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Abstract. This paper is concerned with the stability of traveling wave fronts for
nonlocal delayed reaction diffusion system. The stability of traveling wave front is
proved in some exponentially weighted L°°-spaces, when the difference between initial
data and traveling wave front decays exponentially as x — —oo, but the initial data
can be arbitrary large in other locations. Moreover, the time decay rates are obtained
by weighted energy estimates.
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1. Introduction

In this paper, we are interested in the following nonlocal delayed reaction-
diffusion systems

u— Jixu+u=ru[l —au+bo(z,t—71)], (z,t) e RxRy
vy — Sk v+v=rv[l+bu(z,t —7) —aw], (z,t) ERxR,

where J; is a nonnegative even function, J; x 1 = 1, J; x e* < oo, for A > 0,
i = 1,2. We remark that the convolution in (1) is convolution in space. Lv-
Wang [16, 18] obtained the existence and stability of traveling wave front for
system (1) with J; * u — u and J; % v — v replaced by Au and Av, respectively,
under the condition that h(y) = 0(y) where d(y) is the Dirac d-function. It is
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easy to see that the system (1) has four constant equilibria (0, 0), (0, é), (i, 0),
and (kq, ko) := K, where

b1 + ao ay + b2
kl - 7 kQ -
aaz — biby araz — biby

Traveling wave fronts of reaction-diffusion equations with local and nonlocal
delays have been extensively studied by many authors in the last two decades.
Schaaf [28] studied two scalar reaction-diffusion equations with a discrete delay
for both Huxley nonlinearity and Fisher nonlinearity, and established the exis-
tence of traveling wave fronts and uniqueness of wave speeds by a phase plane
analysis method. Wu-Zou [34] considered a more general reaction-diffusion sys-
tem with finite delay and obtained the existence of traveling wave fronts by us-
ing the classical monotone iteration technique with sub-supersolution method.
Ma [20] employed the Schauder’s fixed point theorem to an operator used in [34]
in a properly chosen subset in the Banach space C(R,R") equipped with the
so-called exponential decay norm, and showed the existence of traveling wave
fronts for a class of delayed systems with quasimonotonicity reaction terms.
Recently, Li-Lin-Ruan [14] developed a new cross iteration scheme, which is
different from that defined in [20,34], and established the existence of traveling
wave solutions for Lotka-Volterra competition system with delays.

For reaction-diffusion equations with nonlocal delay, Britton [6,7] made
the first attempt to study the periodic traveling wave solutions. By using
the perturbation theory of ordinary differential equations coupled with the
Fredholm alternative, Al-Omari and Gourley [2] and Gourley [11] studied an
age-structured reaction-diffusion model and a nonlocal Fisher equation, respec-
tively. Ruan-Xiao [26] obtained the existence of traveling wave fronts for a
vector disease model with nonlocal delays by the geometric singular perturba-
tion theory [10], see Ai [1] and Gourley-Ruan [12] for this method. Wang-Li-
Ruan [32] obtained the existence of traveling wave fronts for system (1) with
(Jxu)(x,t)— (JxI)u(z,t) replaced by Au(z,t). Applying the theory of [32], Li-
Wang [15] studied the existence of traveling wave fronts for cooperative Lotka-
Volterra system with nonlocal delays.

The study of uniqueness and asymptotic stability of traveling wave fronts
become relatively more difficult. Sattinger [27] studied a reaction diffusion sys-
tem without delay. By detail spectral analysis, he proved that the traveling
wave fronts were stable to perturbations in some exponentially weighted L°°-
spaces. Kapitula [13] also studied a reaction diffusion system without delay.
Using detail semigroup estimates, Kapitula [13] showed that the wave fronts is
stable in polynomially weighted L*°-spaces. For the stability and uniqueness
of traveling wave fronts in reaction-diffusion equations with discrete delay, we
should mention the work of Smith-Zhao [31]. They first established the exis-
tence and comparison theorem of solution in a quasimontone reaction-diffusion
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bistable equation with a discrete delay and then obtained the stability of trav-
eling wave fronts by using the elementary super-sub solution comparison and
squeezing methods developed by Chen [8] (see also [9,32,33] for this technique).
As far as we know, there is no result about the stability of traveling wave fronts
for system (1).

