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On a Class of Second-Order Differential
Inclusions on the Positive Half-Line

Gheorghe Moroşanu

Abstract. Consider in a real Hilbert space H the differential equation (inclusion) (E):

p(t)u′′(t)+q(t)u′(t)∈Au(t)+f(t) a.e. in (0,∞), with the condition (B): u(0)=x∈D(A),

where A : D(A) ⊂ H → H is a (possibly set-valued) maximal monotone operator

whose range contains 0; p, q ∈ L∞(0,∞), such that ess inf p > 0, q
p is differentiable

a.e., and ess inf
[
( qp)2 + 2( qp)′

]
> 0. We prove existence of a unique (weak or strong)

solution u to (E), (B), satisfying a
1
2u ∈ L∞(0,∞;H) and t

1
2a

1
2u′ ∈ L2(0,∞;H),

where a(t) = exp
( ∫ t

0
q
p dτ

)
, showing in particular the behavior of u as t→∞.

Keywords. Strong solution, weak solution, existence, uniqueness, asymptotic
behavior
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1. Introduction

Let H be a real Hilbert space with the inner product (·, ·) and the induced

norm ‖x‖ = (x, x)
1
2 . Consider the following second-order, non-homogeneous,

differential equation (inclusion)

p(t)u′′(t) + q(t)u′(t) ∈ Au(t) + f(t) for a.a. t ∈ R+ := [0,∞), (E)

with the condition
u(0) = x ∈ D(A), (B)

where

(H1) A : D(A) ⊂ H → H is a (possibly set-valued) maximal monotone opera-
tor, such that [0, 0] ∈ Graph (A);

(H2) p, q ∈ L∞(R+) := L∞(R+;R), such that ess inf p > 0, q
p

is differentiable
a.e., and ess inf

[
( q
p
)2 + 2( q

p
)′
]
> 0;
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and f is a given H-valued function whose (required) properties will be specified
later. In fact, one can assume the more general condition that the range R(A)
of A contains 0. Indeed, this case reduces to [0, 0] ∈ Graph (Ã), where Ã is
obtained from A by shifting its domain.

For information on monotone operators we refer the reader to [5, 7, 12].

V. Barbu [3, 4] (see also [5, Chapter V]) established the existence of a
unique bounded solution to (E), (B) in the particular case p ≡ 1, q ≡ 0 and
f ≡ 0. Subsequently the existence and uniqueness of bounded solutions in
the homogeneous case (f ≡ 0) has been further investigated by H. Brezis [6],
N. Pavel [14], L. Véron [17, 18], and by E. I. Poffald and S. Reich [15, 16]
when A is an m-accretive operator in a Banach space. The non-homogeneous
case has received less attention from this point of view. Bruck [8] proved that
if (E), (B), with p ≡ 1, q ≡ 0 and f ∈ L2

loc(0,∞;H), has a bounded solu-

tion u ∈ C([0,∞);H) ∩ W 2,2
loc ((0,∞);H) for some x ∈ D(A), then (E), (B)

has a unique bounded solution u ∈ C([0,∞);H) ∩ W 2,2
loc ((0,∞);H) for every

x ∈ D(A). This result has been extended to the case when A is an m-accretive
operator in a Banach space by Poffald and Reich [15, 16]. Note that in these
papers the existence for some x ∈ D(A) was hypothesized to derive existence
for all x ∈ D(A). Recall also that Bruck [9] established the existence of a
bounded solution on R of equation (E) (implying that all solutions of (E) are
bounded on [0,∞)), in the case p ≡ 1, q ≡ 0 and f ∈ L∞(R;H), under the
restrictive condition that A is coercive. We also mention the relatively recent
article by Apreutesei [2] addressing the case of smooth coefficients p, q, with
p(t) ≥ p0 > 0, q(t) ≥ q0 > 0, and x ∈ D(A).

In a recent paper [13] we established the existence of a unique bounded
solution of equation (E), subject to (B), for all x ∈ D(A), under the same mild
conditions (H1) and (H2) above, with one exception: instead of the condition
on q

p
specified above, we assumed there q+ ∈ L1(0,∞;H). Our present alterna-

tive condition on q
p

ensures the existence of a unique (weak or strong) solution

to (E), (B) satisfying a
1
2u ∈ L∞(0,∞;H) and t

1
2a

1
2u′ ∈ L2(0,∞;H), where

a(t) = exp
( ∫ t

0
q
p
dτ
)
. So, in addition to existence and uniqueness, we get in-

formation about the asymptotic behavior of u as t → ∞. If in particular
q(t) ≥ q0 > 0, then ‖u(t)‖ decays exponentially to zero as t→∞.

