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Asymptotic Behavior of Solutions
for the Time-Delayed

Kuramoto-Sivashinsky Equation
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Abstract. In this paper, we investigate the asymptotic behavior of the solutions for
the Kuramoto-Sivashinsky equation with a time delay. We prove the global existence
of solutions and energy decay. By using the Liapunov function method, we shall show
that the solution is exponentially decay if the delay parameter τ is sufficiently small.
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1. Introduction

In this paper, we will investigate the asymptotic behavior of the solutions of
the time-delayed Kuramoto-Sivashinsky equation

ut(x, t) + uxx(x, t) + uxxxx(x, t) + u(x, t−τ)ux(x, t) + u(x, t) = 0, (1)

u(x, t) = u(x+1, t), (2)

u(x, s) = u0(x, s), (3)

where x ∈ R1, t > 0, −τ ≤ s ≤ 0.
The Kuramoto-Sivashinsky equation has been independently derived in the

context of several extended physical systems driven far from equilibrium by
intrinsic instabilities, including instabilities of dissipative trapped ion modes
in plasmas [4, 9], instabilities in laminar flame fronts [16], phase dynamics in
reaction-diffusion systems [8], and fluctuations in fluid films on inclines [17].
Indeed, equation (1) generically describes the dynamics near long-wave-length
primary instabilities in the presence of appropriate (translational, parity and
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Galilean) symmetries [13]. It is worth noting that there has been the existing
literature about delay reaction-diffusion equations [6,12,14], on which our work
is based.

There is an extensive literature on the study of equation (1) without delay
(see, e.g., [3, 5, 7, 18, 20] and the references therein). But few of the equations
involving delay. Recently, in [2] authors discuss novel methods of classification
and prediction of spatio-temporal dynamics in extended systems. They tested
these methods on simulated data for the delay Kuramoto-Sivashinsky equation
that describes unstable flame front propagation in uniform mixtures. To explain
our motivation of introducing a time delay into Kuramoto-Sivashinsky equation,
we consider the rate of change of u, which we denote by Du

Dt
, is

Du

Dt
=

d

dt
u[x(t), t]

=
∂

∂t
u(x, t) +

dx(t)

dt

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t),

where x(t) is understood to change with time at u = dx
dt
. However, we might

have a delay τ to u. In this case the rate of change of u with the delay τ should
be

Du

Dt
=

d

dt
u[x(t− τ), t]

=
∂

∂t
u(x, t) +

dx(t− τ)

dt

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t− τ)

∂

∂x
u(x, t).

This clearly shows how we obtain the time-delay term u(x, t − τ)ux(x, t) in
Kuramoto-Sivashinsky equation (1). Here, by using the Lyapunov function
method, we shall show that the solution of problems (1)–(3) is exponentially
decay if the delay parameter τ is sufficiently small.

We now introduce notation used throughout the paper. Hs(0, 1) denotes
the usual Sobolev space (see [1, 10]) for any s ∈ R. For s ≥ 0, Hs

0(0, 1) denotes
the completion of C∞0 (0, 1) in Hs(0, 1), where C∞0 (0, 1) denotes the space of
all infinitely differentiable functions on (0, 1) with compact support in (0, 1).
The norm on L2(0,1) is denoted by ‖ · ‖. Let X be a Banach space and a <
b. We denote by Cn([a, b];X) the space of n times continuously differentiable
functions defined on [a, b] with values in X with the supremum norm and we
write C([a, b];X) for C0([a, b];X), that is u(x, t) ∈ Cn([a, b];X) if and only if

maxt∈[a,b] ‖∂
nu(x,t)
∂tn
‖X < +∞.

The main result of this paper is stated as follows.



Time-Delayed Kuramoto-Sivashinsky Equation 431

Theorem 1.1. For any initial condition u0 = u0(x, s) ∈ C([−τ, 0], H2
0 (0, 1)),

problem (1)–(3) has a unique global mild solution u on [−τ,∞) with

u ∈ C([−τ,+∞), H2
0 (0, 1)).