Just recently, Mei et al. [21-23] considered the so-called Nicholson’s blowflies
equation with diffusion. They first established a comparison principle and then
proved that traveling wave fronts of Nicholson’s blowflies equation are asymp-
totic stable in some exponentially weighted L?-spaces. Lv-Wang [17] considered
some more general models and established the stability of traveling wave fronts
using the method developed by Mei et al. [21].

As Murray [24] pointed out that the general reaction-diffusion equations are
strictly only applicable to dilute systems and population models. But in many
biological areas, such as the embryological development case, the densities of
cells involved are not small and a local or short range diffusive flux proportional
to the gradient is not sufficiently accurate. Meanwhile, the time delay seems to
be inevitable in the real world. Hence system (1) is a more suitable model.

Schumacher [29,30] studied the traveling wave solutions of integro-differen-
tial equations. Bates et al. [5] considered the following equation

u=Jxu—u+ f(u), (2)

where J(z) is a nonnegative function and satisfies J* 1 = 1. They obtained the
existence of traveling wave fronts for equation (2). Bates-Chen [3,4] established
the stability of traveling wave fronts for equation (2). The asymptotic stabil-
ity of traveling wave fronts for equation (2) was obtained by Chen [8] using
squeezing method. Recently, Pan-Li-Lin [25] studied the following system

Ou(x,t)
ot

= (Jxu)(x,t)— (J* Du(z,t) + f(u(z,t),u(z,t — 7)), (3)

where 7 > 0 and functions J(z) are defined as system (1). They proved the
existence of traveling wave fronts for system (3) using Schauder’s fixed point
theorem and upper-lower solution technique.

Encouraged by papers [17,21,25], in this paper we prove that the traveling
wave fronts of nonlocal delayed cooperative Lotka-Volterra system are stable by
using weighted energy estimates [21].

Throughout this paper, C' > 0 denotes a generic constant, while C;
(¢ = 1,2,...) represents a specific constant. Let I be an interval, typically
I = R. Denote by L?(I) the space of square integrable functions defined on I,
and H*(I) (k > 0) the Sobolev space of the L?>-functions f(x) defined on the
d_f(i=1,...,k) also belong to L*(I). Let L2 (I)

7
7

interval I whose derivatives -
be the weighted L*-space with a weight function w(z) > 0 and its norm is
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defined by

1120y = </Iw(:c)|f(x>|2dx)é .

Let HE(I) be the weighted Sobolev space with the norm given by

k 2 3
Nl sy = (Z/jw(l’) dx) )

Let T > 0 be a number and B be a Banach space. We denote by C°([0,T]; B)
the space of the B-valued continuous function on [0, T, and by L?([0, T]; B) the
space of the B-valued L?-functions on [0,7]. The corresponding spaces of the
B-valued L?-functions on [0, 00) are defined similarly.

d'f(z)
da?

This paper is organized as follows. In Section 2, we recall some results for
systems (1). In Section 3, the stability of traveling wave fronts is proved by
using the weighted energy estimates. This paper ends with a short discussion.

2. Stability of traveling wave front

In this section, the stability of traveling wave front is established by using the
weighted energy method [18,21]. The existence of traveling wave fronts of (1)
can be obtained by using the method of [25].

A traveling wave front of system (1) connecting with the constant states
(us,vy) is a solution (u,v) with the special form u(z,t) = ¢(x + ct), v(z,t) =
W(x + ct) and satisfies

r1p(€)[1 — a19(€) + brvo(€ — e7)],
ro(€)[1 4 bad(& — eT) — astp(€)],

' (§) = (1% ) (&) + 6(8)
(&) = (Jax)(€) + 1(§)

where £ :=x +ct, = % and

{ ¢<iOO) = U4, 2/1(i00) = V4,
¢'(§) = 0, P'(§) = 0.

Now, we consider the system (1) with the nonnegative initial data

{u($, s) =wup(z,s), (z,s) € R x[—1,0],
v(z,s) =vo(z,8), (2,5) €R x[—7,0],
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It is well-known that the functions w(z,t) and v(z,t) represent two different
kinds of species in system (1) with (4). So we are only interested in the nonneg-
ative solution of system (1) with (4). It follows from ki, k2 > 0 that ajas > bybs.
In this paper, we assume that the coefficients satisfy

b
2rq |:(26L1 — 51) kﬁl —-1- 2()1/{52:| — T‘ngk’g > 0,

by
2 |:(26L2 — E) ]{72 —1- 2b2/€1:| — rlblkl > 0.

