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Abstract. We deal with a viscoelastic fluid model in a rectangle domain with non-
trivial velocity at the inflow and outflow area and slip boundary condition at the rest
of the boundary. For this model we investigate the existence of local in time solutions.
Then we present 2D simulations and we discuss the possibility of the derivation of
1D model by limit passage with the height of the rectangle to zero. Moreover, we
present few 1D models that we support by simulations.
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1. Introduction

Mathematical modeling of biological fluids is not trivial due to their complex
molecular structure. A good examples are gels or polymers which perform
many non-Newtonian behaviour [3, 17]. Another example is blood, consisting
of particles like red and white cells suspended in the main component, namely
in blood plasma. One can describe each component of fluid separately. Plasma
exhibits Newtonian response which can be covered by Navier-Stokes equations.
The other components are described using transport equation. However, it
leads to huge amount of equations which may not be easy to investigate and
simplifications are required. That is why it is considered as a continuum that
performs non-Newtonian behaviour [1, 2, 16, 20, 21].

We are interested in modeling only viscoelastic behaviour of a fluid. The
aim of this paper is to prove the local in time existence of solution to Oldroyd-
type of model in a case of non-zero flux. Moreover, we are interested in finding
a 1D model of viscoelastic fluid.

We choose the 2D domain of small height which we consider to be the
rectangle {Ωǫ} = (0, 1) × (0, ǫ) in R

2, where the boundary of Ωǫ is a sum of
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Γ = (0, 1)×{0, ǫ}, B = B1∪B2 = ({0}×(0, ǫ))∪({1}×(0, ǫ)) and corners. As the
viscoelastic fluid model we use Oldroyd-type system [10] in (t, x) ∈ (0,∞)×Ωǫ

∂tv + v · ∇v − µ∆v +∇p = div (FF T ),

div v = 0,

∂tF + v · ∇F = ∇vF,

(1)

with initial data: v(0, x) = v0(x), F (0, x) = F0(x).
We denote the viscosity by µ and the pressure by p. Moreover, v(t, x) is a

2-dimensional velocity field of fluid. The deformation gradient F (t, x) is such
a matrix that divF = 0 and detF = 1. Then, in 2D case we can introduce
φ = (φ1, φ2) such that F is given by

F =

(

−∂x2
φ1 −∂x2

φ2,

∂x1
φ1 ∂x1

φ2.

)

.

We obtain the following system

∂tv + v · ∇v − µ∆v +∇p = −
2
∑

i=1

∆φi∇φi,

div v = 0,

∂tφ+ v · ∇φ = 0,

(2)

with initial conditions

v(0, x) = v0(x), φ(0, x) = φ0(x).

We suppose that at the part B1 of boundary there is a constant inflow of fluid
and at the part B2 there is a constant outflow. Moreover, we assume that the
fluid is not flowing through part Γ. The proper choice of boundary conditions
is discussed in Section 2. We need to set conditions not only for velocity but
also for deformation gradient. This is essential to obtain the energy inequality
(described in Section 3) and estimates for transport equation. Moreover, in
Section 2 we present the main result, Theorem 2.1, concerning the existence of
solutions.

As the proof is long and technical, we divide it into two parts. First, we
present Section 4, containing theorems about regularity of Stokes equation and
transport equation. Moreover, we find the estimates of the nonlinear terms
there. Then we use all these results to prove Theorem 2.1 in Section 5. In
Section 6 we illustrate this result by 2D example of the fluid flow in rectangles
of different height. Next, in Section 7, we discuss a limit passage with height of
the rectangle to zero. The obtained 1D model turns out to have a very simple
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structure. That is why in Section 8 we have to generalise it, assuming that
the flux depends on the energy. Checking few different relations between flux
and energy, we obtain different models. This result is supported by simulations
showing the evolution of energy.

2. Statement of the main result

In this section, we discuss the choice of boundary and initial conditions for
velocity and for deformation gradient in the terms of ∇φ. In [8, 10] the whole
space, periodic box and smooth domain with zero Dirichlet boundary conditions
for velocity were considered. It caused that all boundary terms vanished, and
it was not needed to give any boundary conditions for φ. However, we do not
assume velocity to be zero at the boundary. Instead of this, we have a constant
inflow and outflow of fluid at two ends of domain, and a kind of slip boundary
condition for the rest of boundary. In this case we have to describe boundary
conditions for the deformation gradient. It is reasonable to consider it only in
the inflow area, where we are able to control the data.

We start with precise description of boundary terms for velocity. Let us
suppose that B1 denotes the part of the boundary with constant inflow of fluid
and B2 the part with constant outflow. Moreover, we assume that fluid is not
flowing through the part Γ. Then the boundary conditions are as follows

n · v = 0, n ·D(v) · τ = 0 at Γ× (0, T ), v = vp at B × (0, T ), (3)

where n = (n1, n2) is the outward normal vector and τ is the tangent vector.
Moreover, D(v) = 1

2
(∇v+∇vT ) is the symmetric velocity gradient. Function vp

denotes the basic flow, which in our case, is constant in time and space. How-
ever, it depends on the height of domain ǫ and the flux, which we assume to be
equal to one. Then, vp is given by the formula vp = (vp1, 0) = (1

ǫ
, 0).

As the velocity of fluid at the boundary is not equal to zero, we need to
describe behaviour of φ at the boundary. However, we are allowed to consider
it only in the inflow area B1. Moreover, instead of φ, we are more interested in
modeling its gradient. Then, we consider system of equations

∂t(∂xi
φj) + v · ∇(∂xi

φj) + ∂xi
v1∂x1

φj + ∂xi
v2∂x2

φj = 0, (4)

for i, j = 1, 2. We assume that φ at the boundary B1 is a given function
satisfying

∂x1
φ1 =

1
c
, ∂x1

φ2 = 0, ∂x2
φ1 = 0, ∂x2

φ2 = c, (5)

where c is constant.
The fact that v1 6= 0 at the part of boundary B1 gives us local existence of

solution to problem (4) near inflow area via method of characteristics. Moreover,
this solution is a C2 function, thus φ is a C3 function near the boundary B1.
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The assumption that at the inflow area ∂x1
φ2 = ∂x2

φ1 = 0 together with
special choice of initial condition,

∂x1
φ2(0, x1, x2) = ∂x2

φ1(0, x1, x2) = 0, (6)

causes that we are able to obtain energy inequality (14). The relaxation of these
conditions is discussed in Section 3.

