© European Mathematical Society

Convolution in Rearrangement-Invariant Spaces Defined in Terms of Oscillation and the Maximal Function

Martin Křepela

Abstract. We characterize boundedness of a convolution operator with a fixed kernel between the classes $S^{p}(v)$, defined in terms of oscillation, and weighted Lorentz spaces $\Gamma^{q}(w)$, defined in terms of the maximal function, for $0 < p, q \leq \infty$. We prove corresponding weighted Young-type inequalities of the form

$$||f * g||_{\Gamma^q(w)} \le C ||f||_{S^p(v)} ||g||_Y$$

and characterize the optimal rearrangement-invariant space Y for which these inequalities hold.

Keywords. Convolution, Young inequality, weighted Lorentz spaces, oscillation Mathematics Subject Classification (2010). Primary 44A35, secondary 26D10, 46E30

1. Introduction

The classical Young inequality

$$||f * g||_q \le ||f||_p ||g||_r,$$

where $1 \le p, q, r \le \infty$, $\frac{1}{p} + \frac{1}{r} = 1 + \frac{1}{q}$ and f * g is the convolution given by

$$(f * g)(t) = \int_{-\infty}^{\infty} f(x)g(t - x) \,\mathrm{d}x, \quad t \in \mathbb{R},$$

is one of the fundamental results related to the convolution and function spaces. It has been already modified and generalized for classes of function spaces that

M. Křepela: Karlstad University, Faculty of Health, Science and Technology, Department of Mathematics and Computer Science, 651 88 Karlstad, Sweden; Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha 8, Czech Republic; martin.krepela@kau.se

are wider than the Lebesgue spaces in the original Young inequality. O'Neil [14] extended the result for the two-parametric Lorentz spaces $L_{p,q}$. Precisely, he proved that, for $1 < p, q, r < \infty$ and $1 \le a, b, c \le \infty$ such that $1 + \frac{1}{q} = \frac{1}{p} + \frac{1}{r}$ and $\frac{1}{a} = \frac{1}{b} + \frac{1}{c}$, the inequality

$$||f * g||_{L_{q,a}} \le C ||f||_{L_{p,b}} ||g||_{L_{r,c}}, \quad f \in L_{p,b}, \ g \in L_{r,c},$$

holds. This problem was further studied e.g. in [3,10,18] and the result was also improved up to the range $1 < p, q, r < \infty$ and $0 < a, b, c \leq \infty$. Nursultanov and Tikhonov [13] recently studied the same question considering convolution of periodic functions.

In the preceding paper [11] the author studied the boundedness of the operator T_q given by

$$T_g f(t) := (f * g)(t)$$

between weighted Lorentz spaces $\Lambda^p(v)$ and $\Gamma^q(w)$ with given weights v, w and exponents p, q. It turned out that the result could be expressed by Young-type inequalities of the form

$$||f * g||_{\Gamma^q(w)} \le C ||f||_{\Lambda^p(v)} ||g||_Y, \quad f \in \Lambda^p(v), \ g \in Y,$$

where the best r.i. space Y, such that this inequality holds, was characterized.

In this paper we deal with similar questions with $S^p(v)$ in place of $\Lambda^p(v)$. The class $S^p(v)$ is defined in terms of $f^{**} - f^*$, where f^* is the nonincreasing rearrangement of f and f^{**} is the maximal function of f (for precise definitions see Section 2 below). The quantity $f^{**} - f^*$ naturally represents the oscillation of f (see the fundamental paper of Bennett, DeVore and Sharpley [1]) and has appeared in numerous applications, particularly within the theory of Sobolev embeddings (see e.g. [4] and the references therein).

We are going to solve the following problems: At first, given exponents $p, q \in (0, \infty]$ and weights v, w, we provide conditions on the kernel $g \in L^1$ under which T_g is bounded between $S^p(v)$ and $\Gamma^q(w)$, written $T_g : S^p(v) \to \Gamma^q(w)$. Precisely, we will show that there exists an r.i. space Y such that $T_g : S^p(v) \to \Gamma^q(w)$ if (and in reasonable cases also only if) $g \in Y$ and characterize the norm of Y. Next, we write these results in the form of Young-type convolution inequalities

$$||f * g||_{\Gamma^q(w)} \le C ||f||_{S^p(v)} ||g||_Y, \quad f \in S^p(v), \ g \in L^1 \cap Y.$$
(1)

The constant C here in general depends on p, q but is independent of f, g, v, w. We will also show that the space Y we obtained is the essentially largest (optimal) r.i. space for which the inequality (1) is valid.

To get the desired results, we employ a similar technique as in [11]. We represent the investigated convolution-related inequalities by certain Hardy-type weighted inequalities and then treat the problem by working with the latter ones. This is done in Section 3. The final result shaped as the Young-type inequality (1) is presented in Section 4.

2. Preliminaries

Let us present some definitions and technical results we are going to use. The set of all measurable functions on \mathbb{R} is denoted by $\mathscr{M}(\mathbb{R})$. The symbols $\mathscr{M}_+(0,\infty)$ and $\mathscr{M}_+(\mathbb{R})$ stand for the sets of all nonnegative measurable functions on $(0,\infty)$ and \mathbb{R} , respectively. If $p \in (1,\infty)$, we define $p' := \frac{p}{p-1}$. The notation $A \leq B$ means that $A \leq CB$ where C is a positive constant independent of relevant quantities. Unless specified else, C actually depends only on the exponents pand q, if they are involved. If $A \leq B$ and $B \leq A$, we write $A \simeq B$. The *optimal constant* C in an inequality $A \leq CB$ is the least C such that the inequality holds. By writing inequalities in the form

$$A(f) \lesssim B(f), \quad f \in X,$$

we always mean that $A(f) \leq B(f)$ is satisfied for all $f \in X$.

A weight is any nonnegative function on $(0, \infty)$. such that $0 < W(t) < \infty$ for all t > 0, where $W(t) := \int_0^t w(s) \, ds$.