The new framework requires separate analysis. However, some steps in our
proofs are similar to those developed in [13]. In such cases, the reader will be
referred to that paper.

It is worth pointing out that this paper covers in particular the case q(t) < 0
which allows using our existence theory to approximate the solutions of some
parabolic and hyperbolic problems by the method of artificial viscosity, intro-
duced by J. L. Lions [11]. See [13] for details. Note that the case q ≡ 0 was
covered in [10,13].
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2. Results

Let us first recall the concepts of strong and weak solution for equation (E)
(respectively, equation (E) plus condition (B)). These concepts have been in-
troduced in [10,13].

For an interval J ⊂ R, open or not, denote by Lploc(J ;H) (resp. W k,p
loc (J ;H))

the space of all H-valued functions defined on J , whose restrictions to compact
intervals [a, b] ⊂ J belong to Lp(a, b;H) (respectively, to W k,p(a, b;H)).

Definition 2.1. Let f ∈ L2
loc([0,∞);H) and let x ∈ D(A). AH-valued function

u = u(t) is said to be a strong solution of equation (E) (respectively, of equation
(E) plus condition (B)) if u ∈ C([0,∞);H)∩W 2,2

loc ((0,∞);H) and u(t) satisfies
equation (E) for a.a. t > 0 (and, in addition, u(0) = x, respectively).

Denote Y = L1(0,∞;H; t
√
a(t)dt), where a(t) = exp

( ∫ t
0
q(τ)
p(τ)

dτ dτ
)
. Ob-

viously, Y is real Banach space with respect to the norm

‖f‖Y =

∫ ∞
0

‖f(t)‖t
√
a(t) dt.

If f ∈ Y we cannot expect in general existence of strong solutions for (E),
so we need the following definition of a weaker concept:

Definition 2.2. Let f ∈ Y and let x ∈ D(A). A H-valued function u = u(t)
is said to be a weak solution of equation (E) (respectively, of equation (E) plus
condition (B)) if there exist sequences un ∈ C([0,∞);H)∩W 2,2

loc ((0,∞);H) and
fn ∈ Y ∩ L2

loc([0,∞);H), such that:

(i) fn converges to f in Y ;

(ii) un(t) satisfies equation (E) with f = fn for a.a. t > 0 and all n ∈ N;

(iii) un converges uniformly to u on any compact interval [0, T ] (and, in addi-
tion, u(0) = x, respectively).

Note that the couple (E), (B) is an incomplete problem. We need an addi-
tional condition to obtain a complete problem. In this paper we consider the
following condition

sup
t≥0

a(t)‖u(t)‖2 <∞. (C)

Obviously, if q
p
∈ L1(R+) (which is equivalent to q ∈ L1(R+) if p ∈ L∞(R+) and

ess inf p > 0), then (C) becomes supt≥0 ‖u(t)‖ <∞.

Before stating the first main result of the paper, let us recall two lemmas
from [13]:



20 G. Moroşanu

Lemma 2.3. Let A satisfy (H1), p, q ∈ L∞(0, T ), with ess inf p > 0, and let
f ∈ L2(0, T ;H), where T is a given positive number. Then, for all x, y ∈ D(A),
there exists a unique u = u(t) ∈ W 2,2(0, T ;H) satisfying

p(t)u′′(t) + q(t)u′(t) ∈ Au(t) + f(t) for a.a. t ∈ (0, T ), (1)

u(0) = x, u(T ) = y. (2)

Lemma 2.4. Assume that A satisfies (H1), p, q ∈L∞(0, T ), with ess inf p> 0,
f ∈ L2(0, T ;H), and x, y ∈ D(A). For λ > 0 denote by Aλ the Yosida approxi-
mation of A and by uλ the unique solution of

p(t)u′′λ(t) + q(t)u′λ(t) = Aλuλ(t) + f(t) for a.a. t ∈ (0, T ),

uλ(0) = x, uλ(T ) = y

(which exists by Lemma 2.3). Then, uλ → u in C([0, T ];H) as λ→ 0+, where u
is the solution of problem (1), (2). Moreover, u′λ → u′ in C([0, T ];H) and
u′′λ → u′′ weakly in L2(0, T ;H), as λ→ 0+.

Theorem 2.5. Assume (H1) and (H2) hold. If x ∈ D(A) and f ∈ Y ∩
L2
loc([0,∞);H), then there exists a unique strong solution u of (E), (B), (C),

such that t
1
2a

1
2u′ ∈ L2(R+;H) and t

3
2u′′ ∈ L2

loc([0,∞);H). If in addition
x ∈ D(A), then u ∈ W 2,2

loc ([0,∞);H).

