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Abstract. Using critical point theory, we study the existence of homoclinic orbits
for the second-order Hamiltonian system

z̈ −Kz(t, z) + Vz(t, z) = h(t),

where V (t, z) depends periodically on t and is superquadratic.
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1. Introduction

1.1. Research background. The purpose of this paper is to study the ex-
istence of homoclinic orbits for the superquadratic second-order Hamiltonian
system

z̈ −Kz(t, z) + Vz(t, z) = h(t) (1)

where t ∈ R, z ∈ Rn, K,V ∈ C1(R×Rn,R) is T−periodic in t, and h : R→ Rn

is a continuous and bounded function.
In recent years several authors studied homoclinic orbits for Hamiltonian

systems via critical point theory. For second order Hamiltonian systems we
refer the reader to [2,7,8,10-13] and for first order [1,3-5, 9, 14-17].
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We note that many results were obtained under the Ambrosetti-Rabinowitz
growth condition, that is, there is a µ > 2 such that

0 < µV (t, z) ≤ (z, Vz(t, z)) whenever z 6= 0. (AR)

It is easy to see that (AR) does not include some superquadratic nonlinearities
like

V (t, z) = |z|2(ln(1 + |z|p))q, p, q > 1. (2)

In this paper, we study the homoclinic solutions of (1) under some su-
perquadratic condition which covers a case like (2).

We suppose that V, K and h in (1) satisfy the following assumptions:

(H1) There are a continuous T -periodic function k(t) and two constants k1,
k2 > 0 such that for all (t, z) ∈ R×Rn

k1|z|2 ≤ k(t)|z|2 ≤ K(t, z) ≤ k2|z|2

and
1

2
(z,Kz(t, z)) ≤ K(t, z) ≤ (z,Kz(t, z)).

Here and in the sequel, (·, ·) : Rn ×Rn → R denotes the standard inner
product in Rn and | · | the induced norm.

(H2) V (t, z) ≥ 0, for all (t, z) ∈ [0, T ]×Rn.

(H3) V (t, z) = o(|z|2) as |z| → 0 uniformly in t.

(H4) V (t,z)
|z|2 → +∞ as |z| → +∞ uniformly in t.

(H5) (z, Vz(t, z))− 2V (t, z) ≥ 0 for all z, t.

(H6) There exist positive constants 1 < λ ≤ β, c1 and c2 such that

(z, Vz(t, z))− 2V (t; z) ≥ c1|z|β, ∀|z| ≥ 1, ∀t ∈ [0, T ] (3)

and |Vz(t, z)| ≤ c2|z|λ, ∀|z| ≥ 1, ∀t ∈ [0, T ]. (4)

(H7) Set M :=sup{V(t,z) : t∈ [0,T ], |z|=1}, a1 :=min{1, 2k1}, a2 :=max{1, 2k2}.
There exist positive constants η, c3 and c4 such that∫

R

|h(t)|dt ≤ c3,

(∫
R

|h(t)|2dt
) 1

2

≤ η

2%
,

a1 − 2M − η > 0, c4 = max
t∈R
|h(t)| < c1,

where % is a positive constant which will be defined in Proposition 1.3
later.

As usual, a solution z(t) of (1) is said to be homoclinic (to 0) if z(t) → 0
as t→ ±∞. In addition, if z(t) 6≡ 0 then z(t) is called a nontrivial homoclinic
solution.
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Theorem 1.1. Suppose V ∈ C1([0, T ] × Rn,R) is T -periodic in t and sat-
isfies (H1)–(H7). Then system (1) possesses a nontrivial homoclinic solution
z ∈ W 1,2(R,Rn) such that ż(t)→ 0 as t→ ±∞.

This paper is largely motivated by the work of Rabinowitz [12] in which the
existence of nontrivial homoclinic solutions for the second order Hamiltonian
system

q̈ + Vq(t, q) = 0

was proved.

1.2. Variational structure. For each k ∈ N, let Ek := W 1,2
2kT (R,Rn), the

Hilbert space of 2kT -periodic functions on R with values in Rn under the norm

‖z‖2
Ek

:=

∫ kT

−kT
[|ż(t)|2 + |z(t)|2]dt, z ∈ Ek.

Furthermore, let L∞[−kT,kT ](R,R
n) denote a space of 2kT -periodic essentially

bounded (measurable) functions from R into Rn equipped with the norm

‖z‖L∞
[−kT,kT ]

:= ess sup{|z(t)| : t ∈ [−kT, kT ]}.