We note that the above assumption is possible because 2(ajas—b1by)—b1(b1+asz)
> 0 and 2(ajag — biby) — by (b1 + az) > 0 if by and by are suitable small. Then it
is easy to see that there exists a positive constant 1 such that

b o 1
o {(2“1 B 51> =1 2blk2] — rabaky — / I(y)emdy + 5 >0,
0

(5)
> 1
2ry [(2@ - %) ko —1— 252]{?1} — 11biky — / Jo(y)e™dy + 3> 0.

0

We define a weight function as

efn(§7£0) fOI‘ é' S 50’

w(&) = wyg (&) = { 1 for &€ > &

where &q is chosen to be large enough such that

b 0 .
2 KZC” B 51) (&) —1 - le’fz] — raboks — / N(y)emdy + 5 > 0,

b 0 1
2 {(2@2 — 52) ¢(£O) —1- 262k1:| — lelkl — / Jz(y)e"ydy + 5 > 0.

Theorem 2.1. Assume that ajas >biby, and (5) holds. Denote 0 =r1byki+roboks
and let ¢* be the critical speed and

1 oo
C = —max {2T1 1 + 2b1]€2 —|— / e”le d’y, 27’2(1 + 2b2]€1)
n 00

o0 1
[Ty } ! (a )
—o0 n
For any given wave front (¢,v) of (1) with speed ¢ > max{c*, ¢}, if the initial

data satisfies

0 <wp(z,s) <ky, 0<wy(z,s)<ky for(z,s)eRx][—T0],
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and the initial perturbations ug(z, s) —¢(x+cs) and vy(z, s) —p(x+cs) belong to
C([-7,0], HL(R)), then the nonnegative solution of the initial value problem (1)
with (4) satisfies

0 <uw(z,t) <k, 0<wv(x,t)<ky for(x,t)eRxR,,
and
u(z,t) — ¢z +ct), v(z,t) —(z + ct) € C([0, +00); HL(R)),

where the function w(zx) was defined by (6). Moreover, the nonnegative solution
(u(x,t),v(x,t)) of the initial value problem (1) with (4) convergence to the wave
front (¢p(x + ct), Y(x + ct) exponentially in time:

sup [u(z, 1) — ¢(x + ct)| < Ce ™™,
z€R

sup |v(z,t) — Y(z + ct)| < Ce™#
zeR

for some positive constant .

In order to prove Theorem 2.1, we first establish a comparison principle for
initial problem (1) with (4). For this, we need the following lemma.

Lemma 2.2 ([18]). Let T > 0 and Q7 = R x (0,T]. Assume that the nonneg-
ative function c(x,t) is bounded for (x,t) € Qr. If the function u satisfies

u—Jxu+u+c(z,t)u>0(<0), (x,t) € Qr,
{ u(z,0) >0 (<L 0), r eR.

then u(z,t) >0 (< 0) for (x,t) € Q.
Lemma 2.3. Assume that ayas — bibs > 0 and the initial data satisfies
(0,0) < (ug(x, s),vo(x,s)) < (ki,ko) for (z,s) € R x [—T7,0].

Then the nonnegative solution (u(x,t),v(x,t)) of the problem (1) with (4) sat-
isfies

(0,0) < (u(x,t),v(x,t)) < (ki,ka) for (x,t) € R x Ry.

Lemma 2.4. (Comparison Principle) Let (u ( t)
solutions of equations (1) with initial data (uZ (z, s

(0,0) < (ug (2, 5),vg (x,8)) < (ug (x,5), v (2,5)) < (kr, ka)
for (z,s) € R x [—7,0]. Then

(070) < (u_(x,t),v_(x,t)) < (u+(x,t),v+(x,t)) < (khk?)
for (z,t) e R x Ry.

, v (2, 1)) be the nonnegative
), vi(w, 8)), respectively. If
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Lemmas 2.3 and 2.4 can be proved by an argument similar to [18, Lem-
mas 3.2, 3.3] and [19, Lemmas 3.1, 3.2].

Following the idea of [17,21], we shall use the comparison principle and
weighted energy method to prove Theorem 2.1. Let (ug(x, s),vo(z, s)) satisfy

(0,0) < (ug(x, s),vo(x,s)) < (ki, ko) for (z,s) € R x [—7,0].