Proof. Assume in a first stage that x ∈ D(A) (and f ∈ Y ∩ L2
loc([0,∞);H), as

hypothesized). For each λ > 0 and n ∈ N, denote by unλ, un the solutions of
the following problems

pu′′nλ + qu′nλ = Aλunλ + f a.e. in (o, n), (3)

unλ(0) = x, unλ(n) = 0, (4)

and
pu′′n + qu′n ∈ Aun + f a.e. in (o, n), (5)

un(0) = x, un(n) = 0. (6)

Lemma 2.3 ensures the existence and uniqueness of unλ, un ∈ W 2,2(0, n;H). By
Lemma 2.4, unλ→un, u′nλ→u′n in C([0, n];H), as λ→ 0+, and u′′nλ→u′′n weakly
in L2(0, n;H), as λ → 0+. Note that equations (3), (5) can be equivalently
expressed as follows (see [1])(

au′nλ
)′

= b(Aλunλ + f) a.e. in (0, n), (7)

and, respectively, (
au′n
)′ ∈ b(Aun + f) a.e. in (0, n), (8)
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where b(t) = a(t)
p(t)

. Recall that a(t) = exp
( ∫ t

0
q
p
dτ
)
. We have for a.a. t ∈ (0, n)

d2

dt2
[
a‖un‖2

]
=

d

dt

[
a
q

p
‖un‖2 + 2(au′n, un)

]
= a
[(q
p

)2
+
(q
p

)′]
‖un‖2 + 2a

q

p
(u′n, un) + 2a‖u′n‖

2
+ 2
((
au′n
)′
, un

)
≥ a
([(q

p

)2
+
(q
p

)′]
‖un‖2 + 2

q

p
(u′n, un) + 2‖u′n‖

2
)
− 2b‖un‖ · ‖f‖. (9)

The last inequality follows from (8) and the monotonicity of A. Taking into
account the condition on q

p
(see (H2)) we derive from (9)

d2

dt2
[
a‖un‖2

]
≥ −2b‖f‖ · ‖un‖. (10)

Integration of (10) over [τ, n] leads to d
dτ

(
a(τ)‖un(τ)‖2

)
≤ 2

∫ n
τ
b‖f‖ · ‖un‖ ds.

A new integration, this time over [0, t], yields

a(t)‖un(t)‖2 ≤ ‖x‖2 + 2

∫ t

0

dτ

∫ n

τ

b‖f‖ · ‖un‖ ds

≤ ‖x‖2 + 2

∫ n

0

dτ

∫ n

τ

b‖f‖ · ‖un‖ ds

= ‖x‖2 + 2

∫ n

0

τb‖f‖ · ‖un‖ dτ, 0 ≤ t ≤ n. (11)

Denoting Mn = sup0≤t≤n
√
a(t)‖un(t)‖, from (11) we derive

M2
n ≤ ‖x‖

2 + 2Mn

∫ n

0

τ

√
a

p
‖f‖ dτ ≤ ‖x‖2 + 2

Mn

p0
‖f‖Y ,

where p0 = ess inf p. Therefore,

Mn ≤
1

p0
‖f‖Y +

√
1

p20
‖f‖2Y + ‖x‖2 =: E = E(x, f).

Thus,

sup
0≤t≤n

a(t)‖un(t)‖2 ≤ E2. (12)

Similarly,

sup
0≤t≤n

a(t)‖unλ(t)‖2 ≤ E2.
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Now, let 0 < R < m < n, with m,n ∈ N. Denote

g(t) = a(t)‖un(t)− um(t)‖2, 0 ≤ t ≤ m.

We have

g′(t) = a
q

p
‖un − um‖2 + 2

(
a(u′n − u′m), un − um

)
,

g′′(t) = a
q2

p2
‖un − um‖2 + a

(q
p

)′
‖un − um‖2 + 2a

q

p
(u′n − u′m, un − um)

+ 2
((
a(u′n − u′m)

)′
, un − um

)
+ 2a‖u′n − u′m‖

2
.