Theorem 1.2. For any initial condition u0 = u0(x, s) ∈ C([−τ, 0], H2
0 (0, 1)),

there are τ0, ω, K > 0 such that, for τ < τ0, the solution of (1)–(3) satisfies

‖uxx(t)‖2 ≤
K2

4
exp{−ωt}, t ≥ 0. (4)

Remark 1.3. By Theorem 1.1–1.2, we find that ‖uxx(t)‖2 is bounded when
t ∈ [−τ, 0].

This paper is organized as follows. In next section, we prove the existence
of the solution. In Section 3, we show that the solution is exponentially decay
by using the Lyapunov function method.

2. Existence of the solutions

We now briefly show that problem (1)–(3) is well posed.

Proof of Theorem 1.1. By standard methods as [15, Chapter 6: Theorem 1.4], it
is easy to prove that for every initial value u0 = u0(x, s) ∈ C([−τ, 0], H2

0 (0, 1)),
there exists a T = T (u0) > 0 such that problem (1)–(3) has a unique mild
solution u on [−τ, T ] with

u(x, t) ∈ C([−τ, T ], H2
0 (0, 1)).

Furthermore, for any τ > 0, the solution of (1)–(3) does not blow up in finite
time. Indeed, integrating by parts, we obtain for 0 ≤ t ≤ τ ,

d

dt
‖uxx(t)‖2 = 2

∫ 1

0

uxxxx(t)ut(t)dx

= 2

∫ 1

0

uxxxx(t)
(
− uxx(t)− uxxxx(t)− u(t− τ)ux(t)− u(t)

)
dx

= −2

∫ 1

0

uxxxx(t)uxxdx− 2‖uxxxx(t)‖2

− 2

∫ 1

0

uxxxx(t)u(t− τ)ux(t)dx− 2

∫ 1

0

uxxxx(t)u(t)dx.

By Young inequality and

|ux(x, t)| ≤ ‖uxx(x, t)‖, 0 ≤ x ≤ 1,



432 C. S. Zhu.

we get

d

dt
‖uxx(t)‖2

≤ 2

∫ 1

0

|uxxxx(t)||uxx|dx− 2‖uxxxx(t)‖2

+ 2‖u0‖C([−τ,0],H2
0 (0,1))

∫ 1

0

|uxxxx(t)||ux(t)|dx+ 2

∫ 1

0

|uxxxx(t)||u(t)|dx

≤ 1

2
‖uxxxx(t)‖2 + 2‖uxx(t)‖2 − 2‖uxxxx(t)‖2

+ ‖u0‖2C([−τ,0],H2
0 (0,1))

‖ux(t)‖2 + ‖uxxxx(t)‖2 +
1

2
‖uxxxx(t)‖2 + 2‖u(t)‖2

= 2‖uxx(t)‖2 + ‖u0‖2C([−τ,0],H2
0 (0,1))

‖ux(t)‖2 + 2‖u(t)‖2

≤
(

4 + ‖u0‖2C([−τ,0],H2
0 (0,1))

)
‖uxx(t)‖2,

which implies that

‖uxx(t)‖2 ≤M
(
‖u0‖C([−τ,0],H2

0 (0,1))

)
,

where M(·) is a positive constant depending on ‖u0‖C([−τ,0],H2
0 (0,1))

. Repeating
the above procedure, we can prove that for nτ ≤ t ≤ (n+ 1)τ , (n = 1, 2, . . .)

‖uxx(t)‖2 ≤M(n, ‖u0‖C([−τ,0],H2
0 (0,1))

)

In summary, we have proved the Theorem 1.1.