Define
ug (2, 8) = min{ug(z, s), o(x +¢s)}, (z,s) € R x [—7,0],
ug (z,s) = max{ug(z, s),p(z +cs)}, (x,8) € Rx [-T,0],
vy (z,8) = min{uvp(z, s),Y(x +¢cs)}, (z,s) € R x [—7,0],
vy (z,8) = max{vy(z, s),¥(x +cs)}, (x,5) € R x [—7,0].
Obviously,
0 <y (x,5) <up(z,s) <uf(x,s) < ki, (x,8) € R x [—7,0],
0 <ug(x,s) <dlx+es) <ug(z,s) <k, (r,5)€Rx][—T,0],
0 <y (z,8) <wvolx,s) < vy (x,8) < ko, (x,8) € R x [—7,0],
0<vy(z,8) <(x+cs) <vg(z,8) <hksy, (z,5) €Rx[—T7,0].

Let (v (z,t),v (x,t)) and (u™(x,t),v"(x,t)) be the nonnegative solutions of
equations (1) with initial data (ugy (z,s), vy (z,s)) and (ug (z,s),vd (x,s)), re-
spectively.

It follows from comparison principle that

0 <u (x,t) <ulx,t) <ut(z,t) < ki, (z,t) e R X Ry,
0<u (z,t) <olx+ct) <u(x,t) <k, (r,t) e RxR,, )
0<v (z,t) <wv(x,t) <vt(z,t) < ko, (z,t) e R X Ry,
0<v (z,t) <¢(r+ct) <vt(z,t) <hks, (x,t)eRXR,

Now we prove Theorem 2.1 in three steps.

Step 1. We first prove the convergence of u™(x,t) to ¢(z + ct) and v*(x,t) to

P(x + ct).
Let £ =2 + ¢t and
m(&,t) = u'(z,t) — gz +ct), mo(, s) =ug(z,s) — p(x + cs),
n(&,t) = vt (z,t) —(z +ct), no(&s) =vg(x,s) —(x+cs).

It follows from (7) that

(m(£7t>7n(£7t>> > (07 0)? (mo(év 5)7”0(57 8)) > (070)
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Moreover, (m(&,t),n(&,t)) satisfies

((my+cme—Jyxm+m+r [2a1¢—1—b1n(£—07, t—T)—blw(f—CT)]m
= —ayrym?+ribion(E—cr, t—7),
ny+cng— Jokn+n+ry[2a0p —1—bym({—cr, t—7)+(E—cT)|n (8)
= —agron® +robyym(E—cr, t—1),
m(€,s) =mo(€,s), n(&,s) =no(&,s), (& s) € Rx[=7,0].
Let w(§) > 0 be the weight function defined by (6). Multiplying differential

equations of (8) by e**w(&)m(&,t) and e**w(&)n(E, t), respectively, where 1 > 0
will be specified later in Lemma 2.6, we have

1
(—62“twm2) +(Ee2“twm wm/ Ji(y)ym(E—y, t)dy

2 AV

cw' 2 out (9)
+ —5——,u+1+r1 [201¢0—1—=bin({—cr, t—7) =bip(§—cT)] Jwm?e™
w
= —ayrymPwe fribion (& —cr, t—T)mwe*
and
Looue o C out
e wn + 5¢ wn Haon J2 n(§—y,t)dy
t

+ (- g%—M—FH—M [2a2¢—1—bzm(§—c7',t—T)—I—qb({—CT)])aneQ“t (10)

= —agron®we™ +-robyynwe m(E —cr, t—7).

Integrating (9) and (10) with respect to (§,t) over R x [0, t] and dropping the
negative terms

| t | e sl and o, [ t | e e
0 —00 0 —00

we obtain

t fe'e)
A m(t)][2 — 2 / / / L (y)m(E — y, s)dydeds

// c——2u+2+2r1[2a1¢—l—bln(§—CT,s—T)
— b€ = 7)) [w(©)m? (€, 5)deds
< [mo(0)|[2; + 2r1by / / ()€ — er, s — T)mi(E, syw(€)deds,
0 —00

(11)



Stability of Traveling Wave Fronts 471

and

t )
e2“tHnt||22—2// e / Jo(y)n(€ —y, s)dydéds

// —c——2u+2+2r2(2a2¢—1—b2m(§—CT,t—7')
¢ = on) |w(©n?(&, s)agds
< |lno(0)[17 + 27”252/ / e p(E)n(E, s)w(E)m(E — e, 5 — 7)dEds.
0 —00

