was
proposed by Keller and Segel [6] (see also [7]), which reads{

ut = d1∆u− χ∇ · (u∇v) + g(u), x ∈ Ω, t > 0,

εvt = d2∆v + f(u, v), x ∈ Ω, t > 0,
(1)

where Ω, representing the capacity, is an open domain in Rn (n ≥ 1), ∆ stands
for the Laplacian operator, ∇ is the gradient operator, u = u(x, t) denotes the
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cell density and v = v(x, t) represents the oxygen concentration with (constant)
diffusion rates d1, d2 > 0, χ is a positive constant linked to the sensitivity with
respect to chemotaxis, and g models possible production or death of cells.

The cross-diffusive term in the first equation reflects the assumption that
individual cells at least partially adapt their motion so as to prefer to migrate
toward increasing oxygen concentrations.

Since the work of Keller and Segel, this type of model (1) and its variations
have been investigated quite thoroughly during the past three decades. For
instance, for the system (1) with Ω=Rn, d1, d2, χ=1, g(u)=0 and f(u, v)=u,
Kozono et al. [9] considered the problem whether there does exist a finite-time
self-similar solution of the backward type for the case of either ε = 0, n ≥ 3 or
ε = 1, n ≥ 2, and Sugiyama and Yahagi [19] investigated the uniqueness and
continuity of weak solutions with respect to the initial data for the Keller-Segel
system of degenerate type. For more contributions along this line, we refer
reader to [16–18] and the references therein.

In view of the biologically meaningful question whether or not cell popula-
tions spontaneously form aggregates, some studies focused on the issue whether
solutions remain bounded or blow up (see, e.g., [2,3,24]). Here we sketach some
references, but not a list of all references is included. Kozono and Sugiyama
in [8] showed global existence of strong solutions to the system (1) with Ω=Rn

(n ≥ 3), d1, d2, χ, ε = 1, g(u) = 0 and f(u, v) = u − γv for small initial data
in the scaling invariant class. The authors also proved the uniqueness of strong
solutions as well as the decay property in Lp(Rn) as t → ∞. In the case when
d1, d2 = 1, ε = 0 and f(u, v) = u − v, the system (1), under homogeneous
Neumann boundary conditions, has been studied by Tello and Winkler [21],
where the authors proved the existence of global bounded classical solutions
and global weak solutions, established the stability of nonzero equilibrium and
obtained some multiplicity and bifurcation results. In [5], for the case when
d1, d2 = 1, ε = 0, g(u) = 0 and f(u, v) = u− v, Jäger and Luckhaus dealt with
the blow-up and global existence for the system (1) with homogeneous Dirichlet
boundary condition and certain initial conditions

u(x, 0) = u0(x) ≥ 0 and

∫
Ω

(u0 − 1)dx = 0, x ∈ Ω.

Sugiyama and Yahagi [20] studied the extinction, decay and blow-up for the
quasi-linear Keller-Segel system of fast diffusion type.

Another interesting aspects connected to a deeper understanding of the
system (1) and its variations are the question of lower/upper bounds for the
time of blow-up. Here, it is worth mentioning that the chemotaxis system
in [5] was investigated by Payne and Song [12], where they derived a lower
bound for the time of blow-up and established some explicit criterions ensuring
that the solutions remain bounded for all time and the associated energy decay
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exponentially in time. Moreover, from [13], one can find results on the parabolic-
parabolic system (1) with d1 = 1, ε = 1, g(u) = 0, f(u, v) = k1u−k2v, in which
the authors gave a lower bound for the time of blow-up.