If $f \in \mathscr{M}(\mathbb{R})$, we define the nonincreasing rearrangement of f by

$$f^*(t) := \inf \{s > 0; |\{x \in \mathbb{R}; |f(x)| > s\}| \le t\}, \quad t > 0,$$

and the Hardy-Littlewood maximal function of f by

$$f^{**}(t) := \frac{1}{t} \int_0^t f^*(s) \,\mathrm{d}s, \quad t > 0.$$

If u is a weight, then a generalized version of the maximal function is defined by

$$f_u^{**}(t) := \frac{1}{U(t)} \int_0^t f^*(s)u(s) \,\mathrm{d}s, \quad t > 0.$$

By L^1 we denote the Lebesgue-integrable functions on \mathbb{R} . The symbol L^1_{loc} stands for locally integrable functions on \mathbb{R} . If $q \in (0, \infty]$ and w is a weight, then $L^q(w)$ denotes the Lebesgue L^q -space over the interval $(0, \infty)$ with the measure w(t) dt.

Let $\varrho: \mathscr{M}(\mathbb{R}) \to [0,\infty]$ be a functional with the following properties:

(i)
$$E \subset \mathbb{R}, |E| < \infty \Rightarrow \varrho(\chi_E) < \infty,$$

(ii) $f \in \mathscr{M}(\mathbb{R}), c \ge 0 \Rightarrow \varrho(cf) = c\varrho(f)$ (positive homogeneity),

- (iii) $f, g \in \mathscr{M}(\mathbb{R}), 0 \le f \le g$ a.e. $\Rightarrow \varrho(f) \le \varrho(g)$ (lattice property),
- (iv) $f, g \in \mathscr{M}(\mathbb{R}), f^* = g^* \Rightarrow \varrho(f) = \varrho(g)$ (r.i. property).

The set $X = X(\varrho) := \{f \in \mathscr{M}(\mathbb{R}), \ \varrho(f) < \infty\}$ is called a *rearrangement-invariant* (r.i.) *lattice*. For such X we define $||f||_X := \varrho(|f|)$ for all $f \in X$.

For the definition of a *rearrangement-invariant space* see [2, p. 59].

Let $p \in (0, \infty]$ and u, v be weights. The weighted Lorentz spaces are defined by what follows:

$$\begin{split} \Lambda^p(v) &:= \left\{ f \in \mathscr{M}(\mathbb{R}); \ \|f\|_{\Lambda^p(v)} := \left(\int_0^\infty (f^*(t))^p v(t) \, \mathrm{d}t \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0,\infty), \\ \Lambda^\infty(v) &:= \left\{ f \in \mathscr{M}(\mathbb{R}); \ \|f\|_{\Lambda^\infty(v)} := \mathrm{ess\,sup} \ f^*(t) v(t) < \infty \right\}, \qquad p = \infty, \\ \Gamma^p_u(v) &:= \left\{ f \in \mathscr{M}(\mathbb{R}); \ \|f\|_{\Gamma^p_u(v)} := \left(\int_0^\infty (f^{**}_u(t))^p v(t) \, \mathrm{d}t \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0,\infty), \\ \Gamma^\infty_u(v) &:= \left\{ f \in \mathscr{M}(\mathbb{R}); \ \|f\|_{\Gamma^\infty_u(v)} := \mathrm{ess\,sup} \ f^{**}_u(t) v(t) < \infty \right\}, \qquad p = \infty. \end{split}$$

If $u \equiv 1$, we write just $\Gamma^p(v)$, $\Gamma^{\infty}(v)$. Next, we denote

$$\mathbb{A} := \left\{ f \in \mathscr{M}(\mathbb{R}); f^*(\infty) = 0 \right\}.$$

Clearly, any function $f \in \mathbb{A}$ satisfies $f^{**}(\infty) = 0$.

The class $S^p(v)$ is given by

$$S^{p}(v) := \left\{ f \in \mathbb{A}; \ \|f\|_{S^{p}(v)} := \left(\int_{0}^{\infty} (f^{**}(t) - f^{*}(t))^{p} v(t) \, \mathrm{d}t \right)^{\frac{1}{p}} < \infty \right\}, \quad p \in (0, \infty),$$

$$S^{\infty}(v) := \left\{ f \in \mathbb{A}; \ \|f\|_{S^{\infty}(v)} := \operatorname{ess\,sup}_{t>0} (f^{**}(t) - f^{*}(t)) v(t) < \infty \right\}, \qquad p = \infty.$$

The Γ -spaces with $u \equiv 1$ are linear and the functional $\|\cdot\|_{\Gamma^p(v)}$ is at least a quasi-norm. In fact, for $p \in [1, \infty]$ it is a norm. The key property is the sublinearity of the maximal function (see e.g. [2, p. 54]), i.e.

$$(f+g)^{**}(t) \leq f^{**}(t) + g^{**}(t), \quad t>0.$$

On the other hand, the rearrangement itself is not sublinear and the Λ -"spaces" need not to be linear [7]. However, they are always at least r.i. lattices.

In contrast with that, $S^{p}(v)$ in general does not even have the lattice property. A detailed study of this and other functional properties of $S^{p}(v)$ was published in [4].

Obviously, $\Gamma^p(v) \subset S^p(v)$ for any $p \in (0, \infty]$ and any weight v. In case of $p \in (0, \infty)$, we will work with weights v satisfying the conditions

$$\int_{\varepsilon}^{\infty} \frac{v(t)}{t^p} \, \mathrm{d}t < \infty \text{ for every } \varepsilon > 0 \quad \text{and} \quad \int_{0}^{\infty} \frac{v(t)}{t^p} \, \mathrm{d}t = \infty.$$
(2)

It can be checked easily that if the first part of (2) is not satisfied, then $\Gamma^p(v) = S^p(v) = \{0\}$, while failing the other part implies that $L^1 \subset \Gamma^p(v) \subset S^p(v)$. By

the symbol \mathscr{V}_p we denote the set of all weights v satisfying (2) with $p \in (0, \infty)$. Similarly, \mathscr{V}_{∞} stands for the set of all weights satisfying

$$\operatorname{ess\,sup}_{t>\varepsilon} \, \frac{v(t)}{t} < \infty \text{ for every } \varepsilon > 0 \quad \text{and} \quad \operatorname{ess\,sup}_{t>0} \, \frac{v(t)}{t} = \infty.$$

A useful tool for investigation of convolution inequalities is the O'Neil inequality [14, Lemma 2.5]:

