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Abstract. We discuss G-convergence of linear integro-differential-algebraic equations
in Hilbert spaces. We show under which assumptions it is generic for the limit equa-
tion to exhibit memory effects. Moreover, we investigate which classes of equations
are closed under the process of G-convergence. The results have applications to the
theory of homogenization. As an example we treat Maxwell’s equation with the
Drude-Born-Fedorov constitutive relation.
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1. Introduction

We discuss some issues occuring in the homogenization of linear integro-differen-
tial equations in Hilbert spaces. Similar to [20,21,24,25] we understand homog-
enization theory as the study of limits of sequences of equations in the sense of
G-convergence introduced in [22, 23] with generalizations in [15]. Whereas in
[20, 21] (non-linear) ordinary differential equations in finite-dimensional space
are considered, we choose the perspective given in [1, 9, 10, 14, 16, 24, 25]. The
abstract setting is the following.

Definition 1.1 (G-convergence, [32, p. 74], [22, 23, 29]). Let H be a Hilbert
space. Let (An : D(An) j H → H)n be a sequence of continuously invertible
linear operators onto H and let B : D(B) j H → H be linear and one-to-one.
We say that (An)n G-converges to B if (A−1n )n converges in the weak operator
topology to B−1, i.e., for all f ∈ H the sequence (A−1n (f))n converges weakly
to some u, which satisfies u ∈ D(B) and B(u) = f . B is called the G-limit of
(An)n – which is uniquely determined (cf. [29, Proposition 4.1]) – and we write

An
G−→ B.
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Our starting point will be equations of the form

∂0Mu+Nu = f,

where M,N are suitable operators in space-time and ∂0 is the time-derivative
established in a Hilbert space setting to be specified below (see also [11, 18]).
In the usual framework of homogenization theory, one assumes M and N to
be multiplication operators in space-time, i.e., there are mappings a and b such
that M = a(·) and N = b(·). Assuming well-posedness of the above equation,
i.e., existence, uniqueness and continuous dependence on the right-hand side f
in a suitable (Hilbert space) framework, one is interested in the sequence of
equations

∂0Mnun +Nnun = f (1)

with Mn = a(n·) and correspondingly for Nn yielding a sequence of solutions
(un)n. The question arises, whether the sequence (un)n converges and if so
whether the respective limit u satisfies an equation of similar form. A formal
computation in (1) reveals that

un = (∂0Mn +Nn)−1 f.

Thus, if we show the convergence of (∂0Mn +Nn)−1 in the weak operator topol-
ogy to some one-to-one mapping C =: B−1, we deduce the weak convergence of
(un)n the limit of which denoted by u satisfies

Bu = f.

In other words, (∂0Mn +Nn) G-converges to B.
In this article we think of (Mn)n and (Nn)n to be bounded sequences of

bounded linear operators in space-time. We want to discuss assumptions on
these sequences guaranteeing a compactness result with respect to G-conver-
gence. Moreover, we outline possible assumptions yielding the closedness under
G-convergence and give examples for equations, where the associated sequences
of differential operators itself are G-convergent. We exemplify our findings with
examples from the literature [9, 10, 14, 24, 25], highlight possible connections
and give an example for a Drude-Born-Fedorov model in electro-magentism
(see [7] and Example 3.12 below), where homogenization theorems are – to the
best of the author’s knowledge – not yet available in the literature. We will
also underscore the reason of the limit equation to exhibit memory effects. An
heuristic explanation is the lack of continuity of computing the inverse with
respect to the weak operator topology.

In Section 2 we introduce the functional analytic setting used for discussing
integro-differential-algebraic equations and state our main theorems. We suc-
cessively apply the results from Section 2 to time-independent coefficients (Sec-
tion 3), time-translation invariant coefficients (Section 4) and time-dependent
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coefficients (Section 5). In each of the Sections 3, 4 and 5 we give examples
and discuss whether particular classes of equations are closed under limits with
respect to G-convergence. In Section 6 we prove the main theorems of Section 2.

The respective proofs rely on elementary Hilbert space theory. In fact, the
method of proof for the main underlying Theorems 2.5 and 2.7 is based on
the observation that the time-derivative can be established as a continuously
invertible operator with arbitrarily small norm bound for the inverse depending
on the function spaces under consideration and appropriate Neumann series ex-
pansions. Due to the examples given, the present work may also underline the
versatility of this simple idea. This particular idea has been used by the author
on several occassions (see e.g. [27]). Note that, however, the situation in which
this method is applied is more general than in [27], where only autonomous
equations are treated, which are not of differential-algebraic type. In conse-
quence, the limit expressions in the general setting are getting more involved as
the (inverse of) the time-derivative does not commute anymore with the other
operators under consideration. Hence, techniqual tools employed in [27] like the
usage of the Fourier-Laplace transformation cannot be used in the derivation
of the general result. Furthermore, we note here that the results in this article
complement the work in [28, 30] as the results in the latter articles are of a
partial differential type of nature. That is to say that in the equations under
consideration in [28,30] despite the occurence of the time-derivative there is an-
other unbounded operator, which has to be strictly unbounded in the sense that
its resolvent needs to be compact. Thus the limit expressions are, though their
derivation is more involved, conceptually easier to read. The present article
focusses on the ordinary differential equation case with an infinite-dimensional
state space. The results of the article show that in this situation the limit equa-
tion to exhibit memory effects is more likely than in the pde-case just sketched,
see e.g. [28]. The consideration of differential-algebraic systems (Theorem 2.7)
is – to the best of the author’s knoweldge – new. Even in the time-translation
invariant context the assumptions on the operators under consideration could
be weakend in comparison to [29, Theorem 4.4]. As the main results of this
article also cover the non-autonomous case, it is also of interest under which
assumptions, there is no need to choose subsequences. This has been done in
Section 5.

2. Setting and main theorems

The key fact giving way for computations is the possibility of establishing the
time-derivative as a continuously invertible normal operator in an exponentially
weighted Hilbert space. For ν > 0 we define the operator

∂0 : Hν,1(R) j L2
ν(R)→ L2

ν(R), f 7→ f ′,
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where L2
ν(R) := L2(R, exp(−2ν·)λ) is the space of square-integrable functions

with respect to the weighted Lebesgue measure exp(−2ν·)λ and Hν,1(R) is the
space of L2

ν(R)-functions with distributional derivative in L2
ν(R). We denote

the scalar-product on L2
ν(R) by 〈·, ·〉ν and the induced norm by |·|ν . Of course

the operator ∂0 depends on the scalar ν. However, since it will be obvious
from the context, which value of ν is chosen, we will omit the explicit reference
to it in the notation of ∂0. It can be shown that ∂0 is continuously invertible
([18, Example 2.3] or [11, Corollary 2.5]). The norm bound of the inverse is 1

ν
. Of

course the latter construction can be extended to the Hilbert-space-valued case
of L2

ν(R;H)-functions1. We will use the same notation for the time-derivative.
In order to formulate our main theorems related to the theory of homogenization
of ordinary differential equations, we need to introduce the following notion.

Definition 2.1. Let H0, H1 be Hilbert spaces, ν0 > 0. We call a linear mapping

M : D(M) j
⋂
ν>0

L2
ν(R;H0)→

⋂
ν=ν0

L2
ν(R;H1) (2)

evolutionary (at ν1 > 0)2 if D(M) is dense in L2
ν(R;H) for all ν = ν1, if M

extends to a bounded linear operator from L2
ν(R;H0) to L2

ν(R;H1) for all ν = ν1
and is such that3

lim sup
ν→∞

‖M‖L(L2
ν(R;H0),L2

ν(R;H1))
<∞.

The continuous extension of M to some L2
ν will also be denoted by M . In

particular, we will not distinguish notationally between the different realizations
of M as a bounded linear operator for different ν as these realizations coincide
on a dense subset. We define the set

Lev,ν1(H0, H1) := {M ;M is as in (2) and is evolutionary at ν1}.

We abbreviate Lev,ν1(H0) := Lev,ν1(H0, H0). A subset M j Lev,ν1(H0, H1)
is called bounded if lim supν→∞ supM∈M ‖M‖L(L2

ν)
< ∞. A family (Mι)ι∈I in

Lev,ν1(H0, H1) is called bounded if {Mι; ι ∈ I} is bounded.

Note that Lev,ν1(H0, H1) j Lev,ν2(H0, H1) for all ν1 5 ν2. We give some
examples of evolutionary mappings.