(12)

By using the Cauchy-Schwarz inequality 22y < 22 + 32, we can estimate that

2 / t / e (Emle, s /_ Z T(y)m(E — y, s)dydeds
/ / o2y s)deds
—|—// e / Ji(y f y, s)dyd&ds (13)
/ / 2y s)deds
; / | e womies [ ™ Magagas

27"1191/ /00 P(EN(E — ety 5 — T)m(E, s)w(E)e* dEds
0 J—-oo

and

< riby /t /oo e p()w (&) [m*(€, s) +n*(€ — cr,s — 7)]déds

by / / 215 §(€)w(€)m (€, 5)dEds

+ r1b162“7/ / e p(€ + cr)w (€ + er)n?(€, 5)déds (14)

<7“151// e p(E)w(E)m? (€, s)dEds

+ ribe ’”/ / e (€ + er)w(€ + er)n?(€, s)déds
0 J—-oo

0 o)
+ 7"117162’”/ / e p(€ + cr)w (€ + er)nd(€, 5)déds .
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Similarly, we have

2 / t / (e, s / Z To(y)n(€ — y, s)dydeds
/ / o2y s)deds
34[mﬂ%@M@@[:b@W§é”@%m

2199 /t /OO e (E)n (€, s)w(&)m(E — cr, s — 7)dEds

< 13by / / e2Hsq) n*(€, s)déds

+7‘2b262’”/ / e 5w (&)m? (§,s)w(ié)ﬂ)w(§+m’)d§ds
0 —00

0 o)
+ 7’2b2€2'm—/_ /_ e (€)ma (¢, S)w(ié)w)¢(§ + c7)déds .

Substituting (13), (14) and (15), (16) into (11) and (12), respectively,
adding the resulting inequalities, we have

e (Im(®l75 + Il )
+ /Ot/ReQ#S [Bu7w<5)m2<§’3) —I—D“,w(f)nQ(f, 3)}w(€)d§d3
saomamwwwﬂ@+[Xmmmﬁwmw@ﬁQ,

and

where
&A@—AA@—m—m@@“—nwing@+ ).
D, w(&) Ew(g) —2p— lel(e% 1)¢(5 + CT)w(S é)CT)7
and

Ay(€) = —c% 142 2016 — 1 — bin(€ — e, 5 — 7) — bigh(€ — e7)]

w(& + 1)
w(§)

- /°° Mﬁ(y)dy — 11b1¢ — raby

o U(E+ er),

(15)

(16)

and

(17)
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!/

E,(§) = —c% + 1+ 2r [2(121/1 —1—bym(§—crt —7)+ (£ — CT)}

* w(E +y) w(E + er)
- ———>Jo(y)dy — robatp) — r1b —
| gy v ol + e =
In order to get the basic estimate, we must prove B, ,(§) > C > 0 and
D, (&) > C > 0 for some constant C. For this we need the following key
Lemma.

Lemma 2.5. Let (5) holds, then there exists positive constants Cy and Cs such
that

Ap(§) 2 C2o >0, E,(§) 2C3>0 {eR

Proof. We only prove that A, () > Cy > 0. The proof of £, () > Cy > 0 can
be treated in a similar way.

Case 1: £ < &.

It follows from (6) that ““ < 1. Note that n(¢ — cr, s — 7) < kg, by the

) . w(g)
direct calculation we have
!

A () = —c% + 14 2r (2016 — 1= byn(E — o7y 5 — 7) — bih(€ — e7)]

T D
/_Oo w(©) Ji(y)dy — 7161 — 12by w(©) Y€ +cT)

Z cn + 1-— 27”1(1 + lek’g) — e"(f_go)

o—¢
— / Ji(y)(e™™ — ")) dy — ribiky — roboks

° 1
2 Ccn — 27"1(1 + 2b1k2) — / Jl(y)e*"ydy — lelkl — Tgbgkfz + 5
=:Cy; >0,
where we have used ¢ > c.
Case 2: £ > &.