Lemma 2.1. Let $f, g \in L^1_{loc}$. Then, for every $t \in (0, \infty)$ it holds

$$(f * g)^{**}(t) \le t f^{**}(t) g^{**}(t) + \int_t^\infty f^*(s) g^*(s) \,\mathrm{d}s.$$

We are going to use this inequality with an alternative expression of its right-hand side from [11, Proposition 4.1]:

Lemma 2.2. Let $f, g \in L^1_{loc}$. Then for every $t \in (0, \infty)$ it holds

$$tf^{**}(t)g^{**}(t) + \int_{t}^{\infty} f^{*}(s)g^{*}(s) \,\mathrm{d}s$$

=
$$\lim_{s \to \infty} \sup sf^{**}(s)g^{**}(s) + \int_{t}^{\infty} (f^{**}(s) - f^{*}(s))(g^{**}(s) - g^{*}(s)) \,\mathrm{d}s.$$

In particular, if $f \in \mathbb{A}$ and $g \in L^1$, then $\lim_{s\to\infty} sf^{**}(s)g^{**}(s) = 0$. Thus, Lemmas 2.1 and 2.2 together yield

$$(f * g)^{**}(t) \le \int_{t}^{\infty} (f^{**}(s) - f^{*}(s))(g^{**}(s) - g^{*}(s)) \,\mathrm{d}s, \quad t > 0.$$
(3)

As observed already in [14], O'Neil inequality has also a converse form (for the proof of the following statement see e.g. [11, Lemma 2.3]).

Lemma 2.3. Let $f, g \in L^1_{loc}$ be nonnegative even functions which are nonincreasing on $(0, \infty)$. Then for every $t \in (0, \infty)$ it holds

$$tf^{**}(t)g^{**}(t) + \int_{t}^{\infty} f^{*}(y)g^{*}(y) \,\mathrm{d}y \le 12(f*g)^{**}(t).$$

From now on we denote the "positive symmetrically decreasing" functions by

 $PSD := \{ f; f \in \mathscr{M}_+(\mathbb{R}), f \text{ is even}, f \text{ is nonincreasing on } (0, \infty) \}.$

Applying Lemmas 2.2, 2.3 and the observation (3), we reach the following conclusion: Let $f \in \mathbb{A}$, $g \in L^1$ and assume that both $f, g \in PSD$. Then

$$\int_{t}^{\infty} (f^{**}(s) - f^{*}(s))(g^{**}(s) - g^{*}(s)) \,\mathrm{d}s \le 12(f * g)^{**}(t), \quad t > 0.$$
(4)

The last preliminary result is the proposition below (cf. e.g. [16, Lemma 1.2], [5, Proposition 7.2]).

Proposition 2.4. Let h be a nonnegative and nonincreasing real-valued function on $(0, \infty)$. Then there exists a sequence $\{f_n\}_{n \in \mathbb{N}}$ of functions $f_n \in \mathscr{M}(\mathbb{R})$ such that for a.e. t > 0 it holds

$$\frac{f_n^{**}\left(\frac{1}{t}\right) - f_n^*\left(\frac{1}{t}\right)}{t} \uparrow h(t), \quad n \to \infty.$$

Proof. There exists a nonnegative Radon measure ν on $(0, \infty)$ such that for a.e. t > 0 it is

$$h(t) = \int_{[t,\infty)} \frac{\mathrm{d}\nu(x)}{x}.$$
(5)

For any $n \in \mathbb{N}$ we can find a function $f_n \in \mathscr{M}(\mathbb{R})$ such that

$$f_n^*(t) = \int_{\left(0,\frac{1}{t}\right)} \chi_{\left(\frac{1}{n},\infty\right)}(x) \mathrm{d}\nu(x)$$

for all t > 0. Now choose any t > 0 such that (5) holds. By Fubini theorem,

$$\begin{aligned} \frac{f_n^{**}(\frac{1}{t}) - f_n^*(\frac{1}{t})}{t} &= \int_0^{\frac{1}{t}} \int_{\left(0, \frac{1}{s}\right)} \chi_{\left(\frac{1}{n}, \infty\right)}(x) \mathrm{d}\nu(x) \,\mathrm{d}s - \frac{1}{t} \int_{\left(0, t\right)} \chi_{\left(\frac{1}{n}, \infty\right)}(x) \mathrm{d}\nu(x) \\ &= \int_{\left(0, \infty\right)} \int_0^{\min\left\{\frac{1}{x}, \frac{1}{t}\right\}} \mathrm{d}s \, \chi_{\left(\frac{1}{n}, \infty\right)}(x) \mathrm{d}\nu(x) - \frac{1}{t} \int_{\left(0, t\right)} \chi_{\left(\frac{1}{n}, \infty\right)}(x) \mathrm{d}\nu(x) \\ &= \int_{\left[t, \infty\right)} \frac{\chi_{\left(\frac{1}{n}, \infty\right)}(x)}{x} \mathrm{d}\nu(x) \uparrow h(t), \quad n \to \infty. \end{aligned}$$

3. Inequalities with $f^{**} - f^*$ and boundedness of the convolution operator

As mentioned in the introduction, we are going to describe when $T_g: S^p(v) \to \Gamma^q(w)$ is bounded and, above all, what is the optimal r.i. space Y such that the inequality $||f * g||_{\Gamma^q(w)} \leq ||f||_{S^p(v)} ||g||_Y$ holds for all $f \in S^p(v)$ and $g \in L^1 \cap Y$. The problem is connected to inequalities involving the expression $f^{**} - f^*$ which are shown in the following lemma. It is a direct consequence of the O'Neil inequality (3).

Lemma 3.1. Let $p, q \in (0, \infty]$. Let v, w be weights, $v \in \mathscr{V}_p$. Let $g \in L^1$. (i) If $p, q \in (0, \infty)$ and

$$\left(\int_{0}^{\infty} \left(\int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) dt\right)^{q} w(x) dx\right)^{\frac{1}{q}} \leq C_{(6)} \left(\int_{0}^{\infty} (f^{**}(x) - f^{*}(x))^{p} v(x) dx\right)^{\frac{1}{p}}, \quad f \in S^{p}(v),$$
(6)

then $T_g: S^p(v) \to \Gamma^q(w)$ and, moreover, the optimal constant $C_{(6)}$ satisfies $\|T_g\|_{S^p(v)\to\Gamma^q(w)} \leq C_{(6)}$.