Let Ω be a bounded convex domain in Rn (n ≥ 1) with smooth boundary.
In the present paper, we will extend previous works on chemotaxis systems
to the coupled system of elliptic-parabolic equations involving forcing source
of exponential growth and homogeneous Dirichlet boundary conditions. More
precisely, we are interested in studying the IBVP

ut = ∆u− χ∇ · (u∇v) + ωuq, x ∈ Ω, t > 0,

0 = ∆v + u− v, x ∈ Ω, t > 0,

u|∂Ω = 0, v|∂Ω = 0,

u(x, 0) = u0(x), x ∈ Ω

(2)

where χ > 0, ω ≥ 0, q ≥ 1 are constants. It is the theme of this paper to
investigate the lower bound for the blow-up time and decay criterions of the
associated energies to the system (2). To accomplish these goals, we first prove
a local existence and uniqueness result for nonnegative classical solutions. The
theorems formulated are extensions of many previous results on the Keller-Segel
system of partial differential equations.

When using homogeneous Dirichlet boundary conditions for the chemotaxis
system, one prescribes the disappearance of individual cells and oxygen near the
boundary.

From biological point of view, solutions to the system (2), representing
densities, must satisfy

u ≥ 0 and v ≥ 0.

Thus it is reasonable to require throughout that the initial data u0 ∈ C0(Ω) be
nonnegative.

2. Local existence of nonnegative solutions

We begin our study of the system (2) with a result of local existence and unique-
ness of nonnegative classical solutions.

In view of ∆v = v − u, one has

∇ · (u∇v) = ∇u · ∇v + u∆v = ∇u · ∇v + u(v − u),

which admits us to rewrite the system (2) as equivalent one

ut −∆u+ χ∇u · ∇v + χu(v − u)− ωuq = 0, x ∈ Ω, t > 0,

∆v + u− v = 0, x ∈ Ω, t > 0,

u|∂Ω = 0,

v|∂Ω = 0,

u|t=0 = u0(x), x ∈ Ω.

(3)
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Note that no cross-diffusive term in the first equation of (3) exists.

The main result in this section is given in the following theorem.

Theorem 2.1. Let q ≥ 1 and 0 < α < 1. Assume that an initial datum
u0 ∈ C0,α(Ω) is given. Then there exists an unique classical solution (u, v) to
the system (2) defined on the maximal interval [0, tmax) of existence, for which
one has

u ∈ C2+α,1+α
2

loc (Ω× [0, tmax)), v ∈ C2+α,α
2

loc (Ω× [0, tmax)).

Moreover, if tmax < +∞, then

limt→tmax ‖u(t)‖L∞(Ω) = +∞. (4)

Proof. Fix u0 ∈ C0,α(Ω). Assume that [0, T ∗) is the maximal interval of exis-
tence of nonnegative solution h for the IVP in the form{

ht = χh2 + ωhq, t > 0,

h(0) = ‖u0‖L∞(Ω) ≥ 0.

Let the set Ωu0 be defined by

Ωu0 = {u ∈ Cα,α
2 (Ω× [0, T ]); 0 ≤ u(x, t) ≤ h(t), (x, t) ∈ Ω× [0, T ]},

where T = 1
2
T ∗.

For each u ∈ Ωu0 , let us consider the following IBVP
wt −∆w + χ∇w · ∇v + χw(v − u)− ωuq = 0, (x, t) ∈ Ω× (0, T ],

w|∂Ω = 0,

w|t=0 = u0,

(5)

where v is the unique solution to the BVP of form{−∆v + v = u, x ∈ Ω,

v|∂Ω = 0.

In view of u ∈ Cα,α
2 (Ω× [0, T ]), it follows that v ∈ C2+α,α

2 (Ω× [0, T ]) and hence
∇v ∈ Cα,α

2 (Ω×[0, T ]), which together with the observation uq ∈ Cα,α
2 (Ω×[0, T ])

yields, from a basic theory of linear parabolic equations, that there exists an
unique classical solution w ∈ C2+α,1+α