3. Exponential decay estimates

To prove that our main result about the exponential stability, we introduce the
following notations. For a given initial condition
u0 = u0(x, s) ∈ C([−τ, 0], H2

0 (0, 1)), denote

K = sup
−τ≤s≤0

‖u0xx(s)‖+
√

8Σ,

where

Σ=
(
2‖u0(x, 0)‖2+‖u0xx(x, 0)‖2

)
exp

{
eωt
∫ 0

−τ
‖u0x(s)‖2ds+

2eωτ

ω
‖u0(x, 0)‖2

}
.

Set

σ = sup

{
δ > 0 : Σ ≤ K2

4
, 0 ≤ τ ≤ δ

}
,

and let τ0 small enough, such that for any τ , 0 ≤ τ < τ0 ≤ σ,

ω = 1− 2
√
τ(K2 + 8K2τ + 2K4τ) > 0. (5)
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Lemma 3.1 ([11]). Let g, h and y be three positive and integrable functions on
(t0, T ) such that y′ is integrable on (t0, T ). Assume that

dy

dt
≤ gy + h, for t0 ≤ t ≤ T,∫ T

t0

g(s)ds ≤ C1,

∫ T

t0

eδsh(s)ds ≤ C2,

∫ T

t0

eδsy(s)ds ≤ C3,

where δ, C1, C2 and C3 are positive constants. Then

y(t) ≤ (C2 + δC3 + y(t0))e
C1eδ(t0−t), for t0 ≤ t ≤ T.

Proof of Theorem 1.2. Let

T0 = sup
{
δ : ‖uxx(t)‖2 ≤ K2, 0 ≤ t ≤ δ

}
.

Since
‖uxx(0)‖2 ≤ K2,

and ‖uxx(t)‖ is continuous, we have T0 > 0. We shall prove that T0 = +∞. For
this, we argue by contradiction. If T0 < +∞, then we have

‖uxx(t)‖2 ≤ K2, ∀ − τ ≤ t ≤ T0

and
‖uxx(T0)‖2 = K2. (6)

Multiplying (1) by u, then integrating on (0, 1) with respect to x, we obtain

d

dt
‖u(t)‖2+2‖uxx(t)‖2+2‖u(t)‖2 = −2

∫ 1

0

uxx(t)u(t)dx−2

∫ 1

0

u(t)u(t−τ)ux(t)dx.

By Young inequality and
∫ 1

0
u2(t)ux(t)dx = 0, we have

d

dt
‖u(t)‖2 + ‖uxx(t)‖2 + ‖u(t)‖2 ≤ Φ, (7)

where

Φ = −2

∫ 1

0

u(t)[u(t− τ)− u(t)]ux(t)dx.

We now majorize Φ in the right hand side of (7). Firstly, since

|u(x, t)| ≤ ‖ux(x, t)‖, 0 ≤ x ≤ 1,
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we have

Φ ≤ 2

∫ 1

0

|u(t− τ)− u(t)||u(t)||ux(t)|dx

≤ 2

∫ 1

0

|u(t− τ)− u(t)|‖ux(t)‖|ux(t)|dx

≤ 2‖ux(t)‖
∫ 1

0

|u(t− τ)− u(t)||ux(t)|dx

≤ 2‖ux(t)‖
(∫ 1

0

|u(t− τ)− u(t)|2dx
) 1

2
(∫ 1

0

|ux(t)|2dx
) 1

2

= 2‖ux(t)‖2
(∫ 1

0

|u(t− τ)− u(t)|2dx
) 1

2

= 2‖ux(t)‖2
(∫ 1

0

∣∣∣∣∫ t

t−τ
us(s)ds

∣∣∣∣2 dx
) 1

2

≤ 2
√
τ‖ux(t)‖2

(∫ 1

0

∫ t

t−τ
u2s(s)dsdx

) 1
2

.