(ii) If 0 and

$$\underset{x>0}{\operatorname{ess\,sup}} \int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) \, \mathrm{d}t \, w(x) \leq C_{(7)} \left(\int_{0}^{\infty} (f^{**}(x) - f^{*}(x))^{p} v(x) \, \mathrm{d}x \right)^{\frac{1}{p}}, \quad f \in S^{p}(v),$$

$$(7)$$

then $T_g: S^p(v) \to \Gamma^{\infty}(w)$ and, moreover, the optimal constant $C_{(8)}$ satisfies $||T_g||_{S^p(v) \to \Gamma^{\infty}(w)} \leq C_{(8)}$.

(iii) If $0 < q < \infty = p$ and

$$\left(\int_{0}^{\infty} \left(\int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) dt\right)^{q} w(x) dx\right)^{\frac{1}{q}} \leq C_{(8)} \operatorname{ess\,sup}_{x>0} (f^{**}(x) - f^{*}(x))v(x), \quad f \in S^{\infty}(v),$$
(8)

then $T_g: S^{\infty}(v) \to \Gamma^q(w)$ and, moreover, the optimal constant $C_{(7)}$ satisfies $\|T_g\|_{S^{\infty}(v)\to\Gamma^q(w)} \leq C_{(7)}$.

(iv) If $p = q = \infty$ and

$$\underset{x>0}{\operatorname{ess\,sup}} \int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) \, \mathrm{d}t \, w(x) \leq C_{(9)} \underset{x>0}{\operatorname{ess\,sup}} (f^{**}(x) - f^{*}(x))v(x), \quad f \in S^{\infty}(v),$$

$$(9)$$

then $T_g: S^{\infty}(v) \to \Gamma^{\infty}(w)$ and, moreover, the optimal constant $C_{(9)}$ satisfies $||T_g||_{S^{\infty}(v)\to\Gamma^{\infty}(w)} \leq C_{(9)}$.

The next result is inverse to the previous lemma, showing that the validity of the inequalities with $f^{**} - f^*$ from that lemma is also necessary for the boundedness of T_q , given that $g \in PSD$.

Lemma 3.2. Let $p, q \in (0, \infty]$. Let v, w be weights, $v \in \mathscr{V}_p$. Let $g \in L^1 \cap PSD$.

- (i) If $p, q \in (0, \infty)$ and $T_g : S^p(v) \to \Gamma^q(w)$, then (6) holds and the optimal constant $C_{(6)}$ satisfies $C_{(6)} \lesssim ||T_g||_{S^p(v) \to \Gamma^q(w)}$.
- (ii) If $0 and <math>T_g : S^p(v) \to \Gamma^{\infty}(w)$, then (7) holds and the optimal constant $C_{(7)}$ satisfies $C_{(7)} \lesssim ||T_g||_{S^p(v)\to\Gamma^{\infty}(w)}$.
- (iii) If $0 < q < \infty = p$ and $T_g : S^{\infty}(v) \to \Gamma^q(w)$, then (8) holds and the optimal constant $C_{(8)}$ satisfies $C_{(8)} \lesssim ||T_g||_{S^{\infty}(v) \to \Gamma^q(w)}$.
- (iv) If $p = q = \infty$ and $T_g : S^{\infty}(v) \to \Gamma^{\infty}(w)$, then (9) holds and the optimal constant $C_{(9)}$ satisfies $C_{(9)} \lesssim ||T_g||_{S^{\infty}(v) \to \Gamma^{\infty}(w)}$.

Proof. Let us show (i), the other cases are analogous. By (4), for the optimal constant $C_{(6)}$ we get

$$\begin{split} C_{(6)} &= \sup_{\|f\|_{S^{p}(v)} \leq 1} \left(\int_{0}^{\infty} \left(\int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) \, \mathrm{d}t \right)^{q} w(x) \, \mathrm{d}x \right)^{\frac{1}{q}} \\ &= \sup_{\substack{\|f\|_{S^{p}(v)} \leq 1\\ f \in PSD}} \left(\int_{0}^{\infty} \left(\int_{x}^{\infty} (f^{**}(t) - f^{*}(t))(g^{**}(t) - g^{*}(t)) \, \mathrm{d}t \right)^{q} w(x) \, \mathrm{d}x \right)^{\frac{1}{q}} \\ &\leq 12 \sup_{\substack{\|f\|_{S^{p}(v)} \leq 1\\ f \in PSD}} \left(\int_{0}^{\infty} ((f * g)^{**}(t))^{q} w(t) \, \mathrm{d}t \right)^{\frac{1}{q}} \\ &\leq \|T_{g}\|_{S^{p}(v) \to \Gamma^{q}(w)}. \end{split}$$

Now we characterize under which conditions on weights and exponents the inequalities of Lemma 3.1 are satisfied.

Theorem 3.3. Let $p, q \in (0, \infty)$. Let v, w be weights, $v \in \mathscr{V}_p$. Let $g \in L^1$. (i) If 1 , then (6) holds if and only if

$$A_{(10)} := \sup_{x>0} \left(\int_x^\infty (g^{**}(t))^q w(t) \, \mathrm{d}t \right)^{\frac{1}{q}} \left(\int_x^\infty \frac{v(s)}{s^p} \, \mathrm{d}s \right)^{-\frac{1}{p}} < \infty$$
(10)

and

$$A_{(11)} := \sup_{x>0} W^{\frac{1}{q}}(x) \left(\int_{x}^{\infty} (g^{**}(t))^{p'} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} < \infty.$$
(11)

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(10)} + A_{(11)}$.