Therefore,

g′′(t) ≥ a
([q2
p2

+
(q
p

)′]
‖un − um‖2+2

q

p
(u′n−u′m, un−um)+2‖u′n − u′m‖

2
)
. (13)

Denoting α := ess inf [( q
p
)2 + 2( q

p
)′] > 0, and observing that(q

p

)2
+
(q
p

)′
≥ 1

2

(q
p

)2
+
α

2
,

from (13) we derive

g′′(t) ≥ a

2

((q2
p2

+ α
)
‖un − um‖2 + 4

q

p
(u′n − u′m, un − um) + 4‖u′n − u′m‖

2

)
≥ βa‖u′n − u′m‖

2
, (14)

for a.a. t ∈ (0,m), where β is a small positive number. We multiply (14) by
(m− t) and then integrate the resulting inequality over [0,m]:

β

∫ m

0

(m− t)a‖u′n − u′m‖
2
dt ≤ (m− t)g′(t)|m0 +

∫ m

0

g′(t) dt

= g(m)

= a(m)‖un(m)‖2

≤ E2.

We have used (12). It follows that β(m − R)
∫ R
0
a‖u′n − u′m‖

2dt ≤ E2, which
shows that (u′n) is a Cauchy (hence convergent) sequence in L2(0, R;H). There-
fore, since un(t) − um(t) =

∫ t
0

(un − um)′(s) ds, un converges in C([0, R];H) to
some u ∈ C([0, R];H), and so u′n → u′ in L2(0, R;H). In particular, u(0) = x.
Obviously, since R > 0 was arbitrarily chosen, u can be extended to [0,∞),
such that u ∈ C([0,∞);H) ∩W 1,2

loc ([0,∞);H), and u satisfies (cf. (12))

sup
t≥0

a(t)‖u(t)‖2 ≤ E2 <∞. (15)
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By arguments similar to those used in [13], we deduce that u′′n is bounded in
L2(0, R

2
;H), hence weakly convergent to u′′ in this space, and finally that u is

a strong solution of equation (E).
Now, assume that x ∈ D(A) and f ∈ Y ∩ L2

loc([0,∞);H). Let xk ∈ D(A),
‖xk − x‖ → 0. Denote by uk the strong solution of equation (E) satisfying
uk(0) = xk, and

√
a‖uk‖ ∈ L∞(R+). Existence of uk is ensured by the first part

of the proof. In fact, according to (15),

sup
t≥0

√
a(t)‖uk(t)‖ ≤ E(xk, f) ≤ E0 <∞. (16)

Denote by ukn, uknλ the corresponding approximations of uk and ukn (as defined
above, see problems (5), (6) and (3), (4)). We see that for a.a. t ∈ (0, n)

1

2

d

dt

(
a
d

dt
‖ukn − ujn‖2

)
≥ a‖u′kn − u′jn‖

2
,

so the function t→ a(t) d
dt
‖ukn(t)− ujn(t)‖2 is nondecreasing on [0, n]. Since it

is equal to zero at t = n, it follows that it is non-positive in [0, n]. Then the
function t→ ‖ukn(t)− ujn(t)‖ is nonincreasing on [0, n]. In particular,

‖ukn(t)− ujn(t)‖ ≤ ‖xk − xj‖ ∀t ∈ [0, n].

Therefore, according to the first part of the proof, we have

‖uk(t)− uj(t)‖ ≤ ‖xk − xj‖ ∀t ≥ 0.

This shows that there exists a function u ∈ C([0,∞);H) such that uk converges
to u in C([0, R];H) for all R ∈ (0,∞), so in particular u(0) = x. According
to (16), we also have

√
a‖u‖ ∈ L∞(R+). Now, set

h(t) = a(t)‖uknλ(t)‖2, 0 ≤ t ≤ n.

We have

h′(t)=a
q

p
‖uknλ‖2+2

(
au′knλ, uknλ

)
,

h′′(t)=a
[(q
p

)2
+
(q
p

)′]
·‖uknλ‖2+2a

q

p
(u′knλ, uknλ)+2

((
au′knλ

)′
, uknλ

)
+2a‖u′knλ‖

2
.

Therefore,

h′′(t)≥a
([(q

p

)2
+
(q
p

)′]
‖uknλ‖2+2

q

p
(u′knλ, uknλ)+2‖u′knλ‖

2

)
−2b‖f‖·‖uknλ‖

≥βa‖u′knλ‖
2−2

E0

p0

√
a‖f‖. (17)
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Multiply (17) by t and integrate the resulting inequality over [0, n] to obtain

β

∫ n

0

ta‖u′knλ‖
2
dt ≤ 2

E0

p0

∫ n

0

t
√
a‖f‖ dt+

∫ n

0

th′′(t) dt

≤ 2
E0

p0
‖f‖Y + th′(t)|n0 −

∫ n

0

h′(t) dt

≤ 2
E0

p0
‖f‖Y + ‖xk‖2

≤ K0 <∞. (18)