Our choice of ∇φ in the inflow area is compatible with the condition
detF = 1, what in the language of φ means that following equation is sat-
isfied

∂x1
φ1∂x2

φ2 − ∂x2
φ1∂x1

φ2 = 1. (7)

Moreover, using condition (7), boundary terms (12) and transport equation (4)
for∇φ, we are able to calculate or at least estimate higher derivatives of φ at the
inflow area. We need it in Section 4 to prove L∞(0, T ;W 3

2 (Ω))∩W
1
2 (0, T ;W

2
2 (Ω))

estimates of φ in Lemma 4.5. All second order space derivatives of φ at the
boundary B1 are equal to zero except

∂x1
∂x1

φ2 = −
c

v1
∂x1

v2. (8)

What is more, all third order derivatives of φ at the boundary B1 are equal to
zero except

∂2
x1
∂x2

φ2 = −
c

v1
∂x2

∂x1
v2,

∂2
x1
φ1 = −

1

cv1
∂2
x1
v1,

∂2
x1
φ2 =

c

v21
∂t∂x1

v2 −
c

v1
∂2
x1
v2.

(9)

Now, we change system (2) by introducing a new function w = v − vp to
obtain problem for velocity with zero Dirichlet boundary conditions at B.

The new system for w is given by

∂tw + w · ∇w − µ∆w +∇p+
1

ǫ
∂x1

w = −
2
∑

i=1

∆φi∇φi,

divw = 0,

∂tφ+ w · ∇φ+
1

ǫ
∂x1

φ = 0,

(10)

with boundary conditions

w2 = 0, ∂x2
w1 = 0 at Γ× (0, T ), w = 0 at B × (0, T ), (11)

∂x1
φ1 =

1

c
, ∂x1

φ2 = 0, ∂x2
φ1 = 0, ∂x2

φ2 = c at B1 × (0, T ), (12)
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and initial conditions

w = w0, φ = φ0 for t = 0. (13)

We require that ∂x1
φ2(0, x1, x2) = ∂x2

φ1(0, x1, x2) = 0 at the boundary part Γ.
For this problem we formulate the main theorem about the existence of

local in time solutions.

Theorem 2.1. Let us assume that w0 ∈ W 2
2 (Ω) and φ0 ∈ W 3

2 (Ω). Then there

exists time T > 0 such that there exists a solution to the problem (10)–(13) on

(0, T ) satisfying w ∈ W
3, 3

2

2 (Ω× (0, T ))∩L∞(0, T ;W 2
2 (Ω)), φ ∈ L∞(0, T ;W 3

2 (Ω))

∩W 1
2 (0, T ;W

2
2 (Ω)).

In [10] the same regularity for the initial conditions was needed to obtain
existence result. This result was improved in [8] where the lower regularity
for φ0 ∈ W 2

p was considered. The main difference in Theorem 2.1 is that for
bounded domain we consider different boundary conditions than in [8,10], what
complicates the proof.

We divide the proof into two parts. The first part, described in Section 4,
contains regularity result for nonstationary Stokes problem and estimates for
nonlinear parts. The second, in Section 5, contains the proper proof which is
based on the Banach fixed point theorem.

3. Energy estimates

In this section, we show that for smooth solutions of problem (10) the energy
inequality holds if we choose proper boundary and initial conditions for φ. The
problem appears because the boundary conditions for velocity are not zero.
This produces the additional part in the right-hand side of inequality, namely:
−
∫

(0,t)

∫

Γ

∑2
i=1(n∇φi)(w · ∇φi)dσdτ . However, we are able to remove it due to

our choice of boundary conditions (12) and initial conditions (6). In fact, there
is larger class of conditions that makes this part disappearing, as it is enough
to assume that ∂x1

φ2(0, x1, x2) = ∂x2
φ1(0, x1, x2) = 0 at the boundary part Γ,

and ∂x1
φ2(t, x) = ∂x2

φ1(t, x) = 0 in the points Γ̄ ∩ B̄1. Equivalently, instead of
∂x1

φ2, ∂x2
φ1 we could consider ∂x1

φ1 and ∂x2
φ2.

Theorem 3.1. Let us assume that solution of problem (10) is sufficiently smooth

with initial conditions (6) and boundary conditions (12), then it fulfils the fol-

lowing inequality
∫

Ωǫ

1

2
|w(t)|2 +

1

2
|∇φ(t)|2 +

∫

(0,t)

|∇w|2dτdx

≤

∫

Ωǫ

1

2
|w(0)|2 +

1

2
|∇φ(0)|2dx+

1

2ǫ

∫

(0,t)

∫

(0,ǫ)

|∇φ(τ, 0, x2)|
2dx2dτ.

(14)
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Proof. First, we differentiate the last equation of problem (10) and obtain

∂t∇φ+∇(w · ∇φ) +
1

ǫ
∂x1

∇φ = 0.

Now, we take the first equation of problem (10), multiply it by w and
integrate over space variables

∫

Ωǫ

1

2
∂t|w|

2+
1

2
w·∇|w|2+µ|∇w|2+∇pw+

1

2ǫ
∂x1

|w|2dx = −

∫

Ωǫ

2
∑

i=1

∆φiw·∇φidx.

Thanks to integration by parts, boundary conditions, and divergence free con-
dition for w, we obtain that the second, forth and fifth terms are equal to zero.
In the end, we integrate by parts the right-hand side, what produces additional
boundary term which in general may not vanish:

−

∫

Ωǫ

2
∑

i=1

∆φiw · ∇φidx

=

∫

Ωǫ

2
∑

i=1

∇φi∇ (w · ∇φi) dx−

∫

∂Ωǫ

2
∑

i=1

(n∇φi) (w · ∇φi) dσ.