(ii) If $0 , <math>0 , then (6) holds if and only if <math>A_{(10)} < \infty$ and

$$A_{(12)} := \sup_{x>0} g^{**}(x) W^{\frac{1}{q}}(x) \left(\int_{x}^{\infty} v(t) \, \mathrm{d}t \right)^{-\frac{1}{p}} < \infty.$$
(12)

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(10)} + A_{(12)}$. (iii) If 1 , <math>0 < q < p, then (6) holds if and only if

$$A_{(13)} := \left(\int_0^\infty \left(\int_x^\infty (g^{**}(t))^q w(t) \, \mathrm{d}t \right)^{\frac{r}{q}} \left(\int_x^\infty \frac{v(t)}{t^p} \, \mathrm{d}t \right)^{-\frac{r}{q}} \frac{v(x)}{x^p} \, \mathrm{d}x \right)^{\frac{1}{r}} < \infty \quad (13)$$

and

$$A_{(14)} := \left(\int_0^\infty W^{\frac{r}{p}}(x) w(x) \times \left(\int_x^\infty (g^{**}(t))^{p'} \left(\int_t^\infty \frac{v(s)}{s^p} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^p} \, \mathrm{d}t \right)^{\frac{r}{p'}} \mathrm{d}x \right)^{\frac{1}{r}} \qquad (14)$$

$$< \infty.$$

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(13)} + A_{(14)}$. (iv) If $0 < q < p \le 1$, then (6) holds if and only if $A_{(13)} < \infty$ and

$$A_{(15)} := \left(\int_0^\infty \sup_{x \le t < \infty} (g^{**}(t))^r \left(\int_0^t \frac{v(s)}{s^p} \, \mathrm{d}s \right)^{-\frac{r}{p}} W^{\frac{r}{p}}(x) w(x) \, \mathrm{d}x \right)^{\frac{1}{r}} < \infty.$$
(15)

The optimal constant $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(13)} + A_{(15)}$.

Proof. Let us show (i). After the change of variable $x \mapsto \frac{1}{x}$, inequality (6) is written as

$$\left(\int_{0}^{\infty} \left(\int_{0}^{x} \frac{f^{**}\left(\frac{1}{t}\right) - f^{*}\left(\frac{1}{t}\right)}{t} \cdot \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} dt\right)^{q} \frac{w\left(\frac{1}{x}\right)}{x^{2}} dx\right)^{\frac{1}{q}}$$

$$\leq C_{(6)} \left(\int_{0}^{\infty} \left(\frac{f^{**}\left(\frac{1}{x}\right) - f^{*}\left(\frac{1}{x}\right)}{x}\right)^{p} v\left(\frac{1}{x}\right) x^{p-2} dx\right)^{\frac{1}{p}}, \quad f \in \mathcal{M}(\mathbb{R}).$$
(16)

Let us denote by $\mathscr{M}^{\downarrow}_{+}(0,\infty)$ the cone of nonnegative and nonincreasing functions on $(0,\infty)$. We claim that (16) is true if and only if

$$\left(\int_{0}^{\infty} \left(\int_{0}^{x} \varphi(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} \, \mathrm{d}t\right)^{q} \frac{w\left(\frac{1}{x}\right)}{x^{2}} \, \mathrm{d}x\right)^{\frac{1}{q}}$$

$$\leq C_{(6)} \left(\int_{0}^{\infty} \varphi^{p}(x) \frac{v\left(\frac{1}{x}\right)}{x^{2-p}} \, \mathrm{d}x\right)^{\frac{1}{p}}, \quad \varphi \in \mathscr{M}_{+}^{\downarrow}(0,\infty).$$
(17)

Indeed, every function $t \mapsto \frac{f^{**}(\frac{1}{t}) - f^*(\frac{1}{t})}{t}$ is nonnegative and nonincreasing on $(0, \infty)$, hence (17) implies (16). On the other hand, if $\varphi \in \mathscr{M}_+^{\downarrow}(0, \infty)$ is given, by Proposition 2.4 we find $f_n \in \mathscr{M}(\mathbb{R})$ such that $\frac{f_n^{**}(\frac{1}{t}) - f_n^*(\frac{1}{t})}{t} \uparrow \varphi(t)$ for a.e. $t \in (0, \infty)$. Since (16) holds for every f_n in place of f, by the monotone convergence theorem we get (17) for the given φ . Hence, (16) implies (17).

Inequality (17) defines the embedding

$$\Lambda^p(\widetilde{v}) \hookrightarrow \Gamma^q_u(\widetilde{w}) \tag{18}$$

with

$$\widetilde{v}(x) := v\left(\frac{1}{x}\right)x^{p-2}, \quad \widetilde{w}(x) := w\left(\frac{1}{x}\right)x^{q-2}, \quad u(x) := \frac{g^{**}\left(\frac{1}{x}\right) - g^{*}\left(\frac{1}{x}\right)}{x}.$$

By [8, Theorem 3.1(iii)] or a modified version of [6, Theorem 4.1(i)], (18) (as well as (17)) holds if and only if $A_{(10)} + A_{(11)} < \infty$ and the optimal $C_{(6)}$ satisfies $C_{(6)} \simeq A_{(10)} + A_{(11)}$, which is the result.

378 M. Křepela

In cases (ii)–(iv) we proceed in the same way, the only difference being the conditions characterizing (18) for different settings of p and q. These characterizations of (18) may be found in [8, Theorem 3.1] or, alternatively, in [6, Theorem 4.1] for (ii) and (iii) and [5, Theorem 3.1] for (iv). Note that in [5,6] the results are given just for u = 1.

Remark 3.4. For $1 \le p < \infty$, Theorem 3.3 can be alternatively obtained using the reduction theorem [9, Theorem 2.2] and Hardy inequalities for nonnegative functions (see e.g. [12, 15]).

In the case $q = \infty$, i.e. for (7), we get

Theorem 3.5. Let $p \in (0, \infty)$. Let v, w be weights, $v \in \mathscr{V}_p$. Let $g \in L^1$. Then (i) If 0 , then (7) holds if and only if

$$A_{(19)} := \operatorname{ess\,sup}_{x>0} w(x) \sup_{t>x} g^{**}(t) \left(\int_t^\infty \frac{v(s)}{s^p} \,\mathrm{d}s \right)^{-\frac{1}{p}} < \infty.$$
(19)

Moreover, the optimal constant $C_{(7)}$ satisfies $C_{(7)} \simeq A_{(19)}$. (ii) If 1 , then (7) holds if and only if

$$A_{(20)} := \operatorname{ess\,sup}_{x>0} w(x) \left[\left(\int_{x}^{\infty} (g^{**}(t))^{p'} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} + g^{**}(x) \left(\int_{x}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-\frac{1}{p}} \right]$$

$$< \infty.$$
(20)

Moreover, the optimal constant $C_{(7)}$ satisfies $C_{(7)} \simeq A_{(20)}$.