Let

Ψ =

(∫ 1

0

∫ t

t−τ
u2s(s)dsdx

) 1
2

,

we have

Φ ≤ 2
√
τ‖ux(t)‖2Ψ. (8)

We now want to estimate Ψ. To this end, multiplying (1) by ut, then integrat-

ing on (0, 1) with respect to x, we obtain 2
∫ 1

0
u2t (t)dx + 2

∫ 1

0
uxx(t)ut(t)dx +

d
dt

∫ 1

0
u2xx(t)dx+ 2

∫ 1

0
ut(t)u(t− τ)ux(t)dx+ 2

∫ 1

0
u(t)ut(t)dx = 0. Integrating on

0 ≤ t ≤ T0, we obtain

2

∫ t

t−τ

∫ 1

0

u2s(s)dxds+ 2

∫ t

t−τ

∫ 1

0

uxx(s)us(s)dxds+

∫ 1

0

u2xx(t)dx

−
∫ 1

0

u2xx(t− τ)dx+ 2

∫ t

t−τ

∫ 1

0

us(s)u(s− τ)ux(s)dxds+ 2

∫ t

t−τ

∫ 1

0

u(s)us(s)dxds

= 0,

which implies that

2Ψ2 ≤ E + F +G+H, (9)
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where

E = −2

∫ t

t−τ

∫ 1

0

uxx(s)us(s)dxds, F =

∫ 1

0

u2xx(t− τ)dx ≤ K2,

G = −2

∫ t

t−τ

∫ 1

0

us(s)u(s− τ)ux(s)dxds, H = −2

∫ t

t−τ

∫ 1

0

u(s)us(s)dxds.

We now majorize E, G and H:

E ≤ 2

(∫ t

t−τ

∫ 1

0

u2s(s)dxds

) 1
2
(∫ t

t−τ

∫ 1

0

u2xx(s)dxds

) 1
2

≤ 1

4
Ψ2 + 4

∫ t

t−τ

∫ 1

0

u2xx(s)dxds

≤ 1

4
Ψ2 + 4

∫ t

t−τ
K2ds

≤ 1

4
Ψ2 + 4K2τ, (10)

G ≤ 2

∫ t

t−τ

∫ 1

0

|us(s)||u(s− τ)||ux(s)|dxds

≤ 2

∫ t

t−τ

∫ 1

0

‖ux(s− τ)‖(|us(s)||ux(s)|)dxds

≤ 2K

∫ t

t−τ

∫ 1

0

|us(s)||ux(s)|dxds

≤ 2K

(∫ t

t−τ

∫ 1

0

u2s(s)dxds

) 1
2
(∫ t

t−τ

∫ 1

0

u2x(s)dxds

) 1
2

≤ 1

2
Ψ2 + 2K2

∫ t

t−τ

∫ 1

0

u2x(s)dxds

≤ 1

2
Ψ2 + 2K2

∫ t

t−τ
K2ds

≤ 1

2
Ψ2 + 2K4τ, (11)

H ≤ 1

4
Ψ2 + 4

∫ t

t−τ

∫ 1

0

u2(s)dxds ≤ 1

4
Ψ2 + 4K2τ. (12)

Thus by (9)–(12), we have

Ψ ≤
√
K2 + 8K2τ + 2K4τ , ∀0 ≤ t ≤ T0. (13)
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Then (8) and (13) implies that

Φ≤2‖ux(t)‖2
√
τ(K2+8K2τ+2K4τ)≤2‖uxx(t)‖2

√
τ(K2+8K2τ+2K4τ). (14)

Thus, by (7) and (14), we obtain

d

dt
‖u(t)‖2 + ‖uxx(t)‖2

(
1− 2

√
τ(K2 + 8K2τ + 2K4τ)

)
≤ 0,

that is d
dt
‖u(t)‖2 + ω‖uxx(t)‖2 ≤ 0, where ω is defined by (5). Furthermore,

d

dt
‖u(t)‖2 + ω‖ux(t)‖2 ≤ 0, (15)

d

dt
‖u(t)‖2 + ω‖u(t)‖2 ≤ 0.

Solving the above inequality gives

‖u(t)‖2 ≤ ‖u0(x, 0)‖2e−2ωt, 0 ≤ t ≤ T0.