Here, we use the transport equation to the gradient of φ. Then, the part

∫

Ωǫ

2
∑

i=1

∇φi∇ (w · ∇φi) dx

= −

∫

Ωǫ

2
∑

i=1

∇φi

(

∂t∇φi +
1

ǫ
∂x1

∇φi

)

dx

= −

∫

Ωǫ

2
∑

i=1

(

1

2
∂t|∇φi|

2 +
1

2ǫ
∂x1

(

(∂x1
φi)

2 + (∂x2
φi)

2
)

)

= −

∫

Ωǫ

2
∑

i=1

1

2
∂t|∇φi|

2dx

−
1

2ǫ

(

∫

(0,ǫ)

2
∑

i=1

(

(∂x1
φi(t, 1, x2))

2 + (∂x2
φi(t, 1, x2))

2)
dx2

−

∫

(0,ǫ)

2
∑

i=1

(

(∂x1
φi(t, 0, x2))

2 + (∂x2
φi(t, 0, x2))

2)
dx2

)

.
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At the end, we obtain

∫

Ωǫ

(

1

2
∂t|w|

2 +
1

2
∂t|∇φ|2 + |∇w|2

)

dx

+
1

2ǫ

(
∫

(0,ǫ)

|∇φ(t, 1, x2)|
2dx2 −

∫

(0,ǫ)

|∇φ(t, 0, x2)|
2dx2

)

= −

∫

∂Ωǫ

2
∑

i=1

(n∇φi) (w · ∇φi) dσ

= −

∫

Γ

2
∑

i=1

(n∇φi) (w · ∇φi) dσ,

what after integrating over time gives energy inequality

∫

Ωǫ

1

2
|w(t)|2 +

1

2
|∇φ(t)|2 +

∫

(0,t)

|∇w|2dτdx

≤

∫

Ωǫ

1

2
|w(0)|2 +

1

2
|∇φ(0)|2dx+

1

2ǫ

∫

(0,t)

∫

(0,ǫ)

|∇φ(t, 0, x2)|
2dx2dτ

−

∫

(0,t)

∫

Γ

2
∑

i=1

(n∇φi) (w · ∇φi) dσdτ.

Now, we prove that our choice of boundary and initial conditions for φ makes
the boundary term to vanish. We obtain this by method of characteristics.
First, we simplify that term using boundary conditions for velocity

∫

Γ

2
∑

i=1

(n∇φi) (w · ∇φi) dσ =

∫

Γ

2
∑

i=1

n2 (∂x2
φi) (w1∂x1

φi) dσ.

Then, we consider the transport equations at the boundary part Γ for φ

∂tφ+ w · ∇φ+ vp · ∇φ = 0,

and for the derivative of φ

∂t∂xj
φ+ ∂xj

w · ∇φ+ w · ∇∂xj
φ+ vp · ∇∂xj

φ = 0,

for j = 1, 2.
As x ∈ Γ, then w2 = 0, ∂x1

w2 = 0 and ∂x2
w1 = 0 thus the transport

equations simplifies to

∂tφ+

(

w1 +
1

ǫ

)

∂x1
φ = 0,

∂t
(

∂xj
φ
)

+

(

w1 +
1

ǫ

)

∂x1

(

∂xj
φ
)

= −∂xj
wj

(

∂xj
φ
)

,
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for j = 1, 2.
By the method of characteristics, every characteristic line x(s) that has a

point in the set R× Γ×R, lies in that set. Moreover, solution φ is constant on
the characteristic line and the gradient of φ along x satisfies following equations

∂xj
φ (x(s)) = ∂xj

φ (x(0)) e−
∫ s

0
∂xjwj(x(τ))dτ ,

for j = 1, 2. We use it to calculate the part at the line x

2
∑

i=1

n2 (∂x2
φi) (w1∂x1

φi) (x(s))

=
2
∑

i=1

n2

(

∂x2
φi(x(0))e

−
∫ s

0
∂x2w2(x(τ))dτ

)(

w1(x(s))∂x1
φi(x(0))e

−
∫ s

0
∂x1w1(x(τ))dτ

)

Then, due to our choice of boundary conditions (12) and initial conditions (6) we
have ∂x2

φ1(x(0)) = ∂x1
φ2(x(0)) = 0. In consequence this part disappears.

4. Regularity results for linear problems

In this section, we present regularity results and estimates that are needed to
prove existence of local in time solutions to problem (10) in a box.

We start with the Stokes problem

∂tw − µ∆w +∇p = F,

divw = 0,
(15)

in a rectangle Ω with boundary conditions

w2 = 0, ∂x2
w1 = 0 at Γ× (0, T ), w = 0 at B × (0, T ). (16)

The slip boundary conditions at the part Γ allow us to use the method of sym-
metry with respect to Γ. This way we transform the problem in Ω to the system
in the larger rectangle. We localise it and obtain the same regularity results as
in the case of Stokes problem in infinite strip with zero Dirichlet boundary con-
ditions. Then, we present well-known regularity result for nonstationary Stokes
equation in a halfspace, that also holds in the case where domain is a strip. We
consider

∂tw − µ∆w +∇p = F

divw = 0,
(17)

in a halfspace with zero Dirichlet boundary conditions and w vanishing at the
infinity.
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Theorem 4.1. If the pair (w, p) is the solution of problem (17) in R
2
+ with

initial condition w0(x) = w(0, x) ∈ W 1
2 (R

2
+), and F ∈ L2(0, T ;L2(R2

+)), then
∇2w ∈ L2(0, T ;L2(R2

+)), ∇w ∈ L∞(0, T ;L2(R2
+)), ∂tw ∈ L2(0, T ;L2(R2

+)),
∇p ∈ L2(0, T ;L2(R2

+)). Moreover, the following inequality holds true

‖∇2w‖L2(0,T ;L2(R2
+
)) + ‖∂tw‖L2(0,T ;L2(R2

+
)) + ‖∇p‖L2(0,T ;L2(R2

+
))

≤ c
(

‖F‖L2(0,T ;L2(R2
+
)) + ‖w0‖W 1

2
(R2

+
)

)

.

Theorem 4.2. If the pair (w, p) is the solution of problem (17) with initial

condition w0(x) = w(0, x) ∈ W 2
2 (R

2
+), and F ∈ W

1, 1
2

2 (R2
+ × (0, T )), then

v ∈ W
3, 3

2

2 (R2
+ × (0, T )), ∇2p ∈ W

0, 1
2

2 (R2
+ × (0, T )). Moreover, the following

inequality holds true

‖w‖
W

3, 3
2

2
(R2

+
×(0,T ))

+‖∇2p‖
W

0, 1
2

2
(R2

+
×(0,T ))

≤ c

(

‖F‖
W

1, 1
2

2
(R2

+
×(0,T ))

+ ‖w0‖W 2
2
(R2

+
)

)

.

The following lemma shows estimates for convective term that are needed
in Section 5 to prove the existence of solution to nonlinear problem.

Lemma 4.3. Let us assume that u ∈ W
3, 3

2

2 (Ω× (0, T ))∩L∞(0, T ;W 2
2 (Ω)), then

u · ∇u ∈ W
1, 1

2

2 (Ω× (0, T )). Moreover, following inequality is obtained

‖u · ∇u‖
W

1, 1
2

2
(Ω×(0,T ))

≤ cT γ‖u‖
W

3, 3
2

2
(Ω×(0,T ))

‖u‖L∞(0,T ;W 2
2
(Ω))

for some γ > 0.