Proof. Following the same reasoning as in the proof of Theorem 3.3, the inequality (7) is equivalent to

$$\operatorname{ess\,sup}_{x>0} \int_0^x \varphi(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^*\left(\frac{1}{t}\right)}{t} \, \mathrm{d}t \, w\left(\frac{1}{x}\right) \\ \leq C_{(7)} \left(\int_0^\infty \varphi^p(x) v\left(\frac{1}{x}\right) x^{p-2} \, \mathrm{d}x\right)^{\frac{1}{p}}, \quad \varphi \in \mathscr{M}_+^{\downarrow}(0,\infty)$$

Denote $v_p(x) := v\left(\frac{1}{x}\right) x^{p-2}$. The optimal $C_{(7)}$ satisfies

$$C_{(7)} = \sup_{\|f\|_{\Lambda^{p}(v_{p})} \le 1} \operatorname{ess\,sup}_{x>0} w\left(\frac{1}{x}\right) \int_{0}^{x} f^{*}(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} \,\mathrm{d}t$$

$$= \operatorname{ess\,sup}_{x>0} w\left(\frac{1}{x}\right) \sup_{\|f\|_{\Lambda^{p}(v_{p})} \le 1} \int_{0}^{x} f^{*}(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} \,\mathrm{d}t.$$
 (21)

In the following calculations, we are going to use the condition (2) without further comment.

(i) If 0 , [6, Theorem 3.1(i)] gives

$$\sup_{\|f\|_{\Lambda^{p}(v_{p})} \leq 1} \int_{0}^{x} f^{*}(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} \, \mathrm{d}t \simeq \sup_{t \in (0,x)} \int_{0}^{t} \frac{g^{**}\left(\frac{1}{s}\right) - g^{*}\left(\frac{1}{s}\right)}{s} \, \mathrm{d}s \left(\int_{0}^{t} v_{p}(s) \, \mathrm{d}s\right)^{-\frac{1}{p}}.$$

Hence, we get

$$C_{(7)} \simeq \operatorname{ess\,sup}_{x>0} w\left(\frac{1}{x}\right) \sup_{t\in(0,x)} \int_0^t \frac{g^{**}\left(\frac{1}{s}\right) - g^*\left(\frac{1}{s}\right)}{s} \operatorname{d} s \left(\int_0^t v_p(s) \operatorname{d} s\right)^{-\frac{1}{p}}$$
$$= \operatorname{ess\,sup}_{x>0} w\left(\frac{1}{x}\right) \sup_{t\in\left(\frac{1}{x},\infty\right)} g^{**}(t) \left(\int_t^\infty \frac{v(s)}{s^p} \operatorname{d} s\right)^{-\frac{1}{p}}$$
$$= A_{(19)}.$$

(ii) If 1 , by [6, Theorem 3.1(ii)] we have

$$\begin{split} \sup_{\|\|f\|_{\Lambda^{p}(v_{p})} \leq 1} & \int_{0}^{x} f^{*}(t) \frac{g^{**}\left(\frac{1}{t}\right) - g^{*}\left(\frac{1}{t}\right)}{t} \, \mathrm{d}t \\ \simeq & \left(\int_{0}^{x} \left(\int_{0}^{t} \frac{g^{**}\left(\frac{1}{s}\right) - g^{*}\left(\frac{1}{s}\right)}{s} \, \mathrm{d}s \right)^{p'} \left(\int_{0}^{t} v_{p}(s) \, \mathrm{d}s \right)^{-p'} v_{p}(t) \, \mathrm{d}t \right)^{\frac{1}{p'}} \\ & + \int_{0}^{x} \frac{g^{**}\left(\frac{1}{s}\right) - g^{*}\left(\frac{1}{s}\right)}{s} \, \mathrm{d}s \left(\int_{x}^{\infty} \left(\int_{0}^{t} v_{p}(s) \, \mathrm{d}s \right)^{-p'} v_{p}(t) \, \mathrm{d}t \right)^{\frac{1}{p'}} \\ & = \left(\int_{\frac{1}{x}}^{\infty} (g^{**}(t))^{p'} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} \\ & + g^{**} \left(\frac{1}{x} \right) \left(\int_{0}^{\frac{1}{x}} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} \\ & = \left(\int_{\frac{1}{x}}^{\infty} (g^{**}(t))^{p'} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} \\ & = \left(\int_{\frac{1}{x}}^{\infty} (g^{**}(t))^{p'} \left(\int_{t}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-p'} \frac{v(t)}{t^{p}} \, \mathrm{d}t \right)^{\frac{1}{p'}} + g^{**} \left(\frac{1}{x} \right) \left(\int_{\frac{1}{x}}^{\infty} \frac{v(s)}{s^{p}} \, \mathrm{d}s \right)^{-\frac{1}{p}} . \end{split}$$

Hence, (21) implies $C_{(7)} \simeq A_{(20)}$ for the optimal $C_{(7)}$.

For the last case, $p = \infty$, which covers the inequalities (8) and (9), we have the following theorem.

Theorem 3.6. Let v, w be weights, $v \in \mathscr{V}_{\infty}$. Let $g \in L^1$. Then

(i) For $0 < q < \infty$, the inequality (8) holds and only if

$$A_{(22)} := \left(\int_0^\infty \left(\int_x^\infty \frac{g^{**}(t) - g^*(t)}{t \, \operatorname{ess\,sup}_{s \in (t,\infty)} v(s) s^{-1}} \, \mathrm{d}t \right)^q w(x) \, \mathrm{d}x \right)^{\frac{1}{q}} < \infty.$$
(22)

Moreover, the optimal constant $C_{(8)}$ satisfies $C_{(8)} \simeq A_{(22)}$.

(ii) The inequality (9) holds if and only if

$$A_{(23)} := \underset{x>0}{\mathrm{ess\,sup}} \, \int_{x}^{\infty} \frac{g^{**}(t) - g^{*}(t)}{t \, \operatorname{ess\,sup}_{s \in (t,\infty)} v(s) s^{-1}} \, \mathrm{d}t \, w(x) < \infty.$$
(23)

Moreover, the optimal constant $C_{(9)}$ satisfies $C_{(9)} \simeq A_{(23)}$.