2 (Ω× [0, T ]) to (5), In particular, one has
w ∈ Cα,α

2 (Ω× [0, T ]).
According to the strong maximum principle of elliptic equations, we obtain

v ≥ 0 in Ω× [0, T ]. Also, since w ≡ 0 is a lower solution of (5), the comparison
principle of parabolic equations implies that w ≥ 0 in Ω× [0, T ].
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Furthermore, noting u ∈ Ωu0 , h ∈ C1[0, T ] and v ≥ 0 in Ω× [0, T ], a direct
calculation yields

(w − h)t −∆(w − h) + χ∇(w − h) · ∇v + χ(w − h)(v − u)

= wt − ht −∆w + χ∇w · ∇v + χw(v − u)− χh(v − u)

= −χh2 − ωhq − χh(v − u) + ωuq

≤ χh(−h− v + u)

≤ 0.

From this together with w− h ≤ 0 on ∂Ω× (0, T ] and in Ω×{0} we see, again
by the comparison principle of parabolic equations, that w ≤ h in Ω × [0, T ].
Therefore, we conclude w ∈ Ωu0 .

We seek for solutions in Ωu0 . To this end, based on the arguments above
we define a mapping as

Γ : Ωu0 → Ωu0 with Γ(u) = w,

where w is the unique solution to (5). It is clear that Γ is well defined. And
then following a standard argument (see, e.g., [1]), we see that Γ is continu-
ous. Moreover, since the imbedding C2+α,α

2 (Ω × [0, T ]) ↪→ Cα,α
2 (Ω × [0, T ]) is

compact, Γ is compact. Therefore, applying the Schauder fixed point theorem
yields that Γ admits at least one fixed point in Ωu0 , which in fact gives solutions
to (2).

Next, we prove the uniqueness of the solutions. Assume that both (u1, v1)
and (u2, v2) are the solutions of (2). As above, it suffices to show ϕ :=u1−u2≡0.
Note that

ϕt = ∆ϕ− χ∇ϕ · ∇v1 − χ∇u2 · ∇(v1 − v2)− χϕv1

− χu2(v1 − v2) + χ(u2
1 − u2

2) + ω(uq1 − u
q
2).

(6)

Multiplying both sides of (6) by ϕ and integrating over Ω, we have

1

2

d

dt

∫
Ω

ϕ2dx+
1

2

∫
Ω

|∇ϕ|2dx ≤M

∫
Ω

ϕ2dx,

where M is a computable constant. Here, we have tacitly used the following
estimates:

|χ(∇ϕ · ∇v1)ϕ| ≤ 1

2
|∇ϕ|2 +

χ2

2
|∇v1|2ϕ2,

|χ(∇u2 · ∇(v1 − v2))ϕ| ≤ χ

2
|∇(v1 − v2)|2 +

χ

2
|∇u2|2ϕ2,

and ∫
Ω

|∇(v1 − v2)|2dx+

∫
Ω

(v1 − v2)2dx ≤
∫

Ω

ϕ2dx.

Hence, an application of Gronwall’s inequality shows that ϕ ≡ 0, as desired.
Finally, a standard procedure enables us to obtain (4) (cf., e.g., [1,4]). This

completes the proof of the theorem.
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3. Lower bound for blow-up time and decay criteria

Let u0 ∈ C0,α(Ω) and q ≥ 1. As shown in Theorem 2.1, there exists an
unique classical solution (u, v) to the system (2) defined on the maximal in-
terval [0, tmax) of existence. In the sequel, we let tmax < +∞. Then from (4) it
follows that there exists t∗ > 0 and p ≥ 1 such that

limt→t∗ ‖u(t)‖L2p(Ω) = +∞, (7)

in which we may assume without loss of generality that p ≥ 3q
2

.
Here, our objective is to obtain a lower bound for the blow-up time t∗. For

the sake of convenience, we write

A0 =
χ(p− 1)(2p− 1)

p
, A1 =

2pω|Ω|
2p−3q+3

2p

3
,

A2 =
3

3
4

2ρ
3
2

(
χ(2p− 1)

p
+

4pω

3

)
, B1 =

3
3
4χ(2p− 1)

2ρ
3
2p

, d = max
x∈Ω
|x|2,

where ρ = min∂Ω x ·ν > 0. Among that, ν denotes the unit normal vector
directed outward on ∂Ω and |Ω| denotes the volume of Ω.