On the other hand, multiplying (15) by eωt, we have

d

dt
(eωt‖u(t)‖2) + ωeωt‖ux(t)‖2 ≤ ωeωt‖u(t)‖2 ≤ ωe−ωt‖u0(x, 0)‖2.

Integrating the above inequality from 0 to T0 gives

eωT0‖u(T0)‖2 + ω

∫ T0

0

eωt‖ux(t)‖2dt ≤ (2− e−ωT0)‖u0(x, 0)‖2.

which implies that ∫ T0

0

eωt‖ux(t)‖2dt ≤
2

ω
‖u0(x, 0)‖2. (16)

Consequently, we get∫ T0

0

eωt‖ux(t− τ)‖2dt =

∫ T0−τ

−τ
eω(s+τ)‖ux(s)‖2ds (by s = t− τ)

=

(∫ 0

−τ
+

∫ T0

0

+

∫ T0−τ

T0

)
eω(s+τ)‖ux(s)‖2ds

=

(∫ 0

−τ
+

∫ T0

0

−
∫ T0

T0−τ

)
eω(s+τ)‖ux(s)‖2ds

≤
(∫ 0

−τ
+

∫ T0

0

)
eω(s+τ)‖ux(s)‖2ds.
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Here, by (16)
∫ T0
0
eω(s+τ)‖ux(s)‖2ds = eωτ

∫ T0
0
eωs‖ux(s)‖2ds ≤ 2eωτ

ω
‖u0(x, 0)‖2,

and
∫ 0

−τ e
ω(s+τ)‖ux(s)‖2ds ≤

∫ 0

−τ e
ω(s+τ)‖u0x(s)‖2ds ≤ eωτ

∫ 0

−τ ‖u0x(s)‖
2ds, hence

∫ T0

0

eωt‖ux(t− τ)‖2dt ≤ eωτ
∫ 0

−τ
‖u0x(s)‖2ds+

2eωτ

ω
‖u0(x, 0)‖2.

Furthermore we have∫ T0

0

‖ux(t− τ)‖2dt ≤ eωτ
∫ 0

−τ
‖u0x(s)‖2ds+

2eωτ

ω
‖u0(x, 0)‖2. (17)

On the other hand, integrating by parts, we obtain

d

dt
‖uxx(t)‖2 = −2

∫ 1

0

uxxxx(t)uxx(t)dx− 2‖uxxxx(t)‖2

− 2

∫ 1

0

uxxxx(t)u(t− τ)ux(t)dx− 2‖uxx(t)‖2

≤ 2

∫ 1

0

|uxxxx(t)||uxx(t)|dx− 2‖uxxxx(t)‖2

+ 2‖ux(t− τ)‖
∫ 1

0

|uxxxx(t)||ux(t)|dx− 2‖uxx(t)‖2

≤ ‖uxxxx(t)‖2 + ‖uxx(t)‖2 − 2‖uxxxx(t)‖2

+ ‖uxxxx(t)‖2 + ‖ux(t− τ)‖2‖ux(t)‖2 − 2‖uxx(t)‖2

≤ ‖ux(t− τ)‖2‖ux(t)‖2

≤ ‖ux(t− τ)‖2‖uxx(t)‖2. (18)

By (16)–(18), using Lemma 3.1, we obtain

‖uxx(t)‖2

≤
(
2‖u0(x, 0)‖2+‖u0xx(x, 0)‖2

)
exp

{
eωt
∫ 0

−τ
‖u0x(s)‖2ds+

2eωτ

ω
‖u0(x, 0)‖2

}
e−ωt

≤ K2

4
e−ωt. (19)

Hence

‖uxx(T0)‖2 ≤ K2e−ωT0 ,

which is in contradiction with (6). Therefore, we have proved that T0 = +∞
and then (4) follows from (19). Thus the proof of Theorem 1.2 is completed.
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