In this case, w(§) = w(§ + ¢r) = 1. Note that n({ — cr,s — 7) < ko and
J(—y) = J(y), using the monotonicity of ¢(£) and ¥(§) on R, we have

Ap(§) =14 2r; [2(11(;5(5) —1—-bn( —cr,s—7) — (€ — CT)]
- / W(E + ) ()dy — ribiG(€) — rabsw(E + er)(E + 7)

—00

0
Z 27”1 |:(2CI,1 — %)(b(&)) —1- 2b1]€2:| — / (e*”y — 1)J1(y)dy — szgkg

o0

b 0 1
= 27”1 [(2@1 — 51)(?(&)) -1 2b1]{?2} — T’ngl{?g — / einyjl(’y)dy + 5
=: C5 >0
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by the condition (5). Finally, let Cy := min{C}4, C5}. Then we have A, ,(§) >
Cy > 0. O
Lemma 2.6. Let 1 > 0 be the unique root of the following equation

2C — 2py — h(e*7 — 1) = 0,

where C' = %min{Cg,C’;;} and h = max{ribiky, robsks}. Then for 0 < p < pq,
B,.,(&) > Cs >0 and D, ,,(§) > Cs > 0 on R.

Proof. Note that (0,0) < (¢(£),v(§)) < (k1,k2) on R and

e T < for £ <& — cr,
% —{ enlé=%) ~ 1 for §o — e < § < &,
w
1 for £ > &.

It is easy to see that, for 0 < p < pq,

Buw(€) = Au(§) = 21 — raby(e* — 1) /OO Mh(y)w(f +y+er)dy

oo W(E)
Z Cg — QIU — TQkaQ(QZMT — 1)

> 92C — 2p — h(e*™ —1)
=: Cg > 0.
Similarly, we can prove that D, ,,(§) > Cs > 0. ]

Submitting this result into (17), we have

t

emmmm@+wmﬁﬁ+%l¥“@MM&+M@ﬁQ®

)
(Ima(o)E + (o)) )

0

—T

<& (Ima(O); + I + [

Dropping the positive terms

t
[ e (Ims)3 + In(s)1Esz ) s,
0
we obtain the basic estimates

e*lm(t)|Z; < Cy [HmO(O)H%g) +[Ino(0)1IZ;,

0
[ (Imalo)lizs + Imo(s) 12z ) ds].
N (19)
(1) 3 < C1[lma(0) 35 + Ino(0) 2

[ (I + ol ) as)

\ —T
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Next, we differentiate (8) with respect to £, and then multiply the resulting
equation by e*'w(&)me (€, t) and e w(&)ne (€, t), respectively, where w(€) again
denotes the function in (6), with the same values £y, we obtain

1 oo
(§e2“twm§) + (geg“twm§> — e2“twm§/ Ji(y)me(€ —y,t)dy
t € —0o0
2w

=r (bln(f —crt—7)+bip(§ —cT) — 2a1q§)£wmm5e2“t — 2a1r1mm§we2”t

+ (_c_w’ —pA 14712000 — 1 —bin(€ — et — 1) — bip(€ — CT)]) wmge"

+ r1byden (€ — e, t — T)wmee + ribigng (€ — 7, t — T)wmee™,
and
1 oo
(§e2“twn§) + <§e2"twng>£ — e2“twn5/ Jo(y)ne(€ —y, t)dy
t —00

+ (—62—15), — 4o [QaQw —1—bom(§—crt—7)+ (€ — CT)}) wn?eQ’”

=ra[bom(§ — T, t — 7) + ¢(§ — 7)) — 2a2w}£wnnge2“t — 2agronnzwe!
+ robythewnee® m(€ — cr,t — 7) + robopwnge® me (€ — e, t — 1),

Integrating over R x [0, ] and carrying out similar steps to those that led to (18),
we obtain

t
2t <||mg<t)||%a+IIng(t)Higu) +06/0 20 <||m5(s)||%3u+||n§(s)||%3u>ds
0

<& (ImacO)l + a2 + |

-7

(Imacl + o)1) ds ) (20
-/ t [ @t spuereasas

where
Q& s) =ri(bin(€ — et —7) + biyp(§ — eT) — Qalqﬁ)gmmg
+ r1b1pen(§ — et t — T)me + 12 [bgm(f’ —cr,t—7)
+ (& —cT) — QaQw}gwnngeQ“t + robythewnee® m(€ — et — 7).