Proof. First, we estimate the L2(0, T ;L2(Ω)) norm of expression u · ∇u.

‖u · ∇u‖L2(0,T ;L2) ≤ T
1

2‖u‖L∞(0,T ;L4)‖∇u‖L∞(0,T ;L4).

Then, we calculate the L2(0, T ;L2(Ω)) norm of ∇(u · ∇u).

‖∇(u · ∇u)‖L2(0,T ;L2) ≤ ‖u · ∇ (∇u) ‖L2(0,T ;L2) + ‖∇u∇u‖L2(0,T ;L2)

≤ ‖∇u‖2L4(0,T ;L4) + ‖u‖L∞(0,T ;L∞)‖∇
2u‖L2(0,T ;L2)

≤ T
1

2 (c‖∇u‖2L∞(0,T ;W 1
2
) + ‖u‖L∞(0,T ;L∞)‖∇

2u‖L∞(0,T ;L2)).

At last, we estimate the half derivative of u with respect to time

∫

Ω

∫ T

0

∫ T

0

|u(t) · ∇u(t)− u(t′) · ∇u(t′)|2

|t− t′|2
dtdt′dx

=

∫

Ω

∫ T

0

∫ T

0

|u(t) · ∇(u(t)− u(t′))− (u(t)− u(t′)) · ∇u(t′)|2

|t− t′|2
dtdt′dx
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which is less or equal to

‖u‖2L∞(0,T ;L∞)

∫

Ω

∫ T

0

∫ T

0

|∇u(t)−∇u(t′)|2

|t− t′|2
dtdt′dx

+ ‖∇u‖2L∞(0,T ;L4)

(

c

∫

Ω

∫ T

0

∫ T

0

|∇u(t)−∇u(t′)|2

|t− t′|2
dtdt′dx

+ δ

∫

Ω

∫ T

0

∫ T

0

|u(t)− u(t′)|2

|t− t′|2
dtdt′dx

)

.

To get the final result we use Ladyzhenskaya’s inequality. Thus, we indeed
obtain the inequality

‖u · ∇u‖
W

1, 1
2

2
(Ω×(0,T ))

≤ cT γ‖u‖
W

3, 3
2

2
(Ω×(0,T ))

‖u‖L∞(0,T ;W 2
2
(Ω))

for some γ > 0.

Now, we present regularity results for the transport equation

∂tφ+ v · ∇φ = 0 (18)

in the rectangle Ω, with initial conditions (6) and boundary conditions (12)

at B1. Moreover, we assume that v ∈ W
3, 3

2

2 (Ω × (0, T )) is a divergence free

function and at the boundary it satisfies

v2 = 0, ∂x2
v1 = 0 at Γ, v = vp at B.

Theorem 4.4. We consider equation (18) with initial condition φ0 ∈ W 3
2 (Ω),

then ∇φ∆φ ∈ W
1, 1

2

2 (Ω × (0, T )). Moreover, for some γ > 0 the following

inequality is satisfied

‖∇φ∆φ‖
W

1, 1
2

2
(Ω×(0,T ))

≤ cT γ‖φ‖L∞(0,T ;W 3
2
(Ω))‖∂tφ‖L2(0,T ;W 2

2
(Ω)).

Before proving Theorem 4.4, we present regularity result for transport equa-
tion.

Lemma 4.5. Let φ be a solution of equation (18) with initial condition

φ0 ∈ W 3
2 (Ω). Then the solution φ ∈ L∞(0, T ;W 3

2 (Ω)) ∩W 1
2 (0, T ;W

2
2 (Ω)).

Proof. We present a priori estimates for transport equation (18).
First, we test equation (18) by φ. Then, for 0 < T < ∞, we have

‖φ‖L∞(0,T ;L2) ≤ c
(

‖φ(0)‖L2(Ω), ‖∇v‖L2(0,T ;L∞)

)

. (19)
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Next, we take a gradient of equation (18), test it by ∇φ

1

2

∫

Ω

|∇φ(T )|2dx=
1

2

∫

Ω

|∇φ(0)|2dx−

∫ T

0

∫

Ω

∇v·∇φ∇φdxdt−

∫ T

0

∫

Ω

v·∇(∇φ)∇φdxdt,

and estimate it in the following way

1

2

∫

Ω

|∇φ(T )|2dx

≤
1

2

∫

Ω

|∇φ(0)|2dx+ c‖∇v‖2L2(0,T ;L∞) + δ‖∇φ‖4L4(0,T ;L2) +
1

ǫ
‖∇φ‖2L2((0,T )×B1)

.

The last term appears as a result of integration by parts of the term
∫ T

0

∫

Ω
v ·∇ (∇φ)∇φdxdt, and, due to condition (12), the norm ‖∇φ‖2L2((0,T )×B1)

is equal to c1ǫT . Thus, we obtain

‖∇φ‖L∞(0,T ;L2) ≤ c
(

‖∇φ(0)‖L2(Ω), ‖∇v‖L2(0,T ;L∞), T
)

. (20)

Next, we take a Laplacian of equation (18), and test it by ∆φ.

1

2

∫

Ω

|∆φ(T )|2dx−
1

2

∫

Ω

|∆φ(0)|2dx

=−

∫ T

0

∫

Ω

∆v ·∇φ∆φdxdt− 2

∫ T

0

∫

Ω

∇v ·∇(∇φ)∆φdxdt−

∫ T

0

∫

Ω

v ·∇(∆φ)∆φdxdt.

We estimate this as follows:

1

2

∫

Ω

|∆φ(T )|2dx

≤ c‖∆v‖2L2(0,T ;L4) + δ

∫ T

0

(

c‖∇φ‖2L2(Ω) + δ‖∆φ‖6L2(Ω)

)

dt

+ c‖∇v‖2L2(0,T ;L∞) + δ‖∆φ‖4L4(0,T ;L2) +
1

ǫ
‖∇2φ‖2L2((0,T )×B1)

+
1

2

∫

Ω

|∆φ(0)|2dx.

Again, we look closer at the boundary term using this time conditions (8). Then

‖∇2φ‖2L2((0,T )×B1)
=‖cǫ∂x1

v2‖
2
L2((0,T )×B1)

, what is bounded as v∈W
3, 3

2

2 (Ω×(0, T )).

Thus, we obtain ‖∆φ‖L∞(0,T ;L2)≤c
(

‖∆φ(0)‖L2(Ω), ‖v‖L2(0,T ;W 3
2
), ‖∇φ‖L2(0,T,L2)

)

.