1We will also use the notation 〈·, ·〉ν and |·|ν for the scalar product and norm in L2
ν(R;H),

respectively.
2The notion “evolutionary” is inspired by the considerations in [18, Definition 3.1.14, p. 91],

where polynomial expressions in partial differential operators are considered.
3For a linear operator A from L2

ν(R;H0) to L2
ν(R;H1) we denote its operator norm by

‖A‖L(L2
ν(R;H0),L2

ν(R;H1))
. If the spaces H0 and H1 are clear from the context, we shortly write

‖A‖L(L2
ν)

.
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Example 2.2. Let H be a Hilbert space and M0 ∈ L(H). Then there is
a canonical extension M of M0 to L2

ν(R;H)-functions such that (Mφ) (t) :=
(M0φ(t)) for all φ ∈ L2

ν(R;H) and a.e. t ∈ R. In that way M ∈
⋂
ν>0 Lev,ν(H).

Henceforth, we shall not distinguish notationally between M and M0.

Example 2.3. Let H be a Hilbert space and let L∞s (R;L(H)) be the space of
bounded strongly measurable functions from R to L(H). For A ∈ L∞s (R;L(H))
we denote the associated multiplication operator on L2

ν(R;H) by A(m0). Thus,
also in this case, A(m0) ∈

⋂
ν>0 Lev,ν(H).

Example 2.4. For ν0 > 0 let

g ∈ L1
ν0

(R>0) :=

{
g ∈ L1

loc(R); g = 0 on R<0,

∫
R
|g(t)|e−νtdt <∞

}
.

By Young’s inequality or by Example 4.3 below, we deduce that g∗ ∈ Lev,ν0(C),
where g ∗ f denotes the convolution of some function f with g.

To formulate our main theorems, we denote the weak operator topology
by τw. Convergence within this topology is denoted by

τw→. Limits within this
topology are written as τw- lim. We will extensively use the fact that for a
separable Hilbert space H bounded subsets of L(H), which are τw-closed, are
τw-sequentially compact. Our main theorems concerning the G-convergence of
differential equations read as follows.

Theorem 2.5. Let H be a separable Hilbert space, ν0 > 0. Let (Mn)n, (Nn)n
be bounded sequences in Lev,ν0(H). Assume there exists c > 0 such that for all
n ∈ N and ν = ν0

Re〈Mnφ, φ〉ν = c〈φ, φ〉ν (φ ∈ L2
ν(R;H)).

Then there exists ν = ν0 and a subsequence (nk)k of (n)n such that

∂0Mnk +Nnk
G−→ ∂0Mhom,0 + ∂0

∞∑
j=1

(
−
∞∑
`=1

Mhom,0Mhom,`

)j

Mhom,0,

as k →∞ in L2
ν(R;H), where

Mhom,0 =
(
τw- lim

k→∞
M−1

nk

)−1
and

Mhom,` = τw- lim
k→∞
M−1

nk

(
−∂−10 NnkM−1

nk

)`
.
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Remark 2.6. (a) We note here that Mhom,0 is indeed well-defined. Indeed,

from ReMn=c, we read off thatM−1
n exists and satisfies ReM−1

n = c
‖Mn‖2

(see also Lemma 6.1 below). Now, for a suitable subsequence, the limit
O := τw- limk→∞M−1

nk
satisfies ReO = c

supn ‖Mn‖2 . Hence, O−1 =Mhom,0

is well-defined.

(b) It should be noted that the positive-definiteness condition in Theorem 2.7
is a well-posedness condition, i.e., a condition for ∂0Mnk + Nnk to be
continuously invertible for all ν sufficiently large. Indeed, for f ∈ L2

ν(R;H)
and u ∈ L2

ν(R;H) with

(∂0Mn +Nn)u = f

we multiply by ∂−10 and get
(
Mn + ∂−10 Nn

)
u = ∂−10 f. The positive def-

initeness condition yields, see also Lemma 6.1, the invertibility of Mn.
Hence, we arrive at (

1 +M−1
n ∂−10 Nn

)
u =M−1

n ∂−10 f.

Choosing ν > 0 sufficiently large, we deduce that the operator(
1 +M−1

n ∂−10 Nn
)

is continuously invertible with a Neumann series ex-
pression.

(c) If N = 0 in Theorem 2.5, then we deduce that equations of the form
∂0Mu = f are closed under the process of G-convergence. If N 6= 0, then
the above theorem suggests that this is not true for equations of the form
(∂0M+N )u = f . However, if we consider ∂0M+N as ∂0

(
M+ ∂−10 N

)
,

the equations under consideration in Theorem 2.5 are closed under G-
limits. Indeed, the limit may be represented by

∂0

Mhom,0 +
∞∑
k=1

(
−
∞∑
`=1

Mhom,0Mhom,`

)k

Mhom,0

 .

In the forthcoming sections we will further elaborate the aspect of closed-
ness under G-limits.

In system or control theory one is interested in differential-algebraic sys-
tems, see e.g. [8]. We, thus, formulate the analogous statement for (integro-
differential-)algebraic systems.

Theorem 2.7. Let H0, H1 be separable Hilbert spaces, ν0 > 0. Further, let
(Mn)n , (N ij

n )n be bounded sequences in Lev,ν0(H0) and Lev,ν0(Hj, Hi), respec-
tively (i, j ∈ {0, 1}). Assume there exists c > 0 such that for all n ∈ N and
ν = ν0 we have for all (φ, ψ) ∈ L2

ν(R;H0 ⊕H1)

Re〈Mnφ, φ〉ν = c |φ|2ν , Re〈N 11
n ψ, ψ〉ν = c |ψ|2ν .
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Then there exists ν = ν0 and a subsequence (nk)k of (n)n such that

∂0

(
Mnk 0

0 0

)
+

(
N 00
nk
N 01
nk

N 10
nk
N 11
nk

)
G−→
(
∂0 0
0 1

)((
Mhom,0,00 0

0 Nhom,−1,11

)

+
∞∑
`=1

(
−
(
Mhom,0,00 0

0 Nhom,−1,11

)
M(1)

)(̀
Mhom,0,00 0

0 Nhom,−1,11

))
,

where we put

Nn := N 00
n −N 01

n

(
N 11
n

)−1N 10
n (n ∈ N)

as well as

M(1) :=

( ∑∞
`=1Mhom,`,00

∑∞
`=0Mhom,`,01∑∞

`=0Mhom,`,10

∑∞
`=0Mhom,`,11

)
and

Mhom,0,00 =
(
τw- lim

k→∞
M−1

nk

)−1
,

Mhom,`,00 = τw- lim
k→∞
M−1

nk

(
−∂−10 NnkM−1

nk

)`
, (` = 1)

Mhom,`,01 = τw- lim
k→∞
−M−1

nk

(
−∂−10 NnkM−1

nk

)`
∂−10 N 01

nk

(
N 11
nk

)−1
,

Mhom,`,10 = τw- lim
k→∞
−
(
N 11
nk

)−1N 10
nk
M−1

nk

(
−∂−10 NnkM−1

nk

)`
,

Mhom,`,11 = τw- lim
k→∞

(
N 11
nk

)−1N 10
nk
M−1

nk

(
−∂−10 NnkM−1

nk

)`
∂−10 N 01

nk

(
N 11
nk

)−1
,

Nhom,−1,11 =
(
τw- lim

k→∞

(
N 11
nk

)−1)−1
.

Remark 2.8. (a) As in Theorem 2.5 the positive definiteness conditions in
Theorem 2.7 serve as well-posed conditions for the respective (integro-
differential-algebraic) equations. We will compute the respective inverse
in the proof of Theorem 2.7.

(b) Note that, by the definition of G-convergence, both the Theorems 2.5
and 2.7 implicitly assert that the limit equations are well-posed, i.e., that
the limit operator is continuously invertible. In fact it will be the strategy
of the respective proofs to compute the limit of the respective solution op-
erators, which will be continuous linear operators and afterwards inverting
the limit.
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(c) Assume that in Theorem 2.7 the expressions Mhom,`,00, Mhom,`,01,
Mhom,`,10, Mhom,`,11, Nhom,−1,11 can be computed without choosing sub-
sequences. Then the sequence(

∂0

(
Mn 0

0 0

)
+

(
N 00
n N 01

n

N 10
n N 11

n

))
n

is G-convergent. Indeed, the latter follows with a subsequence argument.

(d) Assuming H1 = {0} and, as a consequence, N ij = 0 for all i, j ∈ {0, 1} ex-
cept i = j = 0, we see that Theorem 2.7 is more general than Theorem 2.5.
The generalization in Theorem 2.7 is also needed in the theory of homog-
enization of partial differential equations, see e.g. [29, Theorem 4.4] for a
more restrictive case. We give an example in the forthcoming sections.

