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Interpolation of Closed Subspaces and
Invertibility of Operators

Irina Asekritova, Fernando Cobos and Natan Kruglyak

Abstract. Let (Y0, Y1) be a Banach couple and let Xj be a closed complemented
subspace of Yj , (j = 0, 1). We present several results for the general problem of
finding necessary and sufficient conditions on the parameters (θ, q) such that the real
interpolation space (X0, X1)θ,q is a closed subspace of (Y0, Y1)θ,q. In particular, we
establish conditions which are necessary and sufficient for the equality (X0, X1)θ,q =
(Y0, Y1)θ,q, with the proof based on a previous result by Asekritova and Kruglyak
on invertibility of operators. We also generalize the theorem by Ivanov and Kalton
where this problem was solved under several rather restrictive conditions, such as
that X1 = Y1 and X0 is a subspace of codimension one in Y0.
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1. Introduction

Interpolation of subspaces is an important and difficult problem that arose at
the beginning of modern interpolation theory, in applications of interpolation
to boundary value problems for partial differential equations. In the papers by
Triebel [12] and Wallstén [14], it was shown that interpolation of subspaces may
behave badly. Lions and Magenes wrote in their book (see [9, p. 107]) that “the
main difficulties of the use of interpolation is that the interpolated space between
closed subspaces is not necessarily a closed subspace in the interpolated space”
and later on the same page “It would be of great interest to obtain criteria
allowing to affirm a priory that, except for certain values of the parameters,
the interpolation space is closed”. This is exactly the problem that we consider
below.
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Let (X0, X1) be a subcouple of a Banach couple (Y0, Y1), i.e. let Xj be a
closed subspace of Yj. Then the general problem for the real method can be
formulated as follows:

Problem 1. Find necessary and sufficient conditions on the parameters (θ, q)
such that the real interpolation space (X0, X1)θ,q is a closed subspace of the space
(Y0, Y1)θ,q.

Problem 1 was solved by Ivanov and Kalton in [6] (a slightly weaker result
was obtained earlier by Löfström [10,11]) under the following conditions:

a) the couple (Y0, Y1) is regular (that is, Y0 ∩ Y1 is dense in Yi for i = 0, 1)
and X1 = Y1,

b) X0 is a closed subspace of codimension one in Y0,

c) X0 ∩X1 is dense in X1,

d) 1 ≤ q <∞.

The most restrictive condition in the Ivanov-Kalton theorem is b), i.e. that
the codimension of X0 in Y0 is equal to one. It is interesting to generalize this
theorem to the case when X0 is a closed subspace of a finite codimension in Y0.
Such a generalization is presented in Section 2. Since the proof is based on the
Ivanov-Kalton theorem, we cannot omit the other restrictions.

In Section 3, we establish necessary and sufficient conditions for the equality

(X0, X1)θ,q = (Y0, Y1)θ,q (1.1)

under the single condition that the space Xj is complemented in Yj (j = 0, 1).
Thus the codimension of the space Xj in Yj (j = 0, 1) as well as the parameter q
can be equal to infinity. The proof is based on a quite recent result on invert-
ibility of operators in spaces of real interpolation [1]. Note that the condition
that the space Xj is complemented in Yj (j = 0, 1) is fulfilled in many cases,
for example, when the codimension of space Xj in Yj is finite or if Xj and Yj
are Hilbert spaces. We also establish in this section some results for the couple
(L2(Ω),W 1,2(Ω)).

In Section 4, we use duality to establish a connection between our charac-
terization of equality (1.1) and the generalization of the Ivanov-Kalton theorem
obtained in Section 2.

Everywhere below, we will freely use standard notions and facts of real
interpolation (see the books [2–4], or [13]).
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2. Generalization of the Ivanov-Kalton theorem

We start by formulating the Ivanov-Kalton theorem from [6].
Let us consider a regular couple (Y0, Y1). Then there exists a conjugate

couple (Y ∗0 , Y
∗

1 ) and for a non-zero element ψ ∈ Y ∗0 we can define indices (with
respect to the couple (Y ∗0 , Y

∗
1 ))

α0(ψ) = sup

{
θ ∈ [0, 1] :

K(s, ψ;Y ∗0 , Y
∗

1 )

K(t, ψ;Y ∗0 , Y
∗

1 )
≤ γ

(s
t

)θ
, for all 0 < s < t ≤ 1

}
,

β0(ψ) = inf

{
θ ∈ [0, 1] :

K(s, ψ;Y ∗0 , Y
∗

1 )

K(t, ψ;Y ∗0 , Y
∗

1 )
≥ γ

(s
t

)θ
, for all 0 < s < t ≤ 1

}
,

where γ = γ(θ, ψ) is a constant independent of s and t. Clearly,

0 ≤ α0(ψ) ≤ β0(ψ) ≤ 1.