This time, we calculate the third derivative of equation (18), and we test it

by ∇3φ.

1

2

∫

Ω

|∇3φ(T )|2dx−
1

2

∫

Ω

|∇3φ(0)|2dx

= −

∫ T

0

∫

Ω

∇3v · ∇φ∇3φdxdt− 3

∫ T

0

∫

Ω

∇v · ∇ (∆φ)∇3φdxdt

− 3

∫ T

0

∫

Ω

∆v · ∇ (∇φ)∇3φdxdt−

∫ T

0

∫

Ω

v · ∇
(

∇3φ
)

∇3φdxdt,
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what we estimate by

r.h.s. ≤ δδ′‖∇φ‖4L4(0,T ;L∞) + c‖∇3v‖2L2(0,T ;L2) + c′δ‖∇3φ‖4L4(0,T ;L2)

+ c‖∆v‖2L2(0,T ;L4) + δ

∫ T

0

c‖∆φ‖2L2(Ω) + δ‖∇3φ‖6L2(Ω)dt

+ c‖∇v‖2L2(0,T ;L∞) + δ‖∇3φ‖4L4(0,T ;L2) +
1

ǫ
‖∇3φ‖2L2((0,T )×B1)

.

Here, from condition (9), the fourth order weak derivatives of φ near the bound-

ary B1 are bounded by the W
3, 3

2

2 (Ω×(0, T )) norm of v. Thus, the third order

space derivatives of φ at the boundary B1 are well defined and we estimate

them by

1

ǫ
‖∇3φ‖2L2((0,T )×B1)

≤ c‖∂x1
∂x2

v2‖
2
L2((0,T )×B1)

+ ‖∂x1
∂x1

v2‖
2
L2((0,T )×B1)

+ ǫ‖∂x1
∂tv2‖

2
L2((0,T )×B1)

,

what again is estimated by the W
3, 3

2

2 (Ω× (0, T )) norm of v.

Summing this up, we have

‖∇3φ‖L∞(0,T ;L2)

≤ c

(

‖∇3φ(0)‖L2(Ω), ‖v‖L2(0,T ;W 3
2
), ‖φ‖L2(0,T,W 2

2
),
1

ǫ
‖v‖

W
3, 3

2
2

(Ω×(0,T ))

)

.
(21)

Now, we estimate the time derivative. We test equation (18) by ∂tφ and we
obtain

∫ T

0

∫

Ω

|∂tφ|
2dx = −

∫ T

0

∫

Ω

v · ∇φ∂tφdxdt

≤ c‖v‖2L2(0,T ;L∞)‖∇φ‖2L∞(0,T ;L2) + δ‖∂tφ‖
2
L2(0,T ;L2).

‖∂tφ‖L2(0,T ;L2) ≤ c
(

‖v‖L2(0,T ;L∞), ‖∇φ‖L∞(0,T ;L2)

)

.

Then, again we take the gradient of equation (18), and testing it by ∂t∇φ we
obtain
∫ T

0

∫

Ω

|∂t∇φ|2dxdt = −

∫ T

0

∫

Ω

∇v · ∇φ∇∂tφdxdt−

∫ T

0

∫

Ω

v · ∇ (∇φ)∇∂tφdxdt

≤ c‖∇v‖2L2(0,T ;L∞)‖∇φ‖2L∞(0,T ;L2) + δ‖∇∂tφ‖
2
L2(0,T ;L2)

+ c‖v‖2L2(0,T ;L∞)‖∇
2φ‖2L∞(0,T ;L2),

to have

‖∇∂tφ‖L2(0,T ;L2)

≤ c
(

‖v‖L2(0,T ;L∞), ‖∇v‖L2(0,T ;L∞), ‖∇
2φ‖L∞(0,T ;L2), ‖∇φ‖2L∞(0,T ;L2)

)

.
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Finally, we take the Laplacian of equation (18) and test it by ∆∂tφ.

∫ T

0

∫

Ω

|∂t∆φ|2dxdt

= −

∫ T

0

∫

Ω

∆v · ∇φ∆∂tφdxdt−

∫ T

0

∫

Ω

v · ∇ (∆φ)∆∂tφdxdt

− 2

∫ T

0

∫

Ω

∇v · ∇ (∇φ)∆∂tφdxdt

≤ c‖∆v‖2L2(0,T ;L2)‖∇φ‖2L∞(0,T ;L∞) + δ‖∆∂tφ‖
2
L2(0,T ;L2)

+ c‖∇3φ‖2L∞(0,T ;L2)‖v‖
2
L2(0,T ;L∞) + c‖∆φ‖2L∞(0,T ;L2)‖∇v‖2L2(0,T ;L∞).

Thus, we have

‖∆∂tφ‖L2(0,T ;L2) ≤ c
(

‖v‖L2(0,T ;W 3
2
), ‖φ‖L∞(0,T,W 3

2
)

)

. (22)

This finishes the proof.

Now, we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. We want to prove that expression ∇φ∆φ ∈ W
1, 1

2

2 (Ω ×
(0, T )). In fact, we obtain better estimate, namely ∇φ∆φ ∈ W

1,1
2 (Ω× (0, T )).

First, we estimate the L2(0, T ;L2(Ω)) norm of ∇φ∆φ.

‖∇φ∆φ‖L2(0,T ;L2) ≤ T
1

2‖∇φ‖L∞(0,T ;L∞)‖∆φ‖L∞(0,T ;L2).

Then, we calculate the L2(0, T ;L2(Ω)) norm of ∇ (∇φ∆φ).

‖∇ (∇φ∆φ) ‖L2(0,T ;L2)

≤ ‖∇φ∇∆φ‖L2(0,T ;L2) + ‖∇∇φ∆φ‖L2(0,T ;L2)

≤ ‖∇2φ‖2L4(0,T ;L4) + ‖∇φ‖L∞(0,T ;L∞)‖∇
3φ‖L2(0,T ;L2)

≤ T
1

2

(

c‖∇2φ‖2L∞(0,T ;W 1
2
) + ‖∇φ‖L∞(0,T ;L∞)‖∇

3φ‖L∞(0,T ;L2)

)

.

Finally, we estimate the time derivative of ∇φ∆φ.

‖∂t (∇φ∆φ) ‖2L2(0,T ;L2)

≤ ‖∂t∇φ∆φ‖2L2(0,T ;L2) + ‖∇φ∂t∆φ‖2L2(0,T ;L2)

≤ ‖∂t∇φ‖2L2(0,T ;L4)‖∆φ‖2L∞(0,T ;L4) + ‖∇φ‖2L∞(0,T ;L∞)‖∂t∆φ‖2L2(0,T ;L2).