For convenience, we include easy examples that show that the assumptions
in the above theorems are reasonable.

Example 2.9 (Uniform positive definiteness condition does not hold, [29]). Let
H = C, ν > 0 and, for n ∈ N, let Mn = ∂−10

1
n
, f ∈ L2

ν(R) \ {0}. For n ∈ N, let
un ∈ L2

ν(R) be defined by

∂0Mnun =
1

n
un = f.

Then (un)n is not relatively weakly compact and contains no weakly convergent
subsequence.

Example 2.10 (Boundedness assumption does not hold). Let H = C, ν > 0
and, for n ∈ N, let Mn = ∂−10 n, f ∈ L2

ν(R). For n ∈ N, let un ∈ L2
ν(R) be

defined by
∂0Mnun = nun = f.

Then (un)n converges to 0. Thus, a limit “equation” would be in fact the
relation {0} × L2

ν(R) j L2
ν(R)⊕ L2

ν(R).

We will now apply our main theorems to particular situations.

3. Time-independent coefficients

In this section, we treat time-independent coefficients. That is to say, we assume
that the operators in the sequences under consideration only act on the “spatial”
Hilbert spaces H0 and H1 in Theorem 2.7 or H in Theorem 2.5. More precisely
and similar to Example 2.2, for a bounded linear operator M ∈ L(H0, H1) there
is a (canonical) extension to L2

ν-functions in the way that (Mφ)(t) := M(φ(t))
for φ ∈ L2

ν(R;H0) and a.e. t ∈ R. Thus M is evolutionary (Example 2.2).
The main property exploited here is that the (canonical) extensions commute
with ∂−10 . We only state the specialization of this situation for Theorem 2.5.
The result reads as follows.
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Corollary 3.1. Let H be a separable Hilbert space, ν0 > 0. Let (Mn)n, (Nn)n be
bounded sequences in L(H). Assume there exists c > 0 such that for all n ∈ N

Re〈Mnφ, φ〉H = c〈φ, φ〉H (φ ∈ H).

Then there exists ν = ν0 and a subsequence (nk)k of (n)n such that

∂0Mnk +Nnk

G−→ ∂0Mhom,0 + ∂0

∞∑
j=1

(
−
∞∑
`=1

Mhom,0Mhom,`

(
−∂−10

)`)j

Mhom,0,

as k →∞ in L2
ν(R;H), where

Mhom,0 =
(
τw- lim

k→∞
M−1

nk

)−1
and Mhom,` = τw- lim

k→∞
M−1

nk

(
NnkM

−1
nk

)`
.

Proof. Recall that M∂−10 = ∂−10 M for all bounded linear operators M ∈ L(H).
Moreover, the estimate Re〈Mφ, φ〉H = c〈φ, φ〉H for φ ∈ H also carries over to
the analogous one for φ ∈ L2

ν(R;H) and the extended M . Hence, the result
follows from Theorem 2.5.

Remark 3.2. As it has already been observed in [14,25], the class of equations
treated in Corollary 3.1 is not closed under G-convergence in general. The next
example shows that this effect only occurs if the Hilbert space H is infinite-
dimensional and the convergence of (Mn)n and (Nn)n is “weak enough” in a
sense to be specified below.

Example 3.3. Assume for the moment that H is finite-dimensional. Then
(Mn)n and (Nn)n are a mere bounded sequences of matrices with constant coef-
ficients. In particular, the weak operator topology coincides with the topology
induced by the operator norm. Hence, the processes of computing the inverse
and computing the limit interchange and multiplication is a continuous process
as well. Thus, assuming (Mn)n and (Nn)n to be convergent with the respective
limits M and N , we compute

∂0Mhom,0 + ∂0

∞∑
j=1

(
−
∞∑
`=1

Mhom,0Mhom,`

(
−∂−10

)`)j

Mhom,0

= ∂0

(
τw- lim

k→∞
M−1

nk

)−1
+ ∂0

∞∑
j=1

(
−
∞∑
`=1

(
τw- lim

k→∞
M−1

nk

)−1 (
τw- lim

k→∞
M−1

nk

(
NnkM

−1
nk

)`) (−∂−10

)`)j

×
(
τw- lim

k→∞
M−1

nk

)−1
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= ∂0

(
lim
k→∞

M−1
nk

)−1
+ ∂0

∞∑
j=1

(
−
∞∑
`=1

(
lim
k→∞

M−1
nk

)−1 (
lim
k→∞

M−1
nk

(
NnkM

−1
nk

)`) (−∂−10

)`)j

×
(

lim
k→∞

M−1
nk

)−1
= ∂0M + ∂0

∞∑
j=1

(
−
∞∑
`=1

M
(
M−1 (NM−1)`) (−∂−10

)`)j

M

= ∂0M + ∂0

∞∑
j=1

(
−
∞∑
`=1

(
NM−1)` (−∂−10

)`)j

M

= ∂0

∞∑
j=0

(
−
∞∑
`=1

(
NM−1)` (−∂−10

)`)j

M

= ∂0

(
1 +

∞∑
`=1

(
NM−1)` (−∂−10

)`)−1
M = ∂0

(
∞∑
`=0

(
−NM−1∂−10

)`)−1
M

= ∂0

((
1 +NM−1∂−10

)−1)−1
M

= ∂0
(
M +N∂−10

)
= ∂0M +N.

Thus, in finite-dimensional spaces, the above theorem restates the continu-
ous dependence of the solution on the coefficients. Note that we only used that
multiplication and computing the inverse are continuous operations. Hence,
the above calculation literally expresses the fact of continuous dependence on
the coefficients if H is infinite-dimensional and the sequences (Mn)n and (Nn)n
converge in the strong operator topology. Thus, one can only expect that the
limit expression differs from the one, which one might expect, if the actual con-
vergence of the operators involved is strictly weaker than in the strong operator
topology.

We will turn to a more sophisticated example. For this we recall the concept
of periodicity in Rn, see e.g. [4].

Definition 3.4. Let a : Rn → Cm×m be bounded and measurable. a is called
]0, 1[n-periodic, if for all x ∈ Rn and k ∈ Zn we have a(x+ k) = a(x).

Moreover, recall the following well-known convergence result on periodic
mappings, cf. e.g. [4, Theorem 2.6].
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Theorem 3.5. Let a : Rn → Cm×m be bounded and measurable and ]0, 1[n-
periodic. Then (a(k·))k converges in L∞(Rn)m×m ∗-weakly to the integral mean∫
[0,1]n

a(y)dy.

Remark 3.6. For any bounded measurable function a : Rn → Cm×m one can
associate the corresponding multiplication operator in L2(Rn)m. Hence, The-
orem 3.5 states the fact that in case of periodic a the sequence of associated
multiplication operators of a(k·) converges in the weak operator topology to the
operator of multiplying with the respective integral mean. Indeed, this follows
easily from L2(Rn) ·L2(Rn) = L1(Rn). See also [5, Chapter IX, Theorem 8.10] .

Example 3.7. Let H = L2 (Rn)m and let a, b : Rn → Cm×m be bounded,
measurable and ]0, 1[n-periodic. We assume Re a(x) = c for all x ∈ Rn. Observe
that any polynomial in a and b is ]0, 1[n-periodic and so is a−1 := (x 7→ a(x)−1) .
Thus, by Corollary 3.1, we deduce that

∂0a(k·) + b(k·)

G−→ ∂0

(∫
[0,1]n

a(y)−1dy

)−1
+ ∂0

∞∑
j=1

(
−
∞∑
`=1

(∫
[0,1]n

a(y)−1dy

)−1∫
[0,1]n

a(y)−1
(
b(y)a(y)−1

)`
dy
(
−∂−10

)`)j

×
(∫

[0,1]n
a(y)−1dy

)−1
,

as k →∞ in L2
ν(R;H).