Theorem 2.1 (Ivanov-Kalton). Suppose that the following conditions are sat-
isfied:

a) the couple (Y0, Y1) is regular and X1 = Y1,

b) X0 is a closed subspace of codimension one in Y0,

c) X0 ∩X1 is dense in X1,

d) 1 ≤ q <∞.

Let ψ ∈ Y ∗0 be such that X0 = kerψ, then (X0, X1)θ,q is a closed subspace of
(Y0, Y1)θ,q if and only if

θ /∈ [α0(ψ), β0(ψ)] .

Moreover, for θ ∈ (0, α0(ψ)) the space (X0, X1)θ,q is a closed subspace of codi-
mension one in (Y0, Y1)θ,q and for θ ∈ (β0(ψ), 1) the space (X0, X1)θ,q coincides
with (Y0, Y1)θ,q.

Remark 2.2. In the paper by Ivanov and Kalton [6], dilation indices were used
instead of the indices α0(ψ), β0(ψ):

σ0 = lim
k→∞

(
inf
n≥0

1

k
ln2

(
K(2−n, ψ;Y ∗0 , Y

∗
1 )

K(2−n−k, ψ;Y ∗0 , Y
∗

1 )

))
,

σ1 = lim
k→∞

(
sup
n∈Z

1

k
ln2

(
K(2−n, ψ;Y ∗0 , Y

∗
1 )

K(2−n−k, ψ;Y ∗0 , Y
∗

1 )

))
.

However, it is not hard to show that σ0 = α0(ψ) and σ1 = β0(ψ). The proof of
the second equality uses the fact that ψ ∈ Y ∗0 .

In this section we obtain a generalization of the Ivanov-Kalton theorem in
which instead of the condition “X0 is a closed subspace of codimension one in Y0”
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we assume that X0 is a subspace of codimension n in Y0, i.e. dim(Y0/X0) = n.
Note that since

(Y0/X0)∗ = X⊥0 = {ψ ∈ Y ∗0 : ψ(X0) = 0}

(see [5, Theorem III.10.2 (p. 91)]), the annihilator X⊥0 also has dimension n.
To formulate the result we will need the following lemma.

Lemma 2.3. Suppose that the couple (Y0, Y1) is regular and X0 is a closed
subspace of codimension n in Y0. Let ψ1, . . . , ψn be a basis in X⊥0 . Then there
exists a system of vectors e1, . . . , en ∈ Y0 ∩ Y1 such that ψi(ej) = δij and

Y0 = X0 ⊕ span {e1, . . . , en} .

Proof. Since vectors ψ1, . . . , ψn form a basis in X⊥0 , there exit vectors u1, . . . , un
in Y0 such that ψi(uj) = δij, i, j = 1, . . . , n. Put M0 for the subspace generated
by {u1, . . . , un}. Clearly, u1, . . . , un is a basis in M0. Furthermore, since the
operator P0 : Y0 →M0 defined by the formula

P0(y) =
n∑
i=1

ψi(y)ui

is a continuous linear projection onto M0 with the kernel X0, we have that
Y0 = X0⊕M0. From the regularity of the couple (Y0, Y1) it follows that the linear
space Y0∩Y1 is dense in Y0 and hence P0(Y0∩Y1) is a linear space dense in M0.
Since the dimension of the space M0 is finite, we have that P0(Y0 ∩ Y1) = M0.
Thus it is possible to find vectors e1, . . . , en ∈ Y0 ∩ Y1 such that P0(ej) = uj,
j = 1, . . . , n. Let

ej = xj + uj, xj ∈ X0, j = 1, . . . , n.

Since ψi(ej) = δij, the operator P : Y0 → span {e1, . . . , en} defined by the
formula

P (y) =
n∑
i=1

ψi(y)ei

is a continuous linear projection on span {e1, . . . , en} with the kernel X0. Con-
sequently, Y0 = X0 ⊕ span {e1, . . . , en} .

To formulate the result let us fix a basis ψ1, . . . , ψn in X⊥0 and fix a system of
vectors e1, . . . , en∈Y0 ∩Y1 such that ψi(ej)=δij and Y0 =X0⊕ span {e1, . . . , en}
(the existence of such a system follows from Lemma 2.3). Then

Y ∗0 = X∗0 ⊕ span {ψ1, . . . , ψn} ,
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where
X∗0 = {y∗ ∈ Y ∗0 : y∗(ei) = 0, i = 1, . . . , n} .

