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Standing Solitary Euler-Korteweg
Waves are Unstable
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Abstract. This note establishes instability of any planar standing wave in the Euler-
Korteweg system.
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1. The result

The Euler-Korteweg system is given by the equations

Vt − Ux = 0,

Ut + p(V )x = −(κ(V )Vxx +
1

2
(κ(V ))xVx)x,

(1)

with κ(V ) > 0. System (1), and notably its solitary waves(
V
U

)
(x, t) =

(
v
u

)
(x− ct) with

(
v
u

)
(±∞) =

(
v∗
u∗

)
,

appear in a number of contexts, cf. below. This paper is concerned with the
stability of such solitary waves which is defined as follows.

Definition 1.1 ([3]). A traveling wave (v, u) of (1) is called orbitally stable
if for each ε > 0, there exists a δ > 0 such that for any solution (V, U) ∈
(v, u) + C([0, T );H3(R)×H2(R)) of (1), closeness at initial time,

‖(V, U)(·, 0)− (v, u)(·)‖H1×L2 < δ

implies closeness at any time

inf
σ∈R
‖(V, U)(·, t)− (v, u)(·+ σ)‖H1×L2 < ε for all t > 0.
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The following is the point of this short note.

Theorem 1.2. All non-trivial solitary Euler-Korteweg waves with speed c = 0
are not orbitally stable.

This finding has various applications. When κ(V ) ≡ 1, equation (1) reduces
to the Boussinesq equation, describing water waves (Bona and Sachs [4]), multi-
(Benzoni et al. [3]) and one- (Höwing [13]) phase fluids with capillarity, and, as
discovered more recently by Heimburg and Jackson [12], signal propagation in
nerves (cf. also Freistühler and Höwing [9]). When κ(V ) = 1

4V 4 , equation (1) is
the hydrodynamic version of the generalized Gross-Pitaevskii equation

iΨt +
1

2
Ψxx + ΨG(|Ψ|2) = 0, with ρG′(ρ) = P ′(ρ), P (ρ) = p

(
1

ρ

)
,

used in the description of Bose-Einstein condensates.
Our interest in waves of vanishing speed stems from the fact that they take

a special position since, (1) referring to Lagrangian coordinates, they represent
structures that are “frozen” in the material.

There is an enormous interest in (in-)stability of (standing) waves in these
equations; it is beyond the scope of this note to present the existing results, we
refer here to the recent survey [2] for the Euler-Korteweg system and to [6] for
the special case of the Gross-Pitaevskii equation.

In some of the above-mentioned examples, the assertion of Theorem 1.2 is
well known; in particular certain of the results of de Bouard [7], and Pelinovsky
and Kevrekidis [15] cover the Gross-Pitaevskii case. Certain results of Zum-
brun [17] and Liu [14] are interesting special cases for the Bona-Sachs case [4].
In this respect, the achievment of Theorem 1.2 is its generality.

Finally, note that Theorem 1.2 does not cover those planar standing waves in
the Gross-Pitaevskii equation considered for example by Cazenave and Lions [5],
and de Bouard [7] which allow Ψ to vanish somewhere along its profile since in
this case the Madelung transformation is not valid.

2. The proof

For fixed base state v∗, the solitary waves homoclinic to v∗ occur in families
(uc, vc) parametrized by their speed c. The proof of Theorem 1.2 is based on
the moment of instability [11], in particular on the following result.

Lemma 2.1 ([1]). A solitary wave (uc∗ , vc∗) is orbitally unstable if the moment
of instability

m(c) =

∫ ∞
−∞

κ(v)v′2 dξ

is not convex at c = c∗.
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Theorem 1 follows from

Lemma 2.2. m(c) satisfies m′′(0) < 0.

Proof. To prove this lemma, we recall that with

F (v, c) = −f(v) + f(v∗)− p(v∗)(v − v∗) +
1

2
c2(v − v∗)2, −df(v)

dv
= p(v),

the profile equation

κ(v)v′′ +
1

2
(κ(v))′v′ = −∂F (v, c)

∂v

possesses (cf. [3]) a first integral given by

I(v, v′) =
1

2
κ(v)v′2 + F (v, c).