Remark 3.8. In [24, Theorem 1.2] or [25] the author considers the equation
(∂0 − bk(·))uk = f with (bk)k being a [α, β]-valued (for some α, β ∈ R) se-
quence of bounded, measurable mappings depending on one spatial variable.
Also in that exposition a memory effect is derived. However, the method uses
the concept of Young measures. The reason for that is the representation of the
solution being a function of the oscillating coefficent. More precisely, the con-
vergence of the sequence

(
etb(k·)

)
k

is addressed. In order to let k tend to infinity
in this expression one needs a result on the (weak-∗) convergence of (continu-
ous) functions of bounded functions. This is where the Young-measures come
into play, see e.g. [2, Section 2] and the references therein or [25, p. 930]. The
result used is the following. There exists a family of probabilty measures (νx)x
supported on [α, β] such that for (a subsequence of) (k)k and all real continuous
functions G we have

G ◦ bk(·)→
(
R 3 x 7→

∫
[α,β]

G(λ)dνx(λ)

)



396 M. Waurick

as k → ∞ in L∞ (R) ∗-weakly. The family (νx)x is also called the Young-
measure associated to (bk)k. With the help of the family (νx)x a convolution
kernel is computed such that the respective limit equation can be written as

∂0u(t, x) + b0(x)u−
∫ t

0

K(x, t− s)u(x, s)ds = f(x, t),

where b0 is a weak-∗-limit of a subsequence of (bk)k and

K(x, t) =

∫
R>0

e−λtdνx(λ)

for a.e. t ∈ R>0 and x ∈ R. The relation to our above considerations is as fol-
lows. The resulting limit equation within our approach can also be considered
as an ordinary differential equation perturbed by a convolution term. Denoting
limits with respect to the σ(L∞, L1)-topology by ∗-lim, we realize that Corol-
lary 3.1 in this particular situation states that the limit equation admits the
form

∂0 + ∂0

∞∑
k=1

(
−
∞∑
`=1

∗- lim
k→∞

(bk)
` (−∂−10

)`)k

= ∂0 + b0 +
∞∑
`=2

∗- lim
k→∞

(bk)
` (−∂−10

)`−1
+ ∂0

∞∑
k=2

(
−
∞∑
`=1

∗- lim
k→∞

(bk)
` (−∂−10

)`)k

as k → ∞ in L2
ν(R;L2(R)). Indeed, using [18, 6.2.6. Memory Problems, (b)

p. 448] or [26, Theorem 1.5.6 and Remark 1.5.7], we deduce that the term

∞∑
`=2

∗- lim
k→∞

(bk)
` (−∂−10

)`−1
+ ∂0

∞∑
k=2

(
−
∞∑
`=1

∗- lim
k→∞

(bk)
` (−∂−10

)`)k

can be represented as a (temporal) convolution. Moreover, note that the choice
of subsequences is the same. Indeed, in the above rationale with the Young
measure approach, by a density argument, it suffices to choose a subsequence
of (bk)k such that any polynomial of (bk)k converges ∗-weakly. This choice of
subsequences also suffices to deduce G-convergence of the respective equations
within the operator-theoretic perspective treated in this exposition.

Remark 3.9 (On initial value problems and semigroups associated to them).
In view of the latter remark we illustrate how initial value problems may be
treated here. In its abstract form, for some M ∈ L(H), H a separable Hilbert
space, the equations discussed in Remark 3.8 may be written as follows

(∂0 +M)u = f.
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for some right-hand side f . The initial value problem can be formulated in
the distribution space associated to ∂0 (i.e. Sobolev chain or Sobolev tower,
see e.g. [11, 18]). More precisely, one can show that the Dirac-distribution δ
of evaluation at 0 is an element of H−1(∂0), the completion of L2

ν(R;H) with
respect to the norm u 7→ |∂−10 u|ν or, equivalently, δ is a continuous linear
functional on H1(∂0) := D(∂0) endowed with the graph norm. Imposing the
initial datum u0 ∈ H, we rearrange the equation by replacing f by δu0:

∂0u+Mu = δu0.

It can then be shown that u is actually continuous on R=0 and that u(0+) = u0,
see [11]. Turning back to the problem discussed in Remark 3.8 in its abstract
form, we would then consider a bounded sequence (Mk)k in L(H). The associ-
ated semigroups are then (t 7→ e−tMk)k. Or, in the context of the present work,
simply

t 7→
(
H 3 u0 7→

(
(∂0 +Mk)

−1δu0
)

(t)
)
.

Now, in Remark 3.8, we have seen that, in general, the G-limit of (∂0+Mk)k is of
integro-differential type and thus cannot be written as a semigroup (t 7→ e−tM)
for some M ∈ L(H) even though one assumes that (Mk)k G-converges to
some M. In fact, it can be shown that (∂0 +Mk)k is G-convergent if and only if
for all ` ∈ N the sequence (M `

k)k converges in the weak operator topology, see
[19, Section 2].

In the next example, we consider a partial differential equation, which
can be reformulated as ordinary differential equation in an infinite-dimensional
Hilbert space. More precisely, we treat Maxwell’s equations with the Drude-
Born-Fedorov material model, see e.g. [7]. In order to discuss this equation
properly, we need to introduce several operators from vector analysis.

Definition 3.10. Let Ω j R3 be open. Then we define4

curlc : C∞,c(Ω)3 j L2(Ω)3 → L2(Ω)3

φ 7→

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

φ,

where we denote by ∂i the partial derivative with respect to the i’th variable,
i ∈ {1, 2, 3}. Moreover, introduce

divc : C∞,c(Ω)3 j L2(Ω)3 → L2(Ω)

(φ1, φ2, φ3) 7→
3∑
i=1

∂iφi.

4We denote by C∞,c(Ω) the set of arbitrarily often differentiable functions with compact
support in Ω.
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We define curl0 := curlc, div0 := divc. The 0 serves as a reminder for (the gen-
eralization of) the electric and the Neumann boundary condition, respectively.
If Ω is simply connected, we also introduce

curl� : D(curl�) j L2(Ω)3 → L2(Ω)3

φ 7→ curlφ,

where D(curl�) := {φ ∈ D(curl); curlφ ∈ D(div0)} .
Remark 3.11. It can be shown that if Ω is simply connected with finite mea-
sure, then curl� is a selfadjoint operator, see [6, 7]. In that reference it is also
stated that curl� has, except 0, only discrete spectrum. In particular, this means
that the intersection of the resolvent set of curl�, %(curl�), with the set R is non-
empty. For other geometric properties of Ω resulting in the selfadjointness of
curl�, we refer to [17].

We now treat a homogenization problem of the Drude-Born-Fedorov model
as treated in [7].

Example 3.12. Assume that Ω j R3 is open, simply connected and has finite
Lebesgue measure. Invoking Remark 3.11 and following [7, Theorem 2.1], the
equation(

∂0 (1+η curl�)

(
ε 0
0 µ

)
+

(
0 − curl�

curl� 0

))(
E
H

)
=

(
J
0

)
(3)

for η ∈ R such that − 1
η
∈ %(curl�), J ∈ L2

ν(R;L2(Ω)3) and given ε, µ ∈
L(L2(Ω)3) being strictly positive selfadjoint operators, admits a unique solu-
tion (E,H) ∈ Hν,1(R;L2(Ω)3).5 Indeed, multiplying (3) by (1 + η curl�)

−1 , we
get that(
∂0

(
ε 0
0 µ

)
+ curl� (1+η curl�)

−1
(

0 −1
1 0

))(
E
H

)
=(1+η curl�)

−1
(
J
0

)
.

Realizing that curl� (1 + η curl�)
−1 is a bounded linear operator by the spectral

theorem for the selfadjoint operator curl�, we get that (E,H) ∈ Hν,1(R;L2(Ω)3)
solves the above equation. Note that the equation derived from (3) is a mere
ordinary differential equation in an infinite-dimensional Hilbert space. Assume
we are given bounded sequences of selfadjoint operators (εn)n and (µn)n satis-
fying εn = c and µn = c for some c > 0 and all n ∈ N. For n ∈ N we consider
the problem(
∂0

(
εn 0
0 µn

)
+ curl� (1+η curl�)

−1
(

0 −1
1 0

))(
En
Hn

)
= (1+η curl�)

−1
(
J
0

)
5Note that for (E,H) ∈ Hν,1(R;L2(Ω)3) being a solution of (3) can only be true in the

distributional sense, which can be made more precise with the help of the extrapolation spaces
of curl�. We shall, however, not follow this reasoning here in more details and refer again
to [7] or [18, Chapter 2].
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and address the question of G-convergence of (a subsequence of)

(DBFn)n :=

(
∂0

(
εn 0
0 µn

)
+ curl� (1 + η curl�)

−1
(

0 −1
1 0

))
n

.

