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1. The result

The Euler-Korteweg system is given by the equations

Vi—U, =0,

1 (1)
Up+p(V)e = =(K(V)Var + 5 (R(V))e Vo)

with x(V) > 0. System (1), and notably its solitary waves

(g) (2,1) = (Z) (x—ct) with (Z) (+00) = (Z) ,

appear in a number of contexts, cf. below. This paper is concerned with the
stability of such solitary waves which is defined as follows.

Definition 1.1 ([3]). A traveling wave (v,u) of (1) is called orbitally stable
if for each ¢ > 0, there exists a § > 0 such that for any solution (V,U) €
(v,u) + C([0,T); H3(R) x H*(R)) of (1), closeness at initial time,

IV, U) (- 0) = (v, u) ()l sz < 6
implies closeness at any time

inﬂf{H(V, U)(,t) — (v,u)(- +0)||mxre < e forall t > 0.
oe
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The following is the point of this short note.

Theorem 1.2. All non-trivial solitary Fuler-Korteweg waves with speed ¢ = 0
are not orbitally stable.

This finding has various applications. When x(V') = 1, equation (1) reduces
to the Boussinesq equation, describing water waves (Bona and Sachs [4]), multi-
(Benzoni et al. [3]) and one- (Howing [13]) phase fluids with capillarity, and, as
discovered more recently by Heimburg and Jackson [12], signal propagation in
nerves (cf. also Freistiithler and Héwing [9]). When (V) = 5, equation (1) is
the hydrodynamic version of the generalized Gross-Pitaevskii equation

Wy + %\I’m +UG(V?) =0, with pG'(p) = P'(p), P(p)=p (%) :
used in the description of Bose-Einstein condensates.

Our interest in waves of vanishing speed stems from the fact that they take
a special position since, (1) referring to Lagrangian coordinates, they represent
structures that are “frozen” in the material.

There is an enormous interest in (in-)stability of (standing) waves in these
equations; it is beyond the scope of this note to present the existing results, we
refer here to the recent survey [2] for the Euler-Korteweg system and to [6] for
the special case of the Gross-Pitaevskii equation.

In some of the above-mentioned examples, the assertion of Theorem 1.2 is
well known; in particular certain of the results of de Bouard [7], and Pelinovsky
and Kevrekidis [15] cover the Gross-Pitaevskii case. Certain results of Zum-
brun [17] and Liu [14] are interesting special cases for the Bona-Sachs case [4].
In this respect, the achievment of Theorem 1.2 is its generality.

Finally, note that Theorem 1.2 does not cover those planar standing waves in
the Gross-Pitaevskii equation considered for example by Cazenave and Lions [5],
and de Bouard [7] which allow ¥ to vanish somewhere along its profile since in
this case the Madelung transformation is not valid.

2. The proof

For fixed base state v,, the solitary waves homoclinic to v, occur in families
(u®,v°) parametrized by their speed ¢. The proof of Theorem 1.2 is based on
the moment of instability [11], in particular on the following result.

Lemma 2.1 ([1]). A solitary wave (u,v®) is orbitally unstable if the moment
of instability

m(c) = /_00 k(v)v? dé

o0

18 not convex at ¢ = c,.



Standing Solitary Euler-Korteweg Waves 443

Theorem 1 follows from
Lemma 2.2. m(c) satisfies m”(0) < 0.

Proof. To prove this lemma, we recall that with

F(v,0) = ~J(0) + f(0) = p() (o —v) + 220 =%, ~ Ty
the profile equation
K0 + L (n(o))o! =~ 21

possesses (cf. [3]) a first integral given by
1
I(v,v') = 5&(1})1)'2 + F(v,c).

Now @
m(c) = 2/ k(v)v' dv

with v, v, (c) > v, consecutive zeros of F(-,¢). Since I(v,v") = 0 along solu-
tions, we have

N|=

vm (c) L
mi(c) = 2 / (k())} (—2F(v, )} dv

[T

1

(=2F (vm(c) — w*,¢))* w duw,

[N

(vm (c)—vx)
= 4/0 (K(vm(c) — w?))

where w = (v(c) — v)2 (cf. [13]). The first derivative of m is (note that the
integral limits are w = 0 and w = (v, (c) — v,)2 unless otherwise stated)

m'(c) = 4/ %{(/{(vm(c) — wQ))% (—2F (v (c) — wQ,C))%} w dw

Ko (Vm(€) — w?)vy, (c) 2 1\3
=4 — (—2F(v,(c) —w",¢))? w dw
/ 2 (K(vm(c) — w?))? (2R (en(d) )

14 / (5(om(€) = w?))* (=Fy(vn(e) =0, )) v (c)

[

4 [ 2loale =) RO —ute) g,
(—2F (vpm(c) —w?,¢))?
which, due to

N ((H(v)<—2F(U,C>>)%) _
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simplifies to

N

w dw

) Fe(vm(c) = w?, ¢) (k(vm(c) — w?))
m'(c) = —4 -
/ (=2F (vm(c) —w?,¢))?

(vm(c) = w? = v.)? (K(vm(c) — w?))
=—4 | c -
/ (—=2F (vm(c) —w?,¢))?

N

w dw.

The sign of m”(c) evaluated at ¢ = 0 is obviously negative since the integrand
is a product of ¢ and a positive function: differentiating and setting ¢ to 0,
only the positive function remains. Anyway, let us derive m”(c) as the resulting
formula might be useful also when not looking at the vanishing speed case.
After a transformation back to the original variable v = v,,(c) — w?, the second
derivative of m can be written in the form

vm(c)
TTLH(C) _ 2/ ( A(U, C) + B(U7 C) _ dv
VUx K

with A(v,¢) = F(v,c)k,(v)v), (¢)F.(v,c) and

m

B(v,c) =k(v)(v—uy)
X (2F (v, c) ((v—wv) + 2c),, () — c(v—o.) (Fy(v, )V}, (c) + Fo(v,c))).

As F.(v,0) =0 = A(v,0) and
B(v,0) = 26(v)(v — v.)*F(v,0) < 0 for all v € (v, v,,(0)),
we indeed have m”(0) < 0. O

Remark 2.3. The idea to extend Theorem 1.2 to the Navier-Stokes-Korteweg
system,
‘/t - Um = 07
1 (2)
U+ p(V)e = (W(V)Us)w — (K(V)Viz + E(K(V))xvx)xv

which is (1) endowed with a non-constant viscosity term u(V) > 0 (cf., e.g.,
[8,10] and references therein), suggests itself. Existence of standing waves in (1)
and (2) is certainly equivalent since for a standing wave v’ = 0. In the case that
both capillarity and viscosity are constant, instability of standing solitary waves
in (2) is well known [16].
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