Now

m(c) = 2

∫ vm(c)

v∗

κ(v)v′ dv

with v∗, vm(c) > v∗ consecutive zeros of F (·, c). Since I(v, v′) ≡ 0 along solu-
tions, we have

m(c) = 2

∫ vm(c)

v∗

(κ(v))
1
2 (−2F (v, c))

1
2 dv

= 4

∫ (vm(c)−v∗)
1
2

0

(
κ(vm(c)− w2)

) 1
2
(
−2F (vm(c)− w2, c)

) 1
2 w dw,

where w := (vm(c) − v)
1
2 (cf. [13]). The first derivative of m is (note that the

integral limits are w = 0 and w = (vm(c)− v∗)
1
2 unless otherwise stated)

m′(c) = 4

∫
d

dc

{(
κ(vm(c)− w2)

) 1
2
(
−2F (vm(c)− w2, c)

) 1
2

}
w dw

= 4

∫
κv(vm(c)− w2)v′m(c)

2 (κ(vm(c)− w2))
1
2

(
−2F (vm(c)− w2, c)

) 1
2 w dw

+ 4

∫
(κ(vm(c)− w2))

1
2 (−Fv(vm(c)− w2, c)) v′m(c)

(−2F (vm(c)− w2, c))
1
2

w dw

+ 4

∫
(κ(vm(c)− w2))

1
2 (−Fc(vm(c)− w2, c))

(−2F (vm(c)− w2, c))
1
2

w dw

which, due to

∂

∂v

(
(κ(v)(−2F (v, c)))

1
2

)
=
κv(v)(−2F (v, c))

1
2

2(κ(v))
1
2

− κ(v)
1
2Fv(v, c)

(−2F (v, c))
1
2

,
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simplifies to

m′(c) = −4

∫
Fc(vm(c)− w2, c) (κ(vm(c)− w2))

1
2

(−2F (vm(c)− w2, c))
1
2

w dw

= −4

∫
c

(vm(c)− w2 − v∗)2 (κ(vm(c)− w2))
1
2

(−2F (vm(c)− w2, c))
1
2

w dw.

The sign of m′′(c) evaluated at c = 0 is obviously negative since the integrand
is a product of c and a positive function: differentiating and setting c to 0,
only the positive function remains. Anyway, let us derive m′′(c) as the resulting
formula might be useful also when not looking at the vanishing speed case.
After a transformation back to the original variable v = vm(c)−w2, the second
derivative of m can be written in the form

m′′(c) = 2

∫ vm(c)

v∗

A(v, c) +B(v, c)

(κ(v))
1
2 (−2F (v, c))

3
2

dv

with A(v, c) = F (v, c)κv(v)v′m(c)Fc(v, c) and

B(v, c) =κ(v)(v−v∗)
×
(
2F (v, c) ((v−v∗) + 2cv′m(c))− c(v−v∗) (Fv(v, c)v

′
m(c) + Fc(v, c))

)
.

As Fc(v, 0) = 0 = A(v, 0) and

B(v, 0) = 2κ(v)(v − v∗)2F (v, 0) < 0 for all v ∈ (v∗, vm(0)),

we indeed have m′′(0) < 0.

Remark 2.3. The idea to extend Theorem 1.2 to the Navier-Stokes-Korteweg
system,

Vt − Ux = 0,

Ut + p(V )x = (µ(V )Ux)x − (κ(V )Vxx +
1

2
(κ(V ))xVx)x,

(2)

which is (1) endowed with a non-constant viscosity term µ(V ) > 0 (cf., e.g.,
[8,10] and references therein), suggests itself. Existence of standing waves in (1)
and (2) is certainly equivalent since for a standing wave u′ ≡ 0. In the case that
both capillarity and viscosity are constant, instability of standing solitary waves
in (2) is well known [16].
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[9] Freistühler, H. and Höwing, J., An analytical proof for the stability of
Heimburg-Jackson pulses. Preprint 2013
(available at http://arxiv.org/abs/1303.5941).

[10] Hagan, R. and Slemrod, M., The viscosity-capillarity criterion for shocks and
phase transitions. Arch. Ration. Mech. Anal. 83 (1983), 333 – 361.

[11] Grillakis, M., Shatah, J. and Strauss, W., Stability theory of solitary waves in
the presence of symmetry, I. J. Funct. Anal. 74 (1987), 160 – 197.

[12] Heimburg, T. and Jackson, A. D., On soliton propagation in biomembranes
and nerves. PNAS 102 (2005), 9790 – 9795.
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