Theorem 3.1. Let q > 1 and Ω ⊂ R3. Suppose in addition that (u, v) is the
unique nonnegative classical solution of the system (2) defined on the maximal
interval [0, tmax) of existence. If tmax < +∞, then (7) implies that

t∗ ≥
∫ +∞

φ(0)

dξ

A0ξ + A1ξ
2p−3
2p + A2ξ

3
2 + A3ξ3

, (8)

where A3 depending on ρ, p, d is a nonnegative constant and

φ(0) =

∫
Ω

u0(x)2pdx.

Proof. Let

φ(t) =

∫
Ω

u2pdx, t ∈ [0, t∗). (9)

We employ Hölder’s inequality and Young’s inequality to estimate∫
Ω

u2p+1dx ≤
(∫

Ω

u2pdx

) p−1
p
(∫

Ω

u3pdx

) 1
p

≤ p− 1

p
φ+

1

p

∫
Ω

u3pdx, (10)

and∫
Ω

u2p+q−1dx ≤ 2

3

∫
Ω

u3pdx+
1

3

∫
Ω

u3q−3dx ≤ 2

3

∫
Ω

u3pdx+
1

3
|Ω|

2p−3q+3
2p φ

3q−3
2p . (11)
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Then differentiating (9) and using the fact u|∂Ω = 0 we have

φ′(t) = 2p

∫
Ω

u2p−1utdx

= 2p

∫
Ω

u2p−1(∆u− χ∇u · ∇v − χu∆v + ωuq)dx

= −2p(2p− 1)

∫
Ω

u2p−2|∇u|2dx− χ(2p− 1)

∫
Ω

u2p∆vdx+ 2pω

∫
Ω

u2p+q−1dx

= −2(2p− 1)

p

∫
Ω

|∇(up)|2dx+ χ(2p− 1)

∫
Ω

u2p+1dx− χ(2p− 1)

∫
Ω

u2pvdx

+ 2p ω

∫
Ω

u2p+q−1dx.

Therefore, by (10), (11) and the fact u, v ≥ 0 one has

φ′(t) ≤ A0φ− 2(2p−1)
p

∫
Ω
|∇(up)|2dx+ C1

∫
Ω
u3pdx+ A1φ

3q−3
2p , (12)

where C1 = χ(2p−1)
p

+ 4pω
3

.
Next, noticing that Ω is a convex domain, a similar argument with that in

[11, Estimate (2.16)] enables to show that the following estimate

∫
Ω

u3pdx ≤ 1

3
3
4

{
3

2ρ

∫
Ω

u2pdx+

(
d

1
2

ρ
+1

)(∫
Ω

u2pdx

)1
2
(∫

Ω

|∇(up)|2dx
)1

2

}3
2

(13)

holds. From this and the inequality

(a+ b)
n+1
n ≤ 2

1
n

(
a
n+1
n + b

n+1
n

)
for a, b > 0, (14)

it follows that

∫
Ω

u3pdx ≤ 2
1
2

3
3
4


(

3

2ρ

)3
2

φ
3
2 +

(
d

1
2

ρ
+1

)3
2

φ
3
4

(∫
Ω

|∇(up)|2dx
)3

4


≤ 3

3
4

2ρ
3
2

φ
3
2 +

1

2
3
2 3

3
4 ε3

(
d

1
2

ρ
+1

)3
2

φ3 +
3

1
4 ε

2
3
2

(
d

1
2

ρ
+1

)3
2∫

Ω

|∇(up)|2dx.