Clearly, Corollary 3.1 applies and we get that (a subsequence of) (DBFn)n G-
converges to

∂0Mhom,0 + ∂0

∞∑
k=1

(
−
∞∑
`=1

Mhom,0Mhom,`

(
−∂−10

)`)k

Mhom,0,

as k →∞ in L2
ν(R;H), where

Mhom,0 =

(
τw- lim

k→∞

(
ε−1nk 0
0 µ−1nk

))−1
and

Mhom,` = τw- lim
k→∞

(
ε−1nk 0
0 µ−1nk

)(
curl� (1 + η curl�)

−1
(

0 −µ−1nk
ε−1nk 0

))`
.

We have seen that the class of problems discussed in Corollary 3.1 in this
section is not closed under the G-convergence, unless N = 0.

4. Time-translation invariant coeffcients

In Corollary 3.1, we have seen that the limit equation can be described as a
power series expression in ∂−10 . A possible way to generalize this is the intro-
duction of holomorphic functions in ∂−10 , see [18, Section 6.1, p. 427]. To make
this precise, we need the spectral representation for ∂−10 , the Fourier-Laplace
transform Lν , which is given as the unitary operator being the closure of

C∞,c(R) j L2
ν(R)→ L2

ν(R)

φ 7→
(
x 7→ 1√

2π

∫
R
e−ixy−νyφ(y)dy

)
.

Denoting by m : D(m) j L2(R)→ L2(R), f 7→ (x 7→ xf(x)) the multiplication-
by-argument-operator with maximal domain D(m), we arrive at the represen-
tation

∂−10 = L∗ν
(

1

im+ ν

)
Lν .

Thus, for bounded and analytic functions M : B(r, r) → C with r > 1
2ν

we
define

M
(
∂−10

)
:= L∗νM

(
1

im+ ν

)
Lν ,
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where
(
M
(

1
im+ν

)
φ
)

(t) := M
(

1
it+ν

)
φ(t) for φ ∈ L2(R) and a.e. t ∈ R. We

canonically extend the above definitions to the case of vector-valued functions
L2
ν(R;H) with values in a Hilbert spaceH. In this way, the definition ofM

(
∂−10

)
can be generalized to bounded and operator-valued functions M : B(r, r) →
L(H0, H1) for Hilbert spaces H0 and H1. We denote

H∞(B(r, r);L(H0, H1)) := {M : B(r, r)→ L(H0, H1);M bounded, analytic} .

A subset M j H∞(B(r, r);L(H0, H1)) is called bounded, if

sup{‖M(z)‖; z ∈ B(r, r),M ∈M} <∞.

A family (Mι)ι∈I inH∞(B(r, r);L(H0, H1)) is bounded, if {Mι; ι∈I} is bounded.
We will treat some examples for H∞-functions of ∂−10 below, see also [27].

In this reference, a homogenization theorem of problems of the kind treated in
Theorem 2.5 with (Mn)n =

(
Mn

(
∂−10

))
n

for a bounded sequence (Mn)n in H∞
has been presented, see [27, Theorem 5.2]. Moreover, in [29, Theorem 4.4] a
special case of an analogous result of Theorem 2.7 has been presented and used.
In order to state a G-convergence theorem in a more general situation, note that{
M
(
∂−10

)
;M ∈ H∞(B(r, r);L(H0, H1))

}
j
⋂

1
2r
<ν Lev,ν(H0, H1). The theorem

reads as follows.

Theorem 4.1. Let H0, H1 be separable Hilbert spaces, ν0 > 0, r > 1
2ν0

. Let

(Mn)n , (N
ij
n )n be bounded sequences in

H∞(B(r, r);L(H0)) and H∞(B(r, r);L(Hj, Hi)),

respectively (i, j ∈ {0, 1}). Assume there exists c > 0 such that for all n ∈ N we
have for all (φ, ψ) ∈ H0 ⊕H1 and z ∈ B(r, r)

Re〈Mn(z)φ, φ〉H0 = c |φ|2H0
, Re〈N11

n (z)ψ, ψ〉H1 = c |ψ|2H1
.

Then there exists ν > ν0 and a subsequence (nk)k of (n)n such that

∂0

(
Mnk

(
∂−10

)
0

0 0

)
+

(
N00
nk

(
∂−10

)
N01
nk

(
∂−10

)
N10
nk

(
∂−10

)
N11
nk

(
∂−10

) )
G−→
(
∂0 0
0 1

)((
Mhom,0,00

(
∂−10

)
0

0 Nhom,−1,11
(
∂−10

) )
+
∞∑
`=1

(
−
(
Mhom,0,00

(
∂−10

)
0

0 Nhom,−1,11
(
∂−10

) )M (1)
(
∂−10

))`
×
(
Mhom,0,00

(
∂−10

)
0

0 Nhom,−1,11
(
∂−10

) )) ,
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where we put

Nn := N00
n −N01

n

(
N11
n

)−1
N10
n (n ∈ N)

as well as

M (1)
(
∂−10

)
:=

( ∑∞
`=1Mhom,`,00

(
∂−10

) (
∂−10

)` ∑∞
`=0Mhom,`,01

(
∂−10

) (
∂−10

)`+1∑∞
`=0Mhom,`,10

(
∂−10

) (
∂−10

)` ∑∞
`=0Mhom,`,11

(
∂−10

) (
∂−10

)`+1

)
and

Mhom,0,00(z) =
(
τw- lim

k→∞
Mnk(z)−1

)−1
,

Mhom,`,00(z) = τw- lim
k→∞

Mnk(z)−1
(
−Nnk(z)Mnk(z)−1

)`
, ` = 1,

Mhom,`,01(z) = τw- lim
k→∞
−Mnk(z)−1

(
−Nnk(z)Mnk(z)−1

)`
N01
nk

(z)
(
N11
nk

(z)
)−1

,

Mhom,`,10(z) = τw- lim
k→∞
−
(
N11
nk

(z)
)−1

N10
nk

(z)Mnk(z)−1
(
−Nnk(z)Mnk(z)−1

)`
,

Mhom,`,11(z) = τw- lim
k→∞

(
N11
nk

(z)
)−1

N10
nk

(z)Mnk(z)−1
(
−Nnk(z)Mnk(z)−1

)`
×N01

nk
(z)
(
N11
nk

(z)
)−1

,

Nhom,−1,11(z) =
(
τw- lim

k→∞

(
N11
nk

(z)
)−1)−1

,

for all z ∈ B
(

1
2ν1
, 1
2ν1

)
for some ν > ν1 = ν0.

Proof. Observe that bounded and analytic functions of ∂−10 commute with ∂−10 .
Note that the only thing left to prove is that the operator-valued functions
involved are indeed analytic functions of ∂−10 . For this we need to introduce
a topology on H∞(B(r, r);L(H0, H1)). Let τ be the topology induced by the
mappings

H∞(B(r, r);L(H0, H1))→ H(B(r, r))

M 7→ 〈φ,M(·)ψ〉,

for all (φ, ψ) ∈ H1 ⊕ H0, where H(B(r, r)) is the set of analytic functions
endowed with the compact open topology. In [27, Theorem 3.4] or [30, Theo-
rem 4.3] it is shown that closed and bounded subsets of H∞(B(r, r);L(H0, H1))
are sequentially compact with respect to the τ -topology. Moreover, by the sep-
arability of L2

ν(R;H0 ⊕H1), closed and bounded subsets of L (L2
ν(R;H0 ⊕H1))

are sequentially compact with respect to the weak operator topology. Fur-
thermore, by [27, Lemma 3.5], we have that if a bounded sequence (Tn)n in
H∞(B(r, r);L(H0, H1)) converges in the τ -topology then the operator sequence(
Tn
(
∂−10

))
n

converges in the weak operator topology of L (L2
ν(R;H0 ⊕H1)).

Putting all this together, we deduce that the assertion follows from Theo-
rem 2.7.
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Remark 4.2. (a) Theorem 4.1 asserts that the time-translation invariant
equations under consideration are closed under G-convergence. Though
the formulas may become a bit cluttered, in principle, an iterated homog-
enization procedure is possible.

(b) In [29, Theorem 4.4] operator-valued functions that are analytic at 0 were
treated. This assumption can be lifted. Indeed, we only require analyticity
of the operator-valued functions under consideration on the open ball
B(r, r) for some radius r > 0 and do not assume that any of these functions
have holomorphic extensions to 0.

We give several examples.