For the element ψi (i = 1, . . . , n) we can consider the indices α0(ψi), β0(ψi)
defined with respect to the couple

~Ui = (X∗0 ⊕ span {ψ1, . . . , ψi} , Y ∗1 ) ,

i.e.

α0(ψi) = sup

{
θ ∈ [0, 1] :

K(s, ψi; ~Ui)

K(t, ψi; ~Ui)
≤ γ

(s
t

)θ
, 0 < s < t ≤ 1

}
, (2.1)

β0(ψi) = inf

{
θ ∈ [0, 1] :

K(s, ψi; ~Ui)

K(t, ψi; ~Ui)
≥ γ

(s
t

)θ
, 0 < s < t ≤ 1

}
. (2.2)

We are now ready to formulate the theorem.

Theorem 2.4. Suppose that the following conditions are satisfied:

a) the couple (Y0, Y1) is regular and X1 = Y1,

b) X0 is a closed subspace of codimension n in Y0,

c) X0 ∩X1 is dense in X1,

d) 0 < θ < 1 and 1 ≤ q <∞.

Then the space (X0, X1)θ,q is a closed subspace in (Y0, Y1)θ,q if and only if

θ /∈ ∪i=1,...,n [α0(ψi), β0(ψi)] .

Furthermore, if θ /∈ ∪i=1,...,n [α0(ψi), β0(ψi)] and the number of intervals
[α0(ψi), β0(ψi)] that lie on the right of θ (i.e. θ < α0(ψi)) is equal to k, then the
space (X0, X1)θ,q is a closed subspace of codimension k in (Y0, Y1)θ,q.

To prove the theorem we need the following lemma.

Lemma 2.5. Suppose that the conditions of Theorem 2.4 are satisfied. Then
the couple (X0, X1) and the couples (X0 ⊕ span(e1, . . . , ei), X1), i = 1, . . . , n are
regular.

Proof. Let us first note that without loss of generality we can change the norm
in Y0 to an equivalent norm, so we can assume that∥∥∥∥∥x+

n∑
i=1

λiei

∥∥∥∥∥
Y0

= ‖x‖X0
+

n∑
i=1

|λi| . (2.3)

It is clear from the condition c) above that to prove regularity of the couple
(X0, X1) it is sufficient to prove that X0 ∩ X1 is dense in X0. Let x ∈ X0.
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Since e1, . . . , en ∈ Y0 ∩ Y1 and Y1 = X1, we have that Y0 ∩ Y1 = (X0 ∩ X1) ⊕
span {e1, . . . , en} . Then the regularity of the couple (Y0, Y1) implies that for any
x ∈ X0 there exists a sequence

yk = xk +
n∑
i=1

λikei, xk ∈ X0 ∩X1, k = 1, 2, . . .

such that ‖x− yk‖Y0 → 0 for k →∞. Using (2.3) we obtain that

‖x− yk‖Y0 = ‖x− xk‖X0
+

n∑
i=1

∣∣λik∣∣ ,
where xk∈X0∩X1. Then for each x∈X0 there exists a sequence {xk}⊂X0∩X1

such that ‖x− xk‖X0
→ 0 for k →∞, i.e. the couple (X0, X1) is regular.

Moreover, as span(e1, . . . , ei) ⊂ X1 we have

(X0 ⊕ span(e1, . . . , ei)) ∩X1 = (X0 ∩X1)⊕ span {e1, . . . , ei} .

Then from the regularity of the couple (X0, X1) it follows that the couple
(X0 ⊕ span(e1, . . . , ei), X1) is also regular.

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Since the couple (X0 ⊕ span(e1, . . . , ei), X1) is regular,
we can consider its dual, which can be written as (X∗0 ⊕ span(ψ1, . . . , ψi), X

∗
1 ) ,

where as before

X∗0 = {y∗ ∈ Y ∗0 : y∗(ei) = 0, i = 1, . . . , n} .

Moreover, we have

ψi ∈ X∗0 ⊕ span(ψ1, . . . , ψi) = (X0 ⊕ span(e1, . . . , ei))
∗

and the kernel of the element ψi on the space X0 ⊕ span(e1, . . . , ei) coincides
with

X0 ⊕ span(e1, . . . , ei−1).