According to Lemma 2.4, it follows by (18) that

β

∫ n

0

ta‖u′kn‖
2
dt ≤ K0. (19)

By the first part of the proof, we also have

β

∫ ∞
0

ta‖u′k‖
2
dt ≤ K0. (20)

In fact,
√
tau′ ∈ L2(R+;H) and

√
tau′k →

√
tau′ in L2(R+;H). Indeed, denoting

r(t) = a(t)‖ukn(t)− ujn(t)‖2, 0 ≤ t ≤ n,

we derive by a computation similar to that we have used above for g(t)

r′′(t) ≥ βa(t)‖u′kn(t)− u′jn(t)‖2 for a.a. t ∈ (0, n),

which implies β
∫ n
0
ta‖u′kn − u′jn‖

2dt ≤ tr′(t)|n0−
∫ n
0
r′(t) dt = ‖xk − xj‖2. Hence,

β

∫ ∞
0

ta‖u′k − u′j‖
2
dt ≤ ‖xk − xj‖2,

which confirms our assertion above.
Next, using the sequence (uknλ) (and in particular (18)), we can show by

a procedure similar to that used in [13] that t
3
2u′′ ∈ L2

loc([0,∞);H) and that u
is a strong solution of equation (E). Uniqueness of u follows as in [13], so the
proof of the theorem is complete.

Theorem 2.6. Assume (H1) and (H2) hold. Then, for each x ∈ D(A) and
f ∈ Y , there exists a unique weak solution u of (E), (B), (C), and

√
tau′ ∈

L2(R+;H).

Proof. Let x ∈ D(A) and let f1, f2 ∈ Y ∩ L2
loc([0,∞);H). Denote by u(t, x, fi),

i = 1, 2, the corresponding strong solutions given by Theorem 2.5, and by
un(t, x, fi) their approximations (i = 1, 2, . . . , n ∈ N), as defined above (see
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(5), (6)). Recall that (by the uniqueness property) every strong solution is
obtained by the limiting procedure developed in the proof of Theorem 2.5. By
a computation involving (H2), similar to that performed above for g(t), we
derive the inequality

d2

dt2
[
a(t)‖un(t, x, f1)− un(t, x, f2)‖2

]
≥ −2b(t)‖f1(t)− f2(t)‖ · ‖un(t, x, f1)− un(t, x, f2)‖. (21)

Successive integrations of (21), over [τ, n] and then over [0, t], lead to

a(t)‖un(t, x, f1)− un(t, x, f2)‖2

≤ 2

∫ n

0

dτ

∫ n

τ

b(s)‖f1(s)− f2(s)‖ · ‖un(s, x, f1)− un(s, x, f2)‖ ds

= 2

∫ n

0

τb(τ)‖f1(τ)− f2(τ)‖ · ‖un(τ, x, f1)− un(τ, x, f2)‖ dτ. (22)

Obviously, (22) implies
√
a(t)‖un(t, x, f1)− un(t, x, f2)‖ ≤ 2

p0
‖f1 − f2‖Y , for

0 ≤ t ≤ n, and hence√
a(t)‖u(t, x, f1)− u(t, x, f2)‖ ≤

2

p0
‖f1 − f2‖Y ∀t ≥ 0. (23)

From inequality (23) we can derive the existence of a unique weak solution
u(t;x, f) for each (x, f) ∈ D(A) × Y . Indeed, f can be approximated (with
respect to the norm of Y ) by a sequence (fk) of smooth functions with compact
support ⊂ (0,∞), so it is enough to take in (23) f1 := fk and f2 := fj. So, there
exists uniquely u(·;x, f) ∈ C([0,∞);H) the uniform limit on compact intervals
of u(·;x, fk) as k →∞.

Note that (19) holds true for u′n(t;x, fk) with another constant K0 (since
E(x, fk) is also bounded), so (20) also holds true for u′(t;x, fk). Therefore,√
tau′ ∈ L2(R+;H) (as the weak limit in L2(R+;H) of the sequence (

√
tau′k)).

This completes the proof of the theorem.

Acknowledgement. Many thanks to an anonymous referee for some useful
comments and suggestions.
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[6] Brezis, H., Équations d’évolution du second ordre associées à des opérateurs
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[10] Khatibzadeh, H. and Moroşanu, G., Strong and weak solutions to second order
differential inclusions governed by monotone operators. Set-Valued Var. Anal.
22 (2014)(2), 521 – 531.

[11] Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en
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