Proof. Here we use the same technique as in Theorems 3.3 and 3.5. During the process we apply e.g. the result of [17, Proposition 2.7]. We omit the details. \Box

Remark 3.7. In each of the particular settings of the exponents p, q in Theorem 3.3(i)–(iv), the functionals $A_{(10)}, \ldots, A_{(15)}$ are r.i. norms of g, with the following exceptions: In (iii) and (iv), if 0 < q < 1, then $A_{(13)}$ is in general just an r.i. quasi-norm, the same applies to $A_{(15)}$ in (iv) if r < 1. Similarly, the functionals $A_{(19)}$ and $A_{(20)}$ in Theorem 3.5 are r.i. norms of g. For a detailed proof of this, see e.g. [11, Proposition 5.6].

In Theorem 3.6, the functional $A_{(23)}$ acting on $g \in L^1$ is an r.i. norm of g. The functional $A_{(22)}$ is, in general, an r.i. quasi-norm, for $q \ge 1$ an r.i. norm. Let us prove the claim about $A_{(22)}$. At first, since $t \mapsto (\text{ess sup}_{s \in (t,\infty)} v(s)s^{-1})^{-1}$ is nondecreasing, its derivative, which we denote by

$$\delta(t) := \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\mathrm{ess\,sup}_{s \in (t,\infty)} v(s)s^{-1}},$$

exists and is nonnegative for a.e. $t \in (0, \infty)$. Let $x \in (0, \infty)$. Suppose that

$$\int_{x}^{\infty} \frac{g^{**}(t) - g^{*}(t)}{t \operatorname{ess\,sup}_{s \in (t,\infty)} v(s) s^{-1}} \, \mathrm{d}t < \infty.$$

Then, by monotonicity of $(\operatorname{ess\,sup}_{s\in(t,\infty)}v(s)s^{-1})^{-1}$, we have

$$\begin{split} \frac{g^{**}(t)}{\operatorname{ess\,sup}_{s\in(t,\infty)}v(s)s^{-1}} &= \frac{1}{\operatorname{ess\,sup}_{s\in(t,\infty)}v(s)s^{-1}} \int_{t}^{\infty} \frac{g^{**}(y) - g^{*}(y)}{y} \,\mathrm{d}y\\ &\leq \int_{t}^{\infty} \frac{g^{**}(y) - g^{*}(y)}{y \,\operatorname{ess\,sup}_{s\in(y,\infty)}v(s)s^{-1}} \,\mathrm{d}y \ \stackrel{t\to\infty}{\longrightarrow} 0. \end{split}$$

Hence, by partial integration and the previous, we get

$$\begin{split} \int_{x}^{\infty} g^{**}(t)\delta(t) \, \mathrm{d}t &= \left[\frac{g^{**}(t)}{\operatorname{ess\,sup}_{s\in(t,\infty)} v(s)s^{-1}} \right]_{t=x}^{\infty} + \int_{x}^{\infty} \frac{g^{**}(t) - g^{*}(t)}{t \,\operatorname{ess\,sup}_{s\in(t,\infty)} v(s)s^{-1}} \, \mathrm{d}t \\ &= \int_{x}^{\infty} \frac{g^{**}(t) - g^{*}(t)}{t \,\operatorname{ess\,sup}_{s\in(t,\infty)} v(s)s^{-1}} \, \mathrm{d}t - \frac{g^{**}(x)}{\operatorname{ess\,sup}_{s\in(x,\infty)} v(s)s^{-1}} \\ &< \infty. \end{split}$$

Now assume, on the other hand, that $\int_x^{\infty} g^{**}(t)\delta(t) dt < \infty$. Then,

$$\int_{x}^{\infty} \frac{g^{**}(t) - g^{*}(t)}{t \operatorname{ess\,sup}_{s \in (t,\infty)} v(s)s^{-1}} \, \mathrm{d}t = \frac{g^{**}(x)}{\operatorname{ess\,sup}_{s \in (x,\infty)} v(s)s^{-1}} + \int_{x}^{\infty} g^{**}(t)\delta(t) \, \mathrm{d}t < \infty.$$

Thus, we see that $A_{(22)}$ is equal to

$$\left(\int_0^\infty \left(\frac{g^{**}(x)}{\operatorname{ess\,sup}_{s\in(x,\infty)}v(s)s^{-1}} + \int_x^\infty g^{**}(t)\delta(t)\,\mathrm{d}t\right)^q w(x)\,\mathrm{d}x\right)^{\frac{1}{q}}.$$

This expression is an r.i. quasi-norm of g, for $q \ge 1$ it is an r.i. norm. To check this, we refer again to [11].

In the same way as above, we may show that $A_{(23)}$ is an r.i. norm.

4. Young-type convolution inequalities with the class S on the right-hand side

In the previous part we obtained the conditions for boundedness of T_g . Let us now summarize these results and apply them to get the desired convolution inequalities. Note that, in what follows, if we define $\|\cdot\|_Y$ first, then the space Y is naturally defined as $Y := \{f \in \mathscr{M}(\mathbb{R}); \|f\|_Y < \infty\}$.

Theorem 4.1. Let $p, q \in (0, \infty]$. Let v, w be weights, $v \in \mathscr{V}_p$. For $g \in L^1$ define $||g||_Y$ by what follows:

$$\|g\|_{Y} := \begin{cases} A_{(10)} + A_{(11)} & \text{if} \quad 1$$

Then

382 M. Křepela

(i) If $g \in Y$, then $T_g : S^p(v) \to \Gamma^q(w)$ and

$$T_g \|_{S^p(v) \to \Gamma^q(w)} \lesssim \|g\|_Y.$$

(ii) If $g \in PSD$ and $T_g: S^p(v) \to \Gamma^q(w)$, then $g \in Y$ and

$$\|g\|_Y \lesssim \|T_g\|_{S^p(v) \to \Gamma^q(w)}.$$

(iii) The inequality

$$||f * g||_{\Gamma^q(w)} \lesssim ||f||_{S^p(v)} ||g||_Y, \quad f \in S^p(v), \ g \in L^1 \cap Y,$$
 (24)

is satisfied. Moreover, if \widetilde{Y} is any r.i. lattice such that (24) holds with \widetilde{Y} in place of Y, then $L^1 \cap \widetilde{Y} \hookrightarrow L^1 \cap Y$.