Thus all the conditions of the Ivanov-Kalton theorem are fulfilled for the sub-
couple (X0 ⊕ span(e1, . . . , ei−1), X1) of the couple (X0 ⊕ span(e1, . . . , ei), X1),
and therefore the space

(X0 ⊕ span(e1, . . . , ei−1), X1)θ,q

is a closed subspace of

(X0 ⊕ span(e1, . . . , ei), X1)θ,q



Interpolation of Closed Subspaces 7

if and only if θ /∈ [α0(ψi), β0(ψi)], where the indices α0(ψi), β0(ψi) (i = 1, . . . , n)
are defined by the formulas (2.1), (2.2). Moreover, the space

(X0 ⊕ span(e1, . . . , ei−1), X1)θ,q

is a closed subspace of codimension one in

(X0 ⊕ span(e1, . . . , ei), X1)θ,q

if θ < α0(ψi) and it coincides with (X0 ⊕ span(e1, . . . , ei), X1)θ,q if θ > β0(ψi).
Suppose θ /∈ ∪i=1,...,n [α0(ψi), β0(ψi)]. Let k be the number of intervals

[α0(ψi), β0(ψi)] that lie on the right of θ, i.e. θ < α0(ψi). Then among the
embedding operators

Ii : (X0 ⊕ span(e1, . . . , ei−1), X1)θ,q ↪→ (X0 ⊕ span(e1, . . . , ei), X1)θ,q

there are exactly k operators whose images are closed subspaces of codimension
one and n− k operators that are isomorphisms. Thus when

θ /∈ ∪i=1,...,n [α0(ψi), β0(ψi)] ,

the image of (X0, X1)θ,q in (X0 ⊕ span(e1, . . . , en), X1)θ,q = (Y0, Y1)θ,q is a closed
subspace of codimension k.

To prove the theorem we only need to show that in the case when

θ ∈ ∪i=1,...,n [α0(ψi), β0(ψi)] ,

the space (X0, X1)θ,q is not a closed subspace of (Y0, Y1)θ,q. Let

i∗ = min {i : θ ∈ [α0(ψi), β0(ψi)]} .

If i∗ > 1, then θ ∈ [α0(ψi∗), β0(ψi∗)] and θ /∈ [α0(ψi), β0(ψi)] for all i < i∗.
Therefore, for i = 1, .., i∗ − 1 the images of embedding operators Ii are closed
subspaces of codimension one or zero. As above, the space (X0, X1)θ,q is a closed
subspace of a finite codimension in (X0 ⊕ span(e1, . . . , ei∗−1), X1)θ,q, i.e.

(X0 ⊕ span(e1, . . . , ei∗−1), X1)θ,q = (X0, X1)θ,q ⊕M, (2.4)

where M is a finite dimensional space. Since θ ∈ [α0(ψi∗), β0(ψi∗)] we have that

(X0 ⊕ span(e1, . . . , ei∗−1), X1)θ,q

is not a closed subspace of (X0 ⊕ span(e1, . . . , ei∗), X1)θ,q and from (2.4) we see
that

(X0, X1)θ,q ⊕M
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is not a closed subspace of (X0 ⊕ span(e1, . . . , ei∗), X1)θ,q. Hence (X0, X1)θ,q is
not a closed subspace of (X0 ⊕ span(e1, . . . , ei∗), X1)θ,q. Indeed, if (X0, X1)θ,q
were a closed subspace of the space (X0 ⊕ span(e1, . . . , ei∗), X1)θ,q then the space
(X0, X1)θ,q⊕M would also be a closed subspace of (X0 ⊕ span(e1, . . . , ei∗), X1)θ,q
(as a sum of a closed subspace and a finite dimensional space, see [8, Lemma 1.9
in Chapter 3]), which is not true. Hence (X0, X1)θ,q is not a closed subspace of
(X0 ⊕ span(e1, . . . , ei∗), X1)θ,q .

Now, from the continuity of the embedding

(X0 ⊕ span(e1, . . . , ei∗), X1)θ,q ↪→ (Y0, Y1)θ,q

it follows that (X0, X1)θ,q is not a closed subspace of (Y0, Y1)θ,q.
If i∗ = 1, the Ivanov-Kalton theorem implies that (X0, X1)θ,q is not closed

in (X0 ⊕ span(e1), X1)θ,q and therefore (X0, X1)θ,q is not a closed subspace of
(Y0, Y1)θ,q.

Remark 2.6. Under the conditions of Theorem 2.4 we have that (X0, X1)θ,q =
(Y0, Y1)θ,q if and only if there are no intervals [α0(ψi), β0(ψi)] that lie on the
right of θ, i.e.

θ > max
1≤i≤n

β0(ψi). (2.5)

Since the set of parameters (θ, q) for which we have (X0, X1)θ,q = (Y0, Y1)θ,q
is independent of the basis ψ1, . . . , ψn in X⊥0 , then max1≤i≤n β0(ψi) does not
depend on the basis ψ1, . . . , ψn in X⊥0 .