Example 4.3. Let ν0 > 0. In this example we treat integral equations of
convolution type. Let (gn)n be a bounded sequence in L1

ν0
(R>0) such that there

is h ∈ L1
ν0

(R>0) with ‖g(t)‖ 5 h(t) for all n ∈ N and a.e. t ∈ R. For f ∈ C∞,c(R)
consider the equation

un + gn ∗ un = f. (4)

The latter equation fits into the scheme of Theorem 4.1 for H = C. Indeed,
using that the Fourier transform F translates convolutions into multiplication,
we get for any g ∈ L1

ν(R>0) and u ∈ L2
ν(R) for some ν > ν0 that

g ∗ u =
√

2πL∗νLνg(m)Lνu
=
√

2πL∗ν (Fg) (m− iν)Lνu

=
√

2πL∗ν (Fg)

(
−i 1

(im+ ν)−1

)
Lνu.

The support and integrability condition of g implies analyticity of

Mg :=
√

2π (Fg)

(
−i 1

(·)

)
on B(r, r) for 0 < r < 1

2ν0
. The computation also shows that

|g ∗ u|2ν =

∣∣∣∣√2π (Fg)

(
−i 1

(im+ ν)−1

)
Lνu

∣∣∣∣2
L2

.

5 2π

∣∣∣∣(Fg)

(
−i 1

(i(·) + ν)−1

)∣∣∣∣2
∞
|Lνu|2L2

5 2π |(Fg) ((·)− iν)|2∞ |u|
2
ν ,

where 2π |(Fg) ((·)− iν)|2∞ := supt∈R 2π |(Fg) (t− iν)|2 =
∣∣∫

R e
−i(t−iν)yg(y)dy

∣∣2
5
(∫

R e
−νy |g(y)| dy

)2
, which tends to zero, if ν →∞. Thus, by our assumption
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on the sequence (gn)n having the uniform majorizing function h, there exists
ν1 > 0 such that we have

ε := sup
n∈N
‖gn ∗ ‖L(L2

ν1
(R)) < 1.

Hence, we can reformulate (4) as follows(
1 +Mgn

(
∂−10

))
un = f,

Thus with H0 = {0}, H1 = H and N11 = (1 +Mgn)n Theorem 4.1 is applicable.
(Note that ReN11

n = 1− ε > 0 for all n ∈ N). The assertion states that, for a
suitable subsequence for which we will use the same notation, we have(

1 +Mgn

(
∂−10

)) G−→ Nhom,−1,11
(
∂−10

)
with

Nhom,−1,11(z) = τw- lim
n→∞

(1 +Mgn(z))−1

= τw- lim
n→∞

1 +
∞∑
`=1

Mgn(z)`

= τw- lim
n→∞

1 +
∞∑
`=1

M(gn)
∗`(z)

= τw- lim
n→∞

1 +M∑∞
`=1(gn)

∗`(z)

for all z ∈ B
(

1
2ν1
, 1
2ν1

)
for some ν > ν1 = ν0, where we denoted the `-fold

convolution with a function g by g∗`, ` ∈ N.

In [31] we discussed the following variant of Example 3.7.

Example 4.4. In the situation of Example 3.7, we let (hk)k be a convergent
sequence of positive real numbers with limit h. Then Theorem 4.1 gives

∂0a(k·) + τ−hkb(k·)

G−→ ∂0

(∫
[0,1]n

a(y)−1dy

)−1
+ ∂0

∞∑
k=1

(
−
∞∑
`=1

(∫
[0,1]n

a(y)−1dy

)−1
×
∫
[0,1]n

a(y)−1
(
τ−hb(y)a(y)−1

)`
dy
(
−∂−10

)`)k (∫
[0,1]n

a(y)−1dy

)−1
.

Indeed, it suffices to observe that τ−h = L∗νe−h(im+ν)Lν .
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Fractional differential equations are also admissible as the following example
shows.

Example 4.5. Again in the situation of Example 3.7, let (αk)k and (βk)k be
convergent sequences in ]0, 1] and [−1, 0] with limits α and β, resp. Then
Theorem 4.1 gives

∂αk0 a(k·) + ∂βk0 b(k·) = ∂0∂
αk−1
0 a(k·) + ∂βk0 b(k·)

G−→ ∂α0

(∫
[0,1]n

a(y)−1dy

)−1
+ ∂α0

∞∑
k=1

(
−
∞∑
`=1

∂α−10

(∫
[0,1]n

a(y)−1dy

)−1
×
∫
[0,1]n

a(y)−1∂1−α0

(
∂1+β−α0 b(y)a(y)−1

)`
dy
(
−∂−10

)`)k(∫
[0,1]n

a(y)−1dy

)−1
.

Remark 4.6. Note that all the above theorems on homogenization of differen-
tial equations straightforwardly apply to higher order equations. For example
the equation

n∑
k=0

∂k0aku = f

can be reformulated as a first order system in the standard way. Another way
is to integrate n− 1 times, to get that

n∑
k=0

∂1+k−n0 aku = ∂
−(n−1)
0 f,

which is by setting M(∂−10 ) = an and N(∂−10 ) =
∑n−1

k=0 ∂
1+k−n
0 ak of the form

treated in Theorem 4.1.

5. Time-dependent coefficients

In this section we treat operators depending on temporal and spatial variables,
which are, in contrast to the previous section, not time-translation invariant.
Thus, the structural hypothesis of being analytic functions of ∂−10 has to be
lifted. Consequently, the expressions for the limit equations do not simplify in
the manner as they did in Corollary 3.1 and Theorem 4.1. Particular ((non)-
linear) equations have been considered in [9, 10, 14, 16, 24]. The main objective
of this section is to give a sufficient criterion under which the choice of subse-
quences in Theorem 2.7 is not required. We introduce the following notion.
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Definition 5.1. Let H be a Hilbert space. A family ((Tn,ι)n∈N)ι∈I of sequences
of linear operators in L(H) is said to have the product-convergence property, if

for all k ∈ N and (ι1, . . . , ιk) ∈ Ik the sequence
(∏k

i=1 Tn,ιi

)
n

converges in the

weak operator topology of L(H).

Example 5.2. Let N,M ∈ N and denote

P := {a : RN → CM×M ; a is [0, 1]N -periodic}.

Theorem 3.5 asserts that the family
(
(a(k·))k∈N

)
a∈P has the product-convergence

property in L(L2(RN)M).

We refer to the notion of homogenization algebras for other examples, see
e.g. [12, 13]. The main theorem of this section reads as follows. Recall from
Example 2.3 the space L∞s (R;L(H)) of strongly measurable bounded functions
with values in L(H) endowed with the sup-norm. Moreover, recall that for
A ∈ L∞s (R;L(H)) the associated multiplication operator A(m0) is evolutionary
at ν for every ν > 0.

Theorem 5.3. Let H be a Hilbert space, ν > 0. Let
(
(Aι,n)n

)
ι
be a family of

bounded sequences in L∞s (R;L(H)). Assume that the family
(
(Aι,n(t))n

)
ι,t∈R has

the product-convergence property. Then
(
(Aι,n(m0))n ,

(
∂−10

)
n

)
ι
has the product-

convergence property.

Remark 5.4. (a) With the latter result, it is possible to deduce that the
choice of subsequences in Theorem 2.7 is not needed. Indeed, assume
that(
Mn 0

0 0

)
+

(
N 00
n N 01

n

N 10
n N 11

n

)
=

(
Mn(m0) 0

0 0

)
+

(
N00
n (m0) N01

n (m0)
N10
n (m0) N11

n (m0)

)
for some strongly measurable and bounded M1

n, N
00
n , N

01
n , N

10
n , N

11
n and

assume that the family((
Mn(t) 0

0 0

)
n

,

(
Mn(t)−1 0

0 0

)
n

,

(
N00
n (t) 0
0 0

)
n

,

(
0 N01

n (t)
0 0

)
n

,(
0 0

N10
n (t) 0

)
n

,

(
0 0
0 N11

n (t)

)
n

,

(
0 0
0 N11

n (t)−1

)
n

)
t∈R

satisfies the product-convergence property. Then Theorem 5.3 ensures
that the limit expressions in Theorem 2.7 converge without choosing sub-
sequences.
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(b) The crucial fact in Theorem 5.3 is that powers of ∂−10 are involved. Indeed,
let H be a Hilbert space, ν > 0. Let

(
(Aι,n)n

)
ι

be a family of bounded
sequences in L∞s (R;L(H)). Assume that, for every t ∈ R, the family(
(Aι,n(t))n

)
ι

has the product-convergence property. Then
(
(Aι,n(m0))n

)
ι

has the product-convergence property. Showing the assertion for two se-
quences (A1,n)n and (A2,n)n and using the boundedness of the sequence
(A1,n(m0)A2,n(m0))n, we deduce that it suffices to show weak convergence
on a dense subset. For this to show let K,L j R be bounded and mea-
surable and φ, ψ ∈ H. We get for n ∈ N and ν > 0 that

〈χKφ,A1,n(m0)A2,n(m0)χLψ〉ν =

∫
K∩L
〈φ,A1,n(t)A2,n(t)ψ〉e−2νtdt

→
∫
K∩L

lim
n→∞
〈φ,A1,n(t)A2,n(t)ψ〉e−2νtdt,

by dominated convergence.