Moreover, we obtain following inequality

‖∇φ∆φ‖
W

1, 1
2

2
(Ω×(0,T ))

≤ cT γ‖φ‖L∞(0,T ;W 3
2
(Ω))‖∂tφ‖L2(0,T ;W 2

2
(Ω))

for some γ > 0.
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The following remark is the immediate consequence of Theorem 4.4 and
Lemma 4.5.

Remark 4.6. For v ∈ W
3, 3

2

2 (Ω× (0, T )) we obtain

‖∇φ∆φ‖
W

1, 1
2

2
(Ω×(0,T ))

≤ cT γ‖v‖
W

3, 3
2

2
(Ω×(0,T ))

‖φ(0)‖W 3
2
(Ω)

for some γ > 0.

5. Local in time existence for fixed ǫ

This section shows existence of local in time solution to model (2) in the rect-
angle of height ǫ. The proof is based on a Banach fixed point theorem and
regularity results for linear problems, namely Stokes and transport equations,
that were presented in Section 4.

Instead of model (2), we consider equivalent problem (10), which we ob-
tain by transformation of equations (2) in such a way that the zero Dirichlet
boundary conditions for velocity at the inflow and outflow area B are obtained.

∂tw + w · ∇w − µ∆w +∇p+
1

ǫ
∂x1

w = −

2
∑

i=1

∆φi∇φi,

divw = 0,

∂tφ+ w · ∇φ+
1

ǫ
∂x1

φ = 0,

(23)

with boundary conditions for velocity satisfying

w2 = 0, ∂x2
w1 = 0 at Γ× (0, T ), w = 0 at B × (0, T ), (24)

and for φ, we consider boundary conditions (12). Moreover, we require that the
initial conditions satisfy (6).

Theorem 5.1. Let us assume that w0 ∈ W 2
2 (Ω) and φ0 ∈ W 3

2 (Ω). Then there

exists local in time solution to problem (23) such that w ∈ W
3, 3

2

2 (Ω × (0, T )) ∩

L∞(0, T ;W 2
2 (Ω)), φ ∈ L∞(0, T ;W 3

2 (Ω)) ∩W 1
2 (0, T ;W

2
2 (Ω)).

Proof. First, following [8], we present a version of the Banach fixed point theo-
rem.

Theorem 5.2. Let X be a reflexive Banach space or let X have a separable

pre-dual. Let H be a convex, closed and bounded subset of X and let X →֒ Y ,

where Y is a Banach space.

Let A : X → X maps H into H and let

‖Au− Av‖Y < δ‖u− v‖Y ,

where u, v ∈ H and δ < 1. Then there exists unique fixed point of A in H.
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We use Theorem 5.2 with the spaceX = W
3, 3

2

2 (Ω×(0, T ))∩L∞(0, T ;W 2
2 (Ω))

and the space Y = L2(0, T ;W 2
2 (Ω)) ∩ L∞(0, T ;W 1

2 (Ω)). For given u ∈ X we
consider the operator A : X → X such that A[u] = w, where w is the solution
of problem

∂tw − µ∆w +∇p = −
1

ǫ
∂x1

u− u · ∇u−
2
∑

i=1

∆Ti[u]∇Ti[u],

divw = 0,

(25)

with boundary conditions

w2 = 0, ∂x2
w1 = 0 at Γ× (0, T ), w = 0 at B × (0, T ).

Here, the operator T [u] = φ is the solution operator to the transport equa-
tion

∂tφ+ u · ∇φ+ 1
ǫ
∂x1

φ = 0.

Using Theorem 4.4 and Lemma 4.3 we obtain that

−
1

ǫ
∂x1

u− u · ∇u−
2
∑

i=1

∆Ti[u]∇Ti[u] ∈ W
1, 1

2

2 (Ω× (0, T )).

Then the assumptions of Theorem 4.2 are fulfilled and, indeed, w ∈ X. More-
over, due to Remark 4.6 and Lemma 4.3, we are able to choose time T and the
radius R of the ball in X, such that solution w stays in that ball.

It remains to prove that operator A is a contraction. Let us define w, w̄, φ, φ̄
as follows: A[u] = w, A[ū] = w̄, T [u] = φ, A[ū] = φ̄. Moreover, we define
ũ = u− ū, φ̃ = φ− φ̄ and w̃ = w − w̄.

As nonstationary Stokes problem is a system of linear equations, then w̃

fulfils the following Stokes problem

∂tw̃ − µ∆w̃ +∇p̃ = F,

with the right-hand side

F = −
1

ǫ
∂x1

ũ+ ū · ∇ū+
2
∑

i=1

∆φ̄i∇φ̄i − u · ∇u−
2
∑

i=1

∆φi∇φi ∈ W
1, 1

2

2 (Ω× (0, T )).

Using Theorem 4.1 we obtain the estimate

‖∇2w̃‖L2(0,T ;L2(Ω)) + ‖∂tw̃‖L2(0,T ;L2(Ω)) + ‖∇p̃‖L2(0,T ;L2(Ω)) + ‖∇w̃‖L∞(0,T ;L2(Ω))

≤ c‖F‖L2(0,T ;L2(Ω)).
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To finish the proof we need to show that

‖F‖L2(0,T ;L2(Ω)) ≤ δ(‖ũ‖L2(0,T ;W 2
2
(Ω)), ‖ũ‖L∞(0,T ;W 1

2
(Ω)))

for sufficiently small δ.
We start with estimates of convective terms

‖ū · ∇ū− u · ∇u‖L2(0,T ;L2) = ‖ū · ∇ũ− ũ · ∇u‖L2(0,T ;L2)

≤ ‖ū · ∇ũ‖L2(0,T ;L2) + ‖ũ · ∇u‖L2(0,T ;L2).

Then, we deal with the particular parts in the following way

‖ũ · ∇u‖L2(0,T ;L2) ≤ T
1

2‖ũ‖L∞(0,T ;Lp)‖∇u‖L∞(0,T ;Lq),

and

‖ū · ∇ũ‖L2(0,T ;L2) ≤ T
1

2‖ū‖L∞(0,T ;L∞)‖∇ũ‖L∞(0,T ;L2),

where p, q > 2 and 2
p
+ 2

q
= 1. Using Sobolev imbedding theorem we arrive at

the inequality

‖ū ·∇ū−u ·∇u‖L2(0,T ;L2) ≤ T
1

2‖ũ‖L∞(0,T ;W 1
2
)

(

‖ū‖L∞(0,T ;L∞) + c‖∇u‖L∞(0,T ;Lq)

)

.