Proof. Let us prove the assertions for the case $1 . In the other cases, the only difference is that we work with another appropriate functional <math>A_{(...)}$.

(i) Let $g \in Y$, thus $A_{(10)} + A_{(11)} < \infty$. Then, by Theorem 3.3(i), the inequality (6) holds. Thus, from Lemma 3.1(i) it follows that $T_g : S^p(v) \to \Gamma^q(w)$ and $\|T_g\|_{S^p(v)\to\Gamma^q(w)} \lesssim C_{(6)} \simeq \|g\|_Y$.

(ii) Assume that $g \in PSD$ and $T_g : S^p(v) \to \Gamma^q(w)$. By Lemma 3.2(i), inequality (6) holds and the optimal $C_{(6)}$ satisfies $C_{(6)} \lesssim ||T_g||_{S^p(v)\to\Gamma^q(w)}$. Theorem 3.1(i) now yields that $A_{(10)} + A_{(11)} < \infty$, i.e. $g \in Y$. Moreover, we also get $||g||_Y \simeq C_{(6)} \lesssim ||T_g||_{S^p(v)\to\Gamma^q(w)}$.

(iii) The inequality (24) follows from (i) and the relation $||T_g f||_{\Gamma^q(w)} \leq ||T_g||_{S^p(v)\to\Gamma^q(w)} ||f||_{S^p(v)}$. Let us prove the optimality of Y. Assume that \widetilde{Y} is an r.i. lattice such that

$$\|f * g\|_{\Gamma^{q}(w)} \lesssim \|f\|_{S^{p}(v)} \|g\|_{\widetilde{Y}}, \quad f \in S^{p}(v), \ g \in L^{1} \cap \widetilde{Y}.$$
 (25)

Let $h \in L^1 \cap \widetilde{Y}$. We can find a function $g \in L^1 \cap \widetilde{Y} \cap PSD$ such that $g^* = h^*$. The inequality (25) yields that $||T_g||_{S^p(v) \to \Gamma^q(w)} \lesssim ||g||_{\widetilde{Y}}$. Thus, $T_g : S^p(v) \to \Gamma^q(w)$ and by (ii) it holds $||g||_Y \lesssim ||T_g||_{S^p(v) \to \Gamma^q(w)}$. Together we get

 $\|g\|_Y \lesssim \|T_g\|_{S^p(v) \to \Gamma^q(w)} \lesssim \|g\|_{\widetilde{Y}}.$

The functionals $\|\cdot\|_{Y}$ and $\|\cdot\|_{\widetilde{Y}}$ are r.i., thus we obtain

$$\|h\|_{Y} \lesssim \|h\|_{\widetilde{Y}}$$

Since h was chosen arbitrarily, we got the desired embedding $L^1 \cap \widetilde{Y} \hookrightarrow L^1 \cap Y$. \Box

Remark 4.2. For given weights v, w and exponents p, q, the optimal space Y may equal $\{0\}$. (Let us formally consider $\{0\}$ to be an r.i. space.) In that case, the operator T_g with a nonnegative kernel g is bounded between $S^p(v)$ and $\Gamma^q(w)$ if and only if g = 0 a.e. (cf. [11, Corollary 3.3]).

References

- [1] Bennett, C., DeVore, R. and Sharpley, R., Weak- L^{∞} and BMO. Ann. of Math. 113 (1981), 601 611.
- [2] Bennett, C. and Sharpley, R., Interpolation of Operators. Pure Appl. Math. 129. Boston: Academic Press 1988.
- [3] Blozinski, A. P., Convolution of L(p,q) functions. Proc. Amer. Math. Soc. 32 (1972), 237 240.
- [4] Carro, M., Gogatishvili, A., Martín, J. and Pick, L., Functional properties of rearrangement invariant spaces defined in terms of oscillations. J. Funct. Anal. 229 (2005), 375 – 404.
- [5] Carro, M., Gogatishvili, A., Martín, J. and Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces. J. Oper. Theory 59 (2008), 309 – 332.
- [6] Carro, M., Pick, L., Soria, J. and Stepanov, V. D., On embeddings between classical Lorentz spaces. *Math. Inequal. Appl.* 4 (2001), 397 – 428.
- [7] Cwikel, M., Kamińska, A., Maligranda, L. and Pick, L., Are generalized Lorentz "spaces" really spaces? Proc. Amer. Math. Soc. 132 (2004), 3615 – 3625.
- [8] Gogatishvili, A., Johansson, M., Okpoti, C. A. and Persson, L.-E., Characterisation of embeddings in Lorentz spaces. *Bull. Austr. Math. Soc.* 76 (2007), 69 – 92.
- [9] Gogatishvili, A. and Stepanov, V. D., Reduction theorems for operators on the cones of monotone functions. J. Math. Anal. Appl. 405 (2013), 156 – 172.
- [10] Hunt, R. A., On L(p,q) spaces. Enseign. Math. 12 (1966), 249 276.
- [11] Křepela, M., Convolution inequalities in weighted Lorentz spaces. *Math. Inequal. Appl.* (to appear).
- [12] Kufner, A. and Persson, L.-E., Weighted Inequalities of Hardy Type. River Edge (NJ): World Scientific 2003.
- [13] Nursultanov, E. and Tikhonov, S., Convolution inequalities in Lorentz spaces. J. Fourier Anal. Appl. 17 (2011), 486 – 505.
- [14] O'Neil, R., Convolution operators and L(p,q) spaces. Duke Math. J. 30 (1963), 129 142.
- [15] Opic, B. and Kufner, A., Hardy-Type Inequalities. Pitman Res. Notes Math. Ser. 219. Harlow: Longman Scientific & Technical 1990.
- [16] Sinnamon, G., Transferring monotonicity in weighted norm inequalities. Collect. Math. 54 (2003), 181 – 216.
- [17] Soria, J., Lorentz spaces of weak-type. Quart. J. Math. Oxford 49 (1998), 93 - 103.
- [18] Yap, L. Y. H., Some remarks on convolution operators and L(p,q) spaces. Duke Math. J. 36 (1969), 647 658.

Received October 1, 2013