Lemma 5.5. Let H be a Hilbert space, ν > 0. Let
(
(Aι,n)n

)
ι∈I be a family of

bounded sequences in L∞s (R;L(H)). Assume that the family
(
(Aι,n(t))n

)
ι,t∈R has

the product-convergence property. Then6
∏k

j=1

(
Aιj ,n(m0), ∂

−1
0

)`j converges in

the weak operator toplogogy for all k∈N, `1, . . . , `k∈{0, 1}×N and ι1, . . . , ιk∈I.

Proof. Let k ∈ N, `1, . . . , `k ∈ {0, 1} × N and ι1, . . . , ιk ∈ I. Moreover, take
φ, ψ ∈ H and K,L j R be bounded and measurable. For n ∈ N and ν > 0 we
compute〈
χKφ,

k∏
j=1

(
Aιj ,n(m0), ∂

−1
0

)`j χLψ〉
ν

=

∫
K

〈
φ,Aι1,n(s00)

`1,1

∫ s00

−∞

∫ s1`1,2−1

−∞
· · ·
∫ s11

−∞
Aι2,n(s10)

`2,1

∫ s10

−∞

∫ s2`2,2−1

−∞
· · ·
∫ s21

−∞
· · ·

Aιk,n(sk−10 )`k,1
∫ sk−1

0

−∞

∫ sk`k,2−1

−∞
· · ·
∫ sk1

−∞
χL(sk0)ψ

〉
dsk0 · · · dsk`k,2−2ds

k
`k,2−1 · · · ds

2
0 · · · ds2`2,2−2ds

2
`2,2−1ds

1
0 · · · ds1`1,2−2ds

1
`1,2−1e

−2νs00ds00

=

∫
K

∫ s00

−∞

∫ s1`1,2−1

−∞
· · ·
∫ s11

−∞

∫ s10

−∞

∫ s2`2,2−1

−∞
· · ·
∫ s21

−∞
· · ·
∫ sk−1

0

−∞

∫ sk`k,2−1

−∞
· · ·
∫ sk1

−∞〈
φ,Aι1,n(t)`1,1Aι2,n(s0)

`2,1 · · ·χL(sk0)ψ
〉

dsk0 · · · dsk`k,2−2ds
k
`k,2−1 · · · ds

2
0 · · · ds2`2,2−2ds

2
`2,2−1ds

1
0 · · · ds1`1,2−2ds

1
`1,2−1e

−2νs00ds00.

6In what follows we adopt multiindex notation: For two operators A, B and k =
(k1, k2) ∈ N2

0 we denote (A,B)k := Ak1Bk2 . If kj is a multiindex in N2
0, we denote its first

and second component respectively by kj,1 and kj,2.
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Using dominated convergence, we deduce the convergence of the latter expres-
sion.

Proof of Theorem 5.3. The proof follows easily with Lemma 5.5.

Theorem 5.3 serves as a possibility to deduce G-convergence of differential
operators, where the coefficients take values in, for example, periodic mappings
as in Example 5.2. Another instance is given in the following example.

Example 5.6. Let A,B ∈ L∞(R) be 1-periodic, f ∈ C∞,c(R). Assume that
A = c for some c > 0. For n ∈ N and ν > 0 consider

(∂0A(n ·m0) +B(n ·m0))un = f.

Recall that from Theorem 2.5, in order to compute the limit equation, we have
to compute expressions of the form

Mhom,` = τw- lim
n→∞

M−1
n

(
−∂−10 NnM−1

n

)`
, ` = 1, and Mhom,0 = τw- lim

n→∞
M−1

n ,

where Mn = A(n ·m0) and Nn = B(n ·m0), ` ∈ N.

In order to deduce G-convergence in the latter example we need the follow-
ing theorem.

Theorem 5.7. Let A1, . . . , Ak ∈ L∞(R) be 1-periodic. Then for every ν > 0
we have

An := A1(n ·m0)

(
k−1∏
j=1

∂−10 Aj+1(n ·m0)

)
τw,n→∞
−−−−→

(
∂−10

)k−1 k∏
j=1

∫ 1

0

Aj(y)dy ∈ L
(
L2
ν(R)

)
.

Proof. For n ∈ N and K,L j R bounded, measurable we compute

〈χK ,AnχL〉ν

=

∫
K

A1(nt1)

∫ t1

−∞
A2(nt2)

∫ t2

−∞
· · ·
∫ tk−1

−∞
Ak(ntk)χL(tk)dtk · · · dt2e−2νt1dt1

=

∫
K

∫ t1

−∞

∫ t2

−∞
· · ·
∫ tk−1

−∞

(
k∏
j=1

Aj(ntj)

)
χL(tk)e

−2νt1dtk · · · dt1

=

∫
R
· · ·
∫
R︸ ︷︷ ︸

k-times

(
k∏
j=1

Aj(ntj)

)
χK(t1)

(
k∏
j=2

χR>0(tj−1 − tj)

)
χL(tk)e

−2νt1dtk · · · dt1.
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Now, observe that (t1, . . . , tk) 7→ χK(t1)
(∏k

j=2 χR>0(tj−1 − tj)
)
χL(tk)e

−2νt1 ∈
L1(Rk). Moreover, the mapping (t1, · · · , tk) 7→

∏k
j=1Aj(tj) is [0, 1]k-periodic.

Thus, by Theorem 3.5, we conclude that

〈χK ,AnχL〉ν →

〈
χK ,

(
∂−10

)k−1 k∏
j=1

∫ 1

0

Aj(y)dyχL

〉

as n → ∞ for all K,L j R bounded and measurable. A density argument
concludes the proof.

Example 5.8 (Example 5.6 continued). Thus, with the Theorems 5.7 and 2.5,
we conclude that (∂0A(n ·m0) +B(n ·m0)) G-converges to

∂0

(∫ 1

0

1

A(y)
dy

)−1
+∂0

∞∑
k=1

(
−
∞∑
`=1

(∫ 1

0

1

A(y)
dy

)−1∫ 1

0

1

A(y)
dy

(
−∂−10

∫ 1

0

B(y)

A(y)
dy

)̀ )k(∫ 1

0

1

A(y)
dy

)−1

= ∂0

(∫ 1

0

1

A(y)
dy

)−11 +
∞∑
k=1

(
−
∞∑
`=1

(
−∂−10

∫ 1

0

B(y)

A(y)
dy

)̀ )k
= ∂0

(∫ 1

0

1

A(y)
dy

)−1 ∞∑
k=0

(
−
∞∑
`=1

(
−∂−10

∫ 1

0

B(y)

A(y)
dy

)̀ )k

= ∂0

(∫ 1

0

1

A(y)
dy

)−1(
1 +

∞∑
`=1

(
−∂−10

∫ 1

0

B(y)

A(y)
dy

)̀ )−1

= ∂0

(∫ 1

0

1

A(y)
dy

)−1( ∞∑
`=0

(
−∂−10

∫ 1

0

B(y)

A(y)
dy

)̀ )−1

= ∂0

(∫ 1

0

1

A(y)
dy

)−1(
1 + ∂−10

∫ 1

0

B(y)

A(y)
dy

)
= ∂0

(∫ 1

0

1

A(y)
dy

)−1
+

(∫ 1

0

1

A(y)
dy

)−1∫ 1

0

B(y)

A(y)
dy.

Remark 5.9. In [16], the authors consider an equation of the form

(∂0 + an(m0))un = f

in the space L2(R;L2(R)) with (an)n being a bounded sequence in L∞(R×R).
Assuming weak-∗-convergence of (an)n , the author shows weak convergence
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of (un)n. The limit equation is a convolution equation involving the Young-
measure associated to the sequence (an)n. Within our reasoning, we cannot
show that the whole sequence converges, unless any power of (an)n converges
in the weak-∗ topology of L∞. However, as we illustrated above (see e.g. Ex-
ample 3.12) our approach has a wide range of applications, where the method
involving Young-measures might fail to work.