Now, we look closer at the part ∇φ∆φ − ∇φ̄∆φ̄ = ∆φ∇φ̃ + ∇φ̄∆φ̃. We
realise that we are able to estimate

‖∇φ̃∆φ‖L2(0,T ;L2) ≤ T
1

2‖∇φ̃‖L∞(0,T ;Lp)‖∆φ‖L∞(0,T ;Lq),

and

‖∇φ̄∆φ̃‖L2(0,T ;L2) ≤ T
1

2‖∇φ̄‖L∞(0,T ;L∞)‖∆φ̃‖L∞(0,T ;L2),

where p, q > 2 and 2
p
+ 2

q
= 1. Again, using Sobolev imbedding theorem we

arrive at the following inequality

‖∇φ∆φ−∇φ̄∆φ̄‖L2(0,T ;L2)

≤ T
1

2‖φ̃‖L∞(0,T ;W 2
2
)‖φ‖L∞(0,T ;W 3

2
) + T

1

2‖φ̃‖L∞(0,T ;W 2
2
)‖φ̄‖L∞(0,T ;W 3

2
).

We need estimates for the transport equation of φ̃

∂tφ̃+
1

ǫ
∂x1

φ̃+ ũ · ∇φ̄+ u · ∇φ̃ = 0, (26)

with initial condition φ̃0 = 0. We differentiate equation (26) and obtain

∂t∇φ̃+
1

ǫ
∇∂x1

φ̃+∇ũ · ∇φ̄+∇u · ∇φ̃+ ũ · ∇
(

∇φ̄
)

+ u · ∇
(

∇φ̃
)

= 0.
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We multiply it by ∇φ̃ and integrate over Ω:

1

2
∂t‖∇φ̃‖22

≤ −

∫

Ω

∇ũ · ∇φ̄∇φ̃+∇u · ∇φ̃∇φ̃+ ũ · ∇
(

∇φ̄
)

∇φ̃+ u · ∇
(

∇φ̃
)

∇φ̃

≤ ‖∇φ̃‖22 (2‖∇u‖∞ + 2c) + δ
(

‖∇ũ · ∇φ̄‖22 + ‖ũ · ∇∇φ̄‖22
)

.

Using Gronwall’s inequality we obtain

‖∇φ̃‖22(T ) ≤ δecT+
∫ T

0
‖∇u‖∞(t)dt

∫ T

0

‖∇ũ · ∇φ̄‖22 + ‖ũ · ∇∇φ̄‖22dt

≤ cδecT+
∫ T

0
‖∇u‖∞(t)dt‖ũ‖2L2(0,T ;W 1

2
)‖∇φ̄‖2L∞(0,T ;W 2

2
).

Then, we consider Laplacian of equation (26):

∂t∆φ̃+
1

ǫ
∆∂x1

φ̃+∆ũ · ∇φ̄+∆u · ∇φ̃

+ 2∇ũ · ∇
(

∇φ̄
)

+ 2∇u · ∇
(

∇φ̃
)

+ ũ · ∇
(

∆φ̄
)

+ u · ∇
(

∆φ̃
)

= 0.

We multiply it by ∆φ̃ and integrate over Ω:

∂t‖∆φ̃‖22 ≤ −

∫

Ω

∆ũ · ∇φ̄∆φ̃+∆u · ∇φ̃∆φ̃+ 2∇ũ · ∇
(

∇φ̄
)

∆φ̃

+ 2∇u · ∇
(

∇φ̃
)

∆φ̃+ ũ · ∇
(

∆φ̄
)

∆φ̃+ u · ∇
(

∆φ̃
)

∆φ̃

≤ ‖∆φ̃‖22

(

c̃‖u‖2W 3
2

+ 5c
)

+ δ
(

‖∆ũ · ∇φ̄‖22 + c̄‖u‖2W 3
2

‖∇φ̃‖22

+ ‖2∇ũ · ∇
(

∇φ̄
)

‖22 + ‖ũ · ∇
(

∆φ̄
)

‖22
)

.

Using Gronwall’s inequality we obtain

‖∆φ̃‖22(T )

≤ δe
5cT+c̃

∫ T

0
‖u‖2

W3
2

dt
∫ T

0

‖∆ũ · ∇φ̄‖22 + c̄‖u‖2W 3
2

‖∇φ̃‖22 + ‖2∇ũ · ∇
(

∇φ̄
)

‖22

+ ‖ũ · ∇
(

∆φ̄
)

‖22dt ≤ cδe5cT+3
∫ T

0
‖∇u‖∞dt‖ũ‖2L2(0,T ;W 2

2
)‖∇φ̄‖2L∞(0,T ;W 2

2
).

Hence, for sufficiently small time T , the operator A is a contraction.
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6. 2D example of flow

Here we present 2D numerical illustrations of problem (1). Our point of interest
is the change of the velocity and energy, given by the formula S = F : F , in
domains of different height.

First, we set the parameters and boundary conditions. We choose µ being
equal to 0.01. For the velocity we use boundary conditions (3), choosing vp = 1.
Moreover, we assign function F at the inflow area to be equal to F11 = 2,
F22 = 0.5 and F12 = F21 = 0. As domains, we use rectangles of width equal to
5 and height equal to 1, 0.6 and 0.3 respectively. We used program FEniCS to
perform calculations on a mesh containing 32× 160 triangles. Here we present
energy S and velocity v for time t = 0.5 and t = 2.5.

Figure 1: Energy S in time t = 0.5 and t = 2.5

Figure 1 shows energy S in time t = 0.5 and t = 2.5. We observe an
increasing main wave transported in time, followed by smaller waves. That
phenomena occurs in all rectangles. Figure 2 shows visualization of first com-

Figure 2: The first component of velocity v in time t = 0.5 and t = 2.5

ponent of velocity vector v. In time t = 0.5 we observe small perturbations that
are propagated with time. Moreover, the size of the perturbations increases.
Here the first component of velocity changes from 0.98 to 1.02. The second
component of velocity is presented in Figure 3. Here we observe fluctuations
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Figure 3: The second component of velocity v in time t = 0.5 and t = 2.5

that have similar sizes as the perturbations of first component of velocity. They
occur in all rectangles but we observe that they are smaller in the thinnest one.

Those examples suggest that the fluid behaves in a similar way in the rect-
angles of different height. Thus there is a hope that after limit passage with the
height of domain to zero, we would obtain a 1D model that is able to describe
that fluid.