In fact, in Section 4 we will obtain an expression for the right-hand side of
(2.5) that does not depend on the basis in X⊥0 .

3. Interpolation of subcouples

In this section we will give necessary and sufficient conditions for the equality
(X0, X1)θ,q = (Y0, Y1)θ,q without the restrictive assumptions on the couples ~X, ~Y
and the parameter q that we have in the previous section.

Let ~X = (X0, X1), ~Y = (Y0, Y1) be two Banach couples and let T : ~X → ~Y
be a bounded linear operator. By kerT we will denote the kernel of T on the
sum X0 +X1, i.e.

kerT = {x ∈ X0 +X1 : Tx = 0} .
Let us fix θ ∈ (0, 1) and consider two special subspaces of kerT :

V 0
θ,∞ =

{
x ∈ kerT : sup

0<t≤1

K(t, x; ~X)

tθ
<∞

}
,

V 1
θ,∞ =

{
x ∈ kerT : sup

1≤t

K(t, x; ~X)

tθ
<∞

}
.

Our main tool is the following result (see [1, p. 209]).
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Theorem 3.1. Let θ ∈ (0, 1), q ∈ [1,∞] and let T : ~X → ~Y be a bounded linear
operator. Suppose that the restrictions T : Xi −→ Yi have bounded inverses
(i = 0, 1). Then T : (X0, X1)θ,q → (Y0, Y1)θ,q is invertible if and only if

kerT = V 0
θ,∞ ⊕ V 1

θ,∞

and there are positive constants γ, ε such that for all 0 < s < t and all x ∈ V 0
θ,∞

we have

K(s, x; ~X) ≤ γ
(s
t

)θ+ε
K(t, x; ~X) (3.1)

and for all 0 < s < t and all x ∈ V 1
θ,∞ we have

K(s, x; ~X) ≥ γ
(s
t

)θ−ε
K(t, x; ~X). (3.2)

Remark 3.2. In [1, p. 209], this result was formulated in terms of some in-
dices, here we use an equivalent (γ, ε) formulation that is more suitable for our
purposes.

In the next theorem, ~Y = (Y0, Y1) is a Banach couple and Xj is a closed
complemented subspace of Yj (j = 0, 1), say Yj = Xj ⊕Mj, j = 0, 1.

Theorem 3.3. Let θ ∈ (0, 1) and q ∈ [1,∞]. Then (X0, X1)θ,q = (Y0, Y1)θ,q if
and only if the following condition holds: there exist positive constants γ, ε such
that whenever u ∈ M0, v ∈ M1 and u + v ∈ X0 + X1, then for any 0 < s < t
we have

K(s, v; ~X) + s ‖v‖Y1
sθ+ε

≤ γ
K(t, v; ~X) + t ‖v‖Y1

tθ+ε

and
K(t, u; ~X) + ‖u‖Y0

tθ−ε
≤ γ

K(s, u; ~X) + ‖u‖Y0
sθ−ε

.

Proof. Let A0 = X0 ×M0 × {0} and A1 = X1 × {0} ×M1 with the respective
norms ‖(x, u, 0)‖A0 = ‖x‖Y0 + ‖u‖Y0 and ‖(x, 0, v)‖A1 = ‖x‖Y1 + ‖v‖Y1 . Clearly,
~A = (A0, A1) is a Banach couple. Consider the operator T : ~A −→ ~Y defined
by T (x, u, v) = x+ u+ v. It is not difficult to verify that T is a bounded linear

operator from ~A to ~Y and T : A0 −→ Y0, T : A1 −→ Y1 are invertible.
For any w = (x, u, v) ∈ A0 + A1, we have

K(t, w; ~A) = K(t, x; ~X) + ‖u‖Y0 + t‖v‖Y1 .

Hence
(A0, A1)θ,q = (X0, X1)θ,q × {0} × {0}

and therefore the equality (X0, X1)θ,q = (Y0, Y1)θ,q is equivalent to the invert-
ibility of T : (A0, A1)θ,q −→ (Y0, Y1)θ,q. This allows us to use Theorem 3.1.
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Note that if w = (x, u, v) belongs to kerT then x = −u− v. By definition
of V 0

θ,∞, if w ∈ V 0
θ,∞ we obtain that

sup
0<t≤1

K(t, u+ v; ~X) + ‖u‖Y0 + t‖v‖Y1
tθ

<∞.

This implies that sup0<t≤1 t
−θ‖u‖Y0 < ∞ and then u = 0. Hence V 0

θ,∞ consists
of all the vectors w = (−v, 0, v) with v ∈ (X0 +X1) ∩M1 such that

sup
0<t≤1

K(t, v; ~X) + t‖v‖Y1
tθ

<∞.