Note that (0,0) < (m(&,t),n(,t)) < (ki, k2) and ¢¢, ¢ are bounded on R,
using Young-inequality and similar to [19, Section 3], we have

/ t [ @t suiereasas
<C (Hmo(o)nig} + [lno(0)]I2, +/

—T

0

(oo + a9y ) ds)
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Substituting the inequality into (20) and dropping the positive terms

t
| (im0 + Ine(s) I ) s,
0
we obtain

(
e |me ()75 < C7[Hm0(0)H?{}U + [Imo (0 [,

-7

e |In(DlI35, < Cr[Imo(0)l3 + Ino(0) %

\ —T

b [ (ol + ool ) 0,

(21)

b [ (oo + ool ) ]

Combining (19) with (21) and noting that w(§) > 1 on R, we obtain the

following decay rate result.

Lemma 2.7. It holds that, fort > 0,

[ () [ 72 < (|2 (8)]] s,

< Cue™ im0} +mo(0) sy + | (Imo(s) g +ma(s) sy ) s

-7

() < [[n(E)]]

1 T
iy

0

< Cue im0} +mo(O) sy + | (Imo(s) g +mo(s) sy ) s

-7

where Cs = max {+/C1,/C7}.

Using Sobolev embedding theorem H'(R) — CY(R) and Lemma 2.7, we

have the following stability result
Lemma 2.8. [t holds that

sup [u™(z,t) — ¢(z + ct)| = sup |m(&, )| < Coe™,

zeR £eER
sup [vt (2, ) — (x + ct)| = sup [n(&, t)] < Coe ™,
z€R £eR

where Cg > 0.

t >0,

t>0,
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Step 2. Next, we prove the convergence of v~ (z,t) to ¢(z + ct) and v~ (z,t) to

P(r +ct) .
Let £ =2 + ct and
m(§,t) =u (x,t) — d(x +ct), mo(§,s) =uqg (x,s) — oz + cs),
n(&,t) =v (z,t) —Y(x +ct), no(&,s) =uv,(x,s) —(z+cs).

Similar to Step 1, we have the following stability result

Lemma 2.9. It holds that

sup [u”(z,t) — ¢(z + ct)| = sup |m(&, t)| < Croe™™, t >0,
z€R £eR

sup [v™(z,t) — ¥(x + ct)| = sup |n(&, )| < Croe™™, >0,
z€R £eR

where Chg > 0.

Step 3. In the last step, we prove the convergence of (u(z,t),v(x,t)) to
(B + ct), Y( + ).

Using Lemmas 2.8 and 2.9, similar to the proof of Lemma 3.10 in [21], we
can prove the convergence of (u(x,t),v(x,t)) to (¢p(z + ct), ¥ (x + ct)), that is

sup |u(z,t) — ¢(x +ct)| < Cre ™™, >0,
z€R

sup |v(z,t) — (x +ct)| < Cpe™™, >0
z€R

for some C;; > 0.

The proof of Theorem 2.1 is completed.

3. Discussion

In this paper, we have established the existence and nonlinear stability of trav-
eling wave fronts for delayed Lotka-Volterra cooperative system. It is remarked
that the upper and lower solution used to establish the existence of traveling
wave front is same as that in [16]. Moreover, it is easily seen that our method is
also suitable to nonlocal delayed Lotka-Volterra competition system and non-
local delayed Belousov-Zhabotinskii system.

Consider the following nonlocal dealyed Lotka-Volterra competition system

(22)

u — Sy xu+u=ulay —bu—co(z,t—71)), (x,t) € RxR,,
v — Jaxv+v=uv(ay—bou(z,t —7) —cv), (z,t) € R xR
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with initial data (4) and nonlocal delayed Belousov-Zhabotinskii system

u— S xutu=ull —u—ro(z,t—r71)], (z,t)e RxRy 2
{Ut—JQ*U+U:—bUU, (x,t) e R x Ry (23)

with initial data
u(z,0) =ug(x), (x,8) € Rx[—7,0], o
v(x,s) =wvo(z,s), (z,s) €Rx[—T,0], (24)

where 7 > 0 and b > 0 are constants, functions J;, h(y) (i = 1,2) are defined as
Section 3. The existence of traveling wave front for system (22) can be proved
similar to Section 3. Just Recently, Pan-Li-Lin [25] obtained the existence
of traveling wave solution of system (23) by the fixed point theorem. The
stability of traveling wave solutions for system (22) and system (23), connecting
(0, £2) with (3+,0) and (1,0) with (0, 1), can be proved similarly to Section 4,
respectively. We leave the details to reader.
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