(15)

Here we also tacitly used Hölder’s inequality and Young’s inequality with ε > 0.
Inserting this estimate into (12), it follows that

φ′(t) ≤
(
−2(2p− 1)

p
+ C2

)∫
Ω

|∇(up)|2dx+A0φ+A1φ
2p−3
2p +A2φ

3
2 +A3φ

3, (16)
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where

A3 =
1

2
3
2 3

3
4 ε3

(
d

1
2

ρ
+ 1

) 3
2 (

χ(2p− 1)

p
+

4pω

3

)
,

C2 =
3

1
4 ε

2
3
2

(
d

1
2

ρ
+ 1

) 3
2 (

χ(2p− 1)

p
+

4pω

3

)
.

To simplify the right side of (16), we choose an appropriate ε such that

−2(2p−1)
p

+ C2 = 0. Then we can estimate (16) as

φ′(t) ≤ A0φ+ A1φ
2p−3
2p + A2φ

3
2 + A3φ

3. (17)

Now, integrating (17) over (0, t), we have

t ≥
∫ φ(t)

φ(0)

dξ

A0ξ + A1ξ
2p−3
2p + A2ξ

3
2 + A3ξ3

,

which proves that the assertion (8) remains true.

Theorem 3.2. Let the hypotheses in Theorem 3.1 hold except for q > 1 to be
replaced by q = 1. If tmax < +∞, then (7) implies that

t∗ ≥
∫ +∞

φ(0)

dξ

(2pω + A0)ξ +B1ξ
3
2 +B2ξ3

, (18)

where B2 depending on ρ, p, d is a nonnegative constant and

φ(0) =

∫
Ω

u0(x)2pdx.

Proof. Assume that the function φ is defined the same as in Theorem 3.1.
Following from the same idea as in the proof of Theorem 3.1, one obtain the
following estimate

φ′(t) ≤ −2(2p− 1)

p

∫
Ω

|∇(up)|2dx+
χ(2p− 1)

p

∫
Ω

u3pdx+ (2pω + A0)φ,

and hence

φ′(t) ≤
(
C3 −

2(2p− 1)

p

)∫
Ω

|∇(up)|2dx+ (2pω + A0)φ+B1φ
3
2 +B2φ

3

by using (13), (14) and (15) with ε replaced by δ > 0, where

B2 =
χ(2p− 1)

2
3
2 3

3
4 δ3p

(
d

1
2

ρ
+ 1

) 3
2

, C3 =
3

1
4χδ(2p− 1)

2
3
2p

(
d

1
2

ρ
+ 1

) 3
2

.
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Now, choosing an appropriate δ such that C3 − 2(2p−1)
p

= 0, we get

φ′(t) ≤ (2pω + A0)φ+B1φ
3
2 +B2φ

3. (19)

Integrating (19) over (0, t), we have

t ≥
∫ φ(t)

φ(0)

dξ

(2pω + A0)ξ +B1ξ
3
2 +B2ξ3

,

which proves the desired result.

Remark 3.3. For the case when Ω ⊂ R2, we infer, by a similar argument with
that in [13, Estimate (3.7)], that the following estimate∫

Ω

u3dx ≤
√

2

2ρ

(∫
Ω

u2dx

) 3
2

+

√
2

2

(
1 +

d
1
2

ρ

)∫
Ω

u2dx

(∫
Ω

|∇u|2dx
) 1

2

remains true. Then noticing this and following from the same idea as those in
Theorems 3.1 and 3.2, we can obtain the characterization of lower bound of the
blow-up time for the system (2) when Ω ⊂ R2.

Next, we focus on the exponential decay of the associated energies for the
system (2). We only consider the case when Ω ⊂ R3, the case when Ω ⊂ R2

being completely similar.

Write, p ≥ 1,

D1 =
2(2p− 1)

p
, D2 =

2
1
2

3
3
4

(
d

1
2

ρ
+ 1

) 3
2 (

χ(2p− 1)

p
+ 2pω

)
,

D3 =
2

1
2

3
3
4

(
3

2ρ

) 3
2
(
χ(2p− 1)

p
+ 2pω

)
.