The last condition is equivalent to

sup
0<t≤1

K(t, v; ~X)

tθ
<∞. (3.3)

Similarly, V 1
θ,∞ is formed by all the vectors w = (−u, u, 0) with u ∈ (X0 +X1)∩

M0 such that

sup
t≥1

K(t, u; ~X)

tθ
<∞. (3.4)

From the shape of the vectors in V 0
θ,∞ and V 1

θ,∞, it is clear that V 0
θ,∞∩V 1

θ,∞ = {0}.
Moreover, any w = (−u−v, u, v) in kerT can be decomposed as w = (−v, 0, v)+
(−u, u, 0). Hence we have kerT = V 0

θ,∞ ⊕ V 1
θ,∞, provided that (3.3) and (3.4)

hold whenever u ∈M0, v ∈M1 and u+ v ∈ X0 +X1.
The inequality (3.1) now reads

K(s, v; ~X) + s‖v‖Y1
sθ+ε

≤ γ
K(t, v; ~X) + t‖v‖Y1

tθ+ε
, 0 < s < t, (3.5)

for all v ∈ (X0 + X1) ∩M1. Taking t = 1 in (3.5), we obtain the inequality
(3.3). Analogously, (3.2) implies

K(t, u; ~X) + ‖u‖Y0
tθ−ε

≤ γ
K(s, u; ~X) + ‖u‖Y0

sθ−ε
, 0 < s < t (3.6)

for all u ∈ (X0 +X1) ∩M0 and choosing s = 1 yields (3.4).
In conclusion, applying Theorem 3.1 to the operator T we derive that the

necessary and sufficient condition for the equality (X0, X1)θ,q = (Y0, Y1)θ,q is
that there exist constants γ, ε > 0 such that (3.5) and (3.6) hold whenever
u ∈M0, v ∈M1 and u+ v ∈ X0 +X1. This completes the proof.

Since the conditions stated in Theorem 3.3 do not depend on q, as a conse-
quence we obtain the following result.
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Corollary 3.4. Let ~Y = (Y0, Y1) be a Banach couple, let Xj be a closed com-
plemented subspace of Yj (j = 0, 1) and θ ∈ (0, 1). If there is q0 ∈ [1,∞] such
that (X0, X1)θ,q0 = (Y0, Y1)θ,q0, then (X0, X1)θ,q = (Y0, Y1)θ,q for any q ∈ [1,∞].

In the rest of this section we work with the couple (L2(Ω),W 1,2(Ω)). Here
Ω is a bounded connected open domain in Rn with a C∞ boundary and W 1,2(Ω)
is the Sobolev space defined by the norm

‖f‖W 1,2(Ω) =

(
n∑
i=1

‖ ∂f
∂xi
‖2
L2(Ω) + ‖f‖2

L2(Ω)

) 1
2

,

where the derivatives ∂f
∂xi

, i = 1, . . . , n, are considered in the sense of distribu-
tions. Let C∞0 (Ω) be the set of C∞ functions with compact support in Ω. We
consider the space W 1,2

0 (Ω), which is the closure of C∞0 (Ω) in W 1,2(Ω). This
space plays a very important role in the theory of PDE (see, for example, [7]).
In particular, W 1,2

0 (Ω) is the kernel of the trace operator.
It is known (see [7, Corollary 7.3.1 and Lemma 7.3.1 (p. 171)]) that

W 1,2(Ω) = W 1,2
0 (Ω)⊕W,

where W is the space of weakly harmonic functions, i.e. such functions v from
W 1,2(Ω) that for any function ϕ ∈ C∞0 (Ω) we have∫

Ω

(
∂v

∂x1

∂ϕ

∂x1

+ · · ·+ ∂v

∂xn

∂ϕ

∂xn

)
dx = 0.

Clearly, the space of weakly harmonic functions is a closed subspace of
W 1,2(Ω). It is also known (see [9, Theorems 1.11.6 (p. 64) and 1.11.1 (p. 55)])
that

(L2(Ω),W 1,2(Ω))[θ] = (L2(Ω),W 1,2
0 (Ω))[θ] if and only if 0 < θ <

1

2
.

Since (L2(Ω),W 1,2(Ω)) and (L2(Ω),W 1,2
0 (Ω)) are couples of Hilbert spaces, the

complex method of interpolation produces the same space as the real method
with the parameter q = 2 (see [13, p. 143]). Therefore, we obtain that

(L2(Ω),W 1,2(Ω))θ,2 = (L2(Ω),W 1,2
0 (Ω))θ,2 if and only if 0 < θ <

1

2
.

The following result is a consequence of Corollary 3.4.