7. Limit model

In this section, we present a discussion about limit passage with the height of
domain to zero. We start with 2D model (10)

∂twǫ + wǫ · ∇wǫ − µ∆wǫ +∇pǫ + vp,ǫ∂x1
wǫ = −

2
∑

i=1

∆φi,ǫ∇φi.ǫ,

divwǫ = 0,

∂tφǫ + wǫ · ∇φǫ + vp,ǫ∂x1
φǫ = 0,

(27)

with boundary conditions satisfying (16) and (12). The index ǫ means here the
dependence on the height of domain. We recall that vp,ǫ denotes a constant flow
in direction x1 and is given by the formula vp,ǫ =

flux
ǫ
. In contradiction to the

situation in Section 2, we do not assume that the flux is equal to one, but that
it depends on ǫ. Moreover, we assume that vp,ǫ → vp as ǫ → 0.

For fixed ǫ, due to Theorem 2.1, system (27) possesses local in time solution.
Unfortunately, the time T ∗

ǫ of existence of solution depends on ǫ and it may
happen that when ǫ → 0, the T ∗

ǫ → 0. However, we assume that it is not the
case, and there exists T ∗ > 0, such that T ∗ < T ∗

ǫ for all ǫ.
From energy inequality (14), we obtain that L2 norm of ∇wǫ is bounded by

initial conditions and time. Now, we assume that the norm of initial conditions
is bounded independently from ǫ. It gives us

‖∇wǫ‖L2(0,T ∗;L2(Ωǫ)) < K + c̃T ∗,
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for all ǫ. Then, we use the Poincaré inequality, to obtain

‖wǫ‖L2(0,T ∗;L2(Ωǫ)) ≤ ǫ‖∇wǫ‖L2(0,T ∗;L2(Ωǫ)) < ǫ(K + c̃T ∗).

Passing with ǫ to zero we obtain that ‖wǫ‖L2(0,T ∗;L2(Ωǫ)) → 0, and the limit
velocity w̄ is equal to zero.

Again, from the energy inequality (14) and estimates for transport equation,
we obtain that the L2 norm of ∇φǫ and ∂tφǫ is bounded independently on ǫ and,
in consequence, there exists subsequence that ∇φǫ and ∂tφǫ converge weakly
to ∇φ and ∂tφ respectively. Then, we consider the transport equation

∂tφǫ + wǫ · ∇φǫ + vp,ǫ∂x1
φǫ = 0.

The ‖wǫ ·∇φǫ‖L2(0,T ∗;L2(Ωǫ)) is going to zero with ǫ proceeding to zero, due to the
fact that ‖wǫ‖L2(0,T ∗;L2(Ωǫ)) → 0. The behaviour of the last part of this equation,

however, depends on the vp,ǫ =
flux
ǫ

→ vp. It follows, that the limit model for
transport equation is

∂tφ+ vp∂x1
φ = 0. (28)

Equivalently, we consider the transport of energy Sǫ, defined by

Sǫ = (∂x1
φǫ,1)

2 + (∂x1
φǫ,2)

2 + (∂x2
φǫ,1)

2 + (∂x2
φǫ,2)

2,

satisfying equation

∂tSǫ + wǫ · ∇Sǫ + vp,ǫ∂x1
Sǫ = −2

2
∑

i,j=1

∂xj
wǫ∇φi,ǫ∂xj

φi,ǫ.

The limit model for S is given by transport equation

∂tS + vp∂x1
S = 0. (29)

Models (28) and (29) have very simple structure and it is easy to find the
solution by the method of characteristics.

8. Generalized 1D model and simulations

We would like to generalize 1D models obtained in Section 7. The main idea
is to code information about the shape of 2D domain into vp. We assume
that the 2D domain has the constant length, but its height I depends on the
energy S. Moreover, we assume that fluid flows only in the vertical direction,
and the 1D velocity vp(t, x1) ≈

flux
I

depends only on the height of 2D domain
in the point (t, x1). In fact, we obtain that vp is the function of energy S. The
most challenging task is to find the dependence between energy and the height
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of domain I. We postulate that when the height I goes to zero or to infinity,
then the energy tends to infinity. Then, assuming the height I to be small,
we generalize model (29) obtained in Section 7 by assumption that vp is not
constant, but depends on the energy S. We present simulations for different
choice of function vp(S), namely, linear, quadratic or exponential function.

We consider the model

∂tS + vp(S)∂x1
S = 0, (30)

where vp(S) is a given function. Due to the method of characteristics, the
solution S is constant along characteristic lines, which are straight and directed
according to the initial value of S. That is why our point of interest is not
to investigate the change of S, but to compare the evolution of domain under
different choice of function vp. Thus, we fix the initial shape to be given by the
function I0(x) = 0.1 + 0.05x sin(3πx) for x ∈ (0, 1). For different choice of vp,
namely vp(S) = S, vp(S) = S2 and vp(S) = eS, we calculate the initial condition
for S under assumption that vp(S) = 1

I
. Then we solve the equation (30) in

Octave and calculate the evolution of the shape I for the particular time steps.
Following figures illustrate the change of domain in time for different vp. All
the figures are drawn in a rectangle (0, 2) × (0, 0.2). We observe that for each
model, the shape of domain is not only transported in direction x, but it is also
changing with time. The area, where function I is decreasing, is expanding in
time. On the other hand, the area, where function I is increasing, decreases
with time. This, together with the fact that maximal and minimal value of I is
constant in time, leads to a steep hump.

Figure 4: The shape of domain for vp = S in time t = 2, 14, 30

Figure 4 shows the shape of domain under assumption that vp = S for
time step equal to 2, 14 and 30. We observe that for time 14 the graph of I
begins to be vertical and in time 30 it even turns back for a while, what may
be interpreted as the place where the boundary of domain ruptures.
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Figure 5: The shape of domain for vp = S2 in time t = 2, 14, 20

Figure 5 shows the shape of domain in case where vp = S2 for time step
equal to 2, 14 and 20. Here we observe that the change of domain is much faster
and in the time 14, graph is no longer a function.

Figure 6: The shape of domain for vp = eS in time t = 2, 14, 30

Figure 6 shows the shape of domain under assumption that vp = eS for time
step equal to 2, 14 and 30. Here the evolution of the domain is similar to the
one that is presented in the Figure 4.

Our future point of interest is to investigate the free boundary problem for
viscoelastic fluid. We would like to check the existence of solutions and to do
the limit passage with height of domain to zero. The interesting thing would
be to compare the new model with the models presented in this section.
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