To state our main result, we need the following condition:

−D1λ1 +D2λ
3
4
1 ψ(0)

1
2 +D3ψ(0)

1
2 + A0 < 0, (20)

where ψ(0) =
∫

Ω
u0(x)2pdx and λ1 is the first eigenvalue for the BVP as follows:

∆ϕ+ λϕ = 0, x ∈ Ω,

ϕ|∂Ω = 0

ϕ > 0, x ∈ Ω.

Remark 3.4. Let us note that upon an appropriate choices of χ, ω, ψ(0), one
can obtain condition (20).
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We are now ready to state our main result about the decay of energies for
the system (2).

Theorem 3.5. Let q ≥ 2 and p = q−1. Suppose in addition that ψ(0) > 0 and
the condition (20) is satisfied. Then the solution decays exponentially to zero in
L2p(Ω).

Proof. Let (u, v) be the unique solution of (2). We put

ψ(t) =

∫
Ω

u2pdx, η(t) =

∫
Ω

v2pdx.

Following from the same idea as in the proof of Theorem 3.1, we have

ψ′(t)≤−2(2p− 1)

p

∫
Ω

|∇(up)|2dx+

(
χ(2p− 1)

p
+ 2pω

)∫
Ω

u3pdx+ A0ψ

≤
(∫

Ω

|∇(up)|2dx
)3

4

(
−D1

(∫
Ω

|∇(up)|2dx
)1

4

+D2ψ
3
4

)
+D3ψ

3
2 + A0ψ.

Inserting the result
∫

Ω
|∇(up)|2dx ≥ λ1

∫
Ω
u2pdx, we obtain

ψ′(t) ≤
(∫

Ω

|∇(up)|2dx
)3

4(
−D1λ

1
4
1 ψ(t)

1
4 +D2ψ(t)

3
4

)
+D3ψ(t)

3
2 +A0ψ(t). (21)

We claim that
ψ′(t) < 0. (22)

Indeed, from (20) and (21) it is easy to see that ψ′+(0) < 0. Hence, there

exists t1 > 0 for which ψ(t) is strictly decreasing in (0, t1). And then, noticing

ψ(t1) < ψ(0) and −D1λ1 +D2λ
3
4
1 ψ(0)

1
2 +D3ψ(0)

1
2 + A0 < 0, we have

ψ(t1)
(
−D1λ1 +D2λ

3
4
1 ψ(t1)

1
2 +D3ψ(t1)

1
2 + A0

)
< 0,

which implies that ψ′(t1) < 0. The above procedure may be repeated indefi-
nitely up to obtain desired result.

Moreover, from the arguments above, we see

ψ′(t) ≤ ψ(t)
(
−D1λ1 +D2λ

3
4
1 ψ(t)

1
2 +D3ψ(t)

1
2 + A0

)
.

At the same time, by (22) and (20) there exits a positive constant α such that

D2λ
3
4
1 ψ(t)

1
2 +D3ψ(t)

1
2 < D2λ

3
4
1 ψ(0)

1
2 +D3ψ(0)

1
2 < D1λ1 − A0 − α.

Thus, one has ψ′(t) ≤ −αψ(t), which yields

ψ(t) ≤ ψ(0) exp(−αt). (23)
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This proves that u decays exponentially to zero in L2p(Ω). Next, to study the
decay behavior of η(t), we multiply both sides of the second equation in (2)
by v2p−1 and then integrate over Ω to obtain∫

Ω

uv2p−1dx =

∫
Ω

v2pdx+
2p− 1

p2

∫
Ω

|∇(vp)|2dx.

So, by Hölder’s inequality,

1

2p

∫
Ω

v2pdx+
2p− 1

p2

∫
Ω

|∇(vp)|2dx ≤ 1

2p

∫
Ω

u2pdx,

which together with (23) yields

η(t) ≤ ψ(t) ≤ ψ(0) exp(−αt),

as desired. This completes the proof.
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