Corollary 3.5. For any 0 < θ < 1
2

and 1 ≤ q ≤ ∞, we have that

(L2(Ω),W 1,2(Ω))θ,q = (L2(Ω),W 1,2
0 (Ω))θ,q.

Remark 3.6. According to [3, Theorem 3.4.2] or [13, Theorem 1.6.2], for
0 < θ < 1 and 1 ≤ q < ∞ we have that (Y0, Y1)θ,q = (Y0, Y

◦
1 )θ,q, where Y ◦1

is the closure of Y0 ∩ Y1 into Y1. Corollary 3.5 shows that equality (Y0, Y1)θ,q =
(Y0, X1)θ,q may also hold for small subspaces X1 of Y1, i.e. subspaces having
infinite codimension.
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4. Duality

Below we will show how the equality (X0, X1)θ,q = (Y0, Y1)θ,q (see Theorem 3.3)
can be characterized in terms of some indices defined with respect to the dual
couple (Y ∗0 , Y

∗
1 ). This result establishes connections between Theorem 3.3 and

the generalization of the Ivanov-Kalton theorem (Theorem 2.4).
Let us assume that (Y0, Y1) is a regular Banach couple. Then we can con-

sider the dual Banach couple (Y ∗0 , Y
∗

1 ) and the annihilator of X0 in Y ∗0 , X⊥0
= {ψ ∈ Y ∗0 : ψ(X0) = 0}. Let β0(X⊥0 ) = β0(X⊥0 ;Y ∗0 , Y

∗
1 ) be the infimum of all

those δ ∈ [0, 1] such that there is a constant γ = γ(δ) > 0 for which

K(t, ψ;Y ∗0 , Y
∗

1 ) ≤ γ

(
t

s

)δ
K(s, ψ;Y ∗0 , Y

∗
1 )

for all ψ ∈ X⊥0 and all 0 < s < t ≤ 1. Clearly, 0 ≤ β0(X⊥0 ) ≤ 1.
Next, we show that if X1 = Y1, then the equality between the interpolation

spaces generated by the subcouple (X0, X1) and by the couple (Y0, Y1) can be
characterized using the index β0(X⊥0 ). We will need the following lemma.

Lemma 4.1. Let (Y0, Y1) be a regular Banach couple and let X0 be a closed
complemented subspace of Y0, Y0 = X0 ⊕M0. Assume also that M0 ⊂ X0 + Y1.

Then

K(t, ψ;Y ∗0 , Y
∗

1 ) ≈ sup
u∈M0

|〈ψ, u〉|
‖u‖Y0 +K(t−1, u;X0, Y1)

, ψ ∈ X⊥0 .

Proof. Let ψ ∈ X⊥0 . From the duality of K- and J-functionals (see [3, Sec-
tion 3.7 (p. 53)] or [4, Proposition 3.1.21 (p. 304)]), we have

K(t, ψ;Y ∗0 , Y
∗

1 ) = sup
y∈Y0∩Y1

| < ψ, y > |
J(t−1, y;Y0, Y1)

≈ sup
y∈Y0∩Y1

| < ψ, y > |
‖y‖Y0 + t−1‖y‖Y1

.

Using the fact that Y0 = X0 ⊕M0 and M0 ⊂ X0 + Y1, we derive

K(t, ψ;Y ∗0 , Y
∗

1 ) ≈ sup
x∈X0,u∈M0,x+u∈Y1

| < ψ, u > |
‖u‖Y0 + ‖ − x‖X0 + t−1‖x+ u‖Y1

≈ sup
u∈M0

| < ψ, u > |
‖u‖Y0 +K(t−1, u;X0, Y1)

,

where the constants of equivalence do not depend on ψ or t.

Remark 4.2. From the assumptions Y0 = X0 ⊕ M0 and M0 ⊂ X0 + Y1 we
have Y0 ⊆ X0 + Y1. Moreover, this embedding is continuous, i.e. there exists a
constant C > 0 such that

‖u‖X0+Y1
≤ C ‖u‖Y0 , u ∈ Y0. (4.1)
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Indeed, from the continuity of the embeddings Y0 ↪→ Y0 +Y1, X0 +Y1 ↪→ Y0 +Y1

it follows that for any sequence {un} ⊂ Y0 such that un → u in Y0 and un → v in
X0 +Y1 we have u = v. Hence, using the closed graph theorem we immediately
have the continuity of the embedding operator i : Y0 → X0 + Y1.

Theorem 4.3. Let (Y0, Y1) be a regular Banach couple and let X0 be a closed
complemented subspace of Y0, Y0 = X0⊕M0, with M0 ⊂ X0+Y1.. Let 0 < θ < 1,
1 ≤ q ≤ ∞. Then

θ > β0(X⊥0 )

is the necessary and sufficient condition for the equality (X0, Y1)θ,q = (Y0, Y1)θ,q.