6. Proof of the main theorems

We will finally prove our main theorems. The proof relies on elementary Hilbert
space concepts. We emphasize that the generality of the perspective hardly
allows the introduction of Young-measures, which have proven to be useful in
particular cases (see the sections above for a detailed discussion). Before we give
a detailed account of the proofs of our main theorems, we state the following
auxilary result, which we state without proof.

Lemma 6.1. Let H be a Hilbert space, T ∈ L(H). Assume that ReT = c for
some c > 0. Then ‖T−1‖ 5 1

c
and ReT−1 = c

‖T‖2 .

Proof of Theorem 2.5. By the boundedness assumptions on Mn and Nn there
exists ν1 = ν0 such that

CN := sup
η=ν1

sup
n∈N
‖Nn‖L(L2

η)
<∞, CM := sup

η=ν1

sup
n∈N
‖Mn‖L(L2

η)
<∞.

Further, choose ν > ν1 such that

ν >
C2
M
c3

+
CN
c2
. (5)

Now, for f ∈ C∞,c(R;H) let un solve

(∂0Mn +Nn)un = f.

This yields

un =M−1
n

(
1 + ∂−10 NnM−1

n

)−1
∂−10 f

=M−1
n

∞∑
`=0

(
−∂−10 NnM−1

n

)`
∂−10 f

=

(
M−1

n +
∞∑
`=1

M−1
n

(
−∂−10 NnM−1

n

)`)
∂−10 f.
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Hence, choosing an appropriate subsequence, we arrive at an expression of the
form

u =

(
M−1

hom,0 +
∞∑
`=1

Mhom,`

)
∂−10 f.

We remark here that due to the (standard) estimate ‖T‖ 5 lim infk→∞ ‖Tk‖ for
a sequence (Tk)k of bounded linear operators in some Hilbert space converging
to T in the weak operator topology, the series

∑∞
`=1Mhom,` converges with

respect to the operator norm by our choice of ν (see (5)). Indeed, for n ∈ N we
have the estimate

‖M−1
n

(
−∂−10 NnM−1

n

)
‖ 5 1

ν
‖M−1

n ‖2‖Nn‖ 5
1

ν

1

c2
CN , (6)

where we used Lemma 6.1 to deduce that ‖Mn‖ 5 1
c
. Hence, recalling that

estimate (6) carries over to the weak limit, we infer that the norm bound of
Mhom,` can be estimated by ( 1

ν
1
c2
CN )` and, from (5), we deduce that 1

ν
1
c2
CN < 1.

Now, using the positive definiteness of Mn for all n ∈ N and Lemma 6.1,
we deduce that

ReM−1
n =

c

C2
M
.

By ‖M−1
n ‖ 5 1

c
, we conclude that

ReM−1
hom,0 =

c

C2
M

and ReMhom,0 =
c3

C2
M
.

Observe that ‖
∑∞

`=1Mhom,0Mhom,`‖ < 1. Indeed, using again (5), we have∥∥∥∥∥
∞∑
`=1

Mhom,0Mhom,`

∥∥∥∥∥ 5
∞∑
`=1

‖Mhom,0Mhom,`‖

5
∞∑
`=1

C2
M
c
‖Mhom,`‖

5
∞∑
`=1

C2
M
c

(
1

ν

1

c2
CN

)`
=
C2
M
c

(
1

1− 1
ν

1
c2
CN
− 1

)
=
C2
M
c

1
ν

1
c2
CN

1− 1
ν

1
c2
CN

=
C2
M
c

1
c2
CN

ν − 1
c2
CN

< 1.
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Hence, we arrive at

f = ∂0

(
1 +

∞∑
`=1

Mhom,0Mhom,`

)−1
Mhom,0u

= ∂0

∞∑
k=0

(
−
∞∑
`=1

Mhom,0Mhom,`

)k

Mhom,0u

= ∂0

1 +
∞∑
k=1

(
−
∞∑
`=1

Mhom,0Mhom,`

)k
Mhom,0u

= ∂0Mhom,0u+ ∂0

∞∑
k=1

(
−
∞∑
`=1

Mhom,0Mhom,`

)k

Mhom,0u.

Proof of Theorem 2.7. We observe(
∂0Mn +N 00

n N 01
n

N 10
n N 11

n

)
=

(
1 N 01

n (N 11
n )
−1

0 1

)(
∂0Mn +N 00

n −N 01
n (N 11

n )
−1N 10

n 0
0 N 11

n

)
×
(

1 0

(N 11
n )
−1N 10

n 1

)
.

Thus, with B :=
(
∂0Mn +N 00

n −N 01
n (N 11

n )
−1N 10

n

)−1
(
∂0Mn +N 00

n N 01
n

N 10
n N 11

n

)−1
=

(
1 0

− (N 11
n )
−1N 10

n 1

)( (
∂0Mn +N 00

n −N 01
n (N 11

n )
−1N 10

n

)−1
0

0 (N 11
n )
−1

)

×
(

1 −N 01
n (N 11

n )
−1

0 1

)
=

(
B 0

− (N 11
n )
−1N 10

n B (N 11
n )
−1

)(
1 −N 01

n (N 11
n )
−1

0 1

)
=

(
B −BN 01

n (N 11
n )
−1

− (N 11
n )
−1N 10

n B (N 11
n )
−1N 10

n BN 01
n (N 11

n )
−1

+ (N 11
n )
−1

)
.

With the Neumann series expression derived in the previous theorem, i.e.,

B =M−1
n ∂−10 +

∞∑
`=1

M−1
n

(
−∂−10 NnM−1

n

)`
∂−10
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with Nn = N 00
n −N 01

n (N 11
n )
−1N 10

n , we get that

(
∂0Mn +N 00

n N 01
n

N 10
n N 11

n

)−1
=
∞∑
`=0

(
U `
1 U `

2

U `
3 U `

4

)
+

(
0 0

0 (N 11
n )
−1

)
.

Here

U `
1 =M−1

n

(
−∂−10 NnM−1

n

)`
∂−1,0

U `
2 = −M−1

n

(
−∂−10 NnM−1

n

)`
∂−10 N 01

n

(
N 11
n

)−1
,

U `
3 = −

(
N 11
n

)−1N 10
n M−1

n

(
−∂−10 NnM−1

n

)`
∂−10 ,

U `
4 =

(
N 11
n

)−1N 10
n M−1

n

(
−∂−10 NnM−1

n

)`
∂−10 N 01

n

(
N 11
n

)−1
.

With Theorem 2.5, we deduce convergence of the top left corner in the latter
matrix. Similarly, we deduce convergence of the other expressions. Thus, for a
suitable choice of subsequences, we arrive at

∞∑
`=1

(
Mhom,`,00∂

−1
0 Mhom,`,01

Mhom,`,10∂
−1
0 Mhom,`,11

)
+

(
Mhom,0,00∂

−1
0 Mhom,0,01

Mhom,0,10∂
−1
0 Mhom,0,11 +Nhom,−1,11

)

Note that the invertiblility of Mhom,0,00 and Nhom,−1,11 follows with the same
reasoning as in Remark 2.6(a). We observe that

∞∑
`=1

(
Mhom,`,00∂

−1
0 Mhom,`,01

Mhom,`,10∂
−1
0 Mhom,`,11

)
+

(
Mhom,0,00∂

−1
0 Mhom,0,01

Mhom,0,10∂
−1
0 Mhom,0,11 +Nhom,−1,11

)
=

(
M(1) +

(
M−1

hom,0,00 0

0 N−1hom,−1,11

))(
∂−10 0
0 1

)
.

Moreover, note that the operatorM(1) has norm arbitrarily small if ν was chosen
large enough (see also the argument in the proof of Theorem 2.5). Hence, the
operator

(
M(1) +

(
M−1

hom,0,00 0

0 N−1hom,−1,11

))
=

(
M−1

hom,0,00 0

0 N−1hom,−1,11

)((
Mhom,0,00 0

0 Nhom,−1,11

)−1
M(1) + 1

)
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is invertible. This gives((
M(1)+

(
M−1

hom,0,00 0

0 N−1hom,−1,11

))(
∂−10 0
0 1

))−1
=

(
∂0 0
0 1

) ∞∑
`=0

(
−
(
M−1

hom,0,00 0

0 N−1hom,−1,11

)−1
M(1)

)(̀
Mhom,0,00 0

0 Nhom,−1,11

)

=

(
∂0 0
0 1

)((
Mhom,0,00 0

0 Nhom,−1,11

)

+
∞∑
`=1

(
−
(
Mhom,0,00 0

0 Nhom,−1,11

)
M(1)

)̀(
Mhom,0,00 0

0 Nhom,−1,11

))
.
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