Proof. Applying Theorem 3.3 with M1 = {0} and using M0 ⊂ X0 + Y1, we
obtain that the equality (X0, Y1)θ,q = (Y0, Y1)θ,q holds if and only if there exist
constants γ, ε > 0 such that

K(t, u;X0, Y1) + ‖u‖Y0
tθ−ε

≤ γ
K(s, u;X0, Y1) + ‖u‖Y0

sθ−ε
(4.2)

for any u ∈ M0 and all positive s < t. From (4.1) it follows that for τ ≤ 1 we
have

K(τ, u;X0, Y1) + ‖u‖Y0 ≤ C ‖u‖Y0
with C > 0 independent of u. Hence it is sufficient to verify the inequality (4.2)
for 1 ≤ s < t. This inequality can be written as

K(t, u;X0, Y1) + ‖u‖Y0 ≤ γ

(
t

s

)θ−ε
(K(s, u;X0, Y1) + ‖u‖Y0) (4.3)

for any u ∈M0 and all 1 ≤ s < t.
Denote by ‖ · ‖t the norm in M0 given by

‖u‖t = K(t, u;X0, Y1) + ‖u‖Y0

and write M∗
0,t for the dual space of (M0, ‖·‖t). The inequality (4.3) means that

‖u‖t ≤ γ

(
t

s

)θ−ε
‖u‖s, u ∈M0, 1 ≤ s < t. (4.4)

As ‖ · ‖t ≥ ‖ · ‖Y0 on M0, we see that all functionals ψ ∈ Y ∗0 can be considered
as elements of M∗

0,t and therefore ‖ψ‖M∗
0,t

makes sense. We claim that (4.4) is
equivalent to

‖ψ‖M∗
0,s
≤ γ

(
t

s

)θ−ε
‖ψ‖M∗

0,t
, ψ ∈ X⊥0 , 1 ≤ s < t. (4.5)
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Indeed, if (4.4) holds then the embedding (M0, ‖ · ‖s) ↪→ (M0, ‖ · ‖t) has the

norm less than or equal to γ
(
t
s

)θ−ε
. Hence the factorization

(M0, ‖ · ‖s) ↪→ (M0, ‖ · ‖t)
ψ−→ K

yields (4.5). Conversely, given any u ∈M0, we can find ϕ ∈M∗
0,t such that

‖u‖t =< ϕ, u > and ‖ϕ‖M∗
0,t

= 1.

Using (4.1), it is not difficult to verify that ‖ · ‖t is equivalent to ‖ · ‖Y0 on M0.
Therefore, ϕ is bounded on M0 with the norm ‖ · ‖Y0 . Let ψ = ϕ ◦ P where
P : Y0 −→ M0 is the projection. Then ψ ∈ X⊥0 , with ‖u‖t =< ψ, u > and
‖ψ‖M∗

0,t
= 1. Hence

‖u‖t = | < ψ, u > | ≤ ‖ψ‖M∗
0,s
‖u‖s ≤ γ

(
t

s

)θ−ε
‖u‖s,

where we used (4.5) in the last inequality.
Consequently, the equality (X0, Y1)θ,q = (Y0, Y1)θ,q holds if and only if there

are constants γ, ε > 0 such that the inequality

sup
u∈M0

| < ψ, u > |
K(s, u;X0, Y1) + ‖u‖Y0

≤ γ

(
t

s

)θ−ε
sup
u∈M0

| < ψ, u > |
K(t, u;X0, Y1) + ‖u‖Y0

is valid for any ψ ∈ X⊥0 and 1 ≤ s < t. By Lemma 4.1, the last inequality can
be rewritten (perhaps with a new constant γ) as

K(t, ψ;Y ∗0 , Y
∗

1 )

tθ−ε
≤ γ

K(s, ψ;Y ∗0 , Y
∗

1 )

sθ−ε
, ψ ∈ X⊥0 , 0 < s < t ≤ 1. (4.6)

Finally, (4.6) means that β0(X⊥0 ) < θ. This completes the proof.

Remark 4.4. If we compare Theorem 4.3 with Theorem 2.4, we can see that
under the conditions of Theorem 2.4 for any bases ψ1, . . . , ψn in X⊥0 we have

β0(X⊥0 ;Y ∗0 , Y
∗

1 ) = max
1≤i≤n

β0(ψi),

i.e. we obtain the desired “invariant” description of the quantity from the right-
hand side (see Remark 2.6).
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