As in [10], a homoclinic solution of (1) will be obtained as a limit, as
k → ±∞, of a certain sequence of functions zk ∈ Ek. We consider a sequence
of systems of differential equations

z̈(t)−Kz(t, z) + Vz(t, z) = hk(t), (5)

where for each k ∈ N, hk : R→ Rn is a 2kT -periodic extension of the restriction
of h to the interval [−kT, kT ] and zk, a 2kT -periodic solution of (5), will be
obtained via a linking theorem.

Let

φk(z) =

(∫ kT

−kT
[|ż(t)|2 + 2K(t, z(t))]dt

) 1
2

. (6)

We have from (H1) that

a1‖z‖2
Ek
≤ φ2

k(z) ≤ a2‖z‖2
Ek
. (7)

Let

Az = −z̈ + k(t)z, z ∈ Ek, (8)

< Az, y > =

∫ kT

−kT
(−z̈ + k(t)z, y)dt, ∀z, y ∈ Ek (9)
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and

Ik(z) =

∫ kT

−kT

[
1

2
|ż(t)|2 +K(t, z(t))

]
dt−

∫ kT

−kT
V (t, z(t))dt

+

∫ kT

−kT
(hk(t), z(t))dt

=
1

2
< Az, z > +

∫ kT

−kT

[
K(t, z(t))− k(t)

2
z2(t)

]
dt−

∫ kT

−kT
V (t, z(t))dt

+

∫ kT

−kT
(hk(t), z(t))dt.

(10)

Then A has a sequence of eigenvalues

0 < ξ1
k ≤ ξ2

k ≤ · · · ≤ ξmk · · ·

with ξmk →∞ as m→∞. Let ϕjk be the eigenvector of A corresponding to ξjk,
j = 1, 2, . . . ,m, . . .. Set

E0
k =ker(A), E−k =negative eigenspace of A, E+

k =positive eigenspace of A.

It is easy to see that E−k = {0} and Ek = E0
k ⊕ E+

k .

Lemma 1.2 ([11]). Let E be a real Hilbert space with E = E(1) ⊕ E(2) and
E(1) = (E(2))⊥. Suppose I ∈ C1(E,R) satisfies the (PS) condition1, and

(C1) I(u) = 1
2
(Lu, u) + b(u), where Lu = L1P1u + L2P2u, Li : E(i) 7→ E(i) is

bounded and selfadjoint, Pi is the projector of E onto E(i), i=1,2,

(C2) b
′

is compact, and

(C3) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, Q ⊂ Ẽ and constants
α > ω such that

(i) S ⊂ E(1) and I|S ≥ α,

(ii) Q is bounded and I|∂Q ≤ ω,

(iii) S and ∂Q link.

Then I possesses a critical value c ≥ α given by

c = infg∈Γ supu∈Q I(g(1, u)),

where

Γ ≡ {g ∈ C([0, 1]× E,E)| g satisfies (Γ1)–(Γ3)},
(Γ1) g(0, u) = u,

(Γ2) g(t, u) = u for u ∈ ∂Q,

(Γ3) g(t, u)=eθ(t,u)Lu+χ(t, u), where θ(t, u)∈C([0, 1]×E,R) and χ is compact.

1Condition (PS) (see [8, p. 1171]): Let E be a real Banach space, I ∈ C1(E,R), i.e. I is
a continuously Fréchet-differentiable functional defined on E. I is said to be satisfying (PS)
if any sequence x(t) ⊂ E for which I(x(t)) is bounded and I ′(x(t))→ 0, as t→∞, possesses
a convergent subsequence in E.
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1.3. Proof of the main result. The following result of Rabinowitz [12] will
be used.

Proposition 1.3. There is a positive constant % such that for each k ∈ N and
z ∈ Ek the following inequality holds:

‖z‖L∞
[−kT,kT ]

≤ %‖z‖Ek
. (11)

Lemma 1.4. Under the conditions of Theorem 1.1, Ik satisfies the (PS) con-
dition.

Proof. Assume that {zkn}n∈N in Ek is a sequence such that {Ik(zkn)}n∈N is
bounded and I

′

k(zkn) → 0 as n → +∞. Then there exists a constant d1 > 0
such that

|Ik(zkn)| ≤ d1, I
′

k(zkn)→ 0 as n→∞. (12)

We first prove that {zkn}n∈N is bounded. Let zkn = z0
kn

+ z+
kn
∈ E0

k ⊕ E+
k .

From (H1), (H5), (3) of (H6) and (H7) we have that

2d1 ≥ 2Ik(zkn)− < I
′

k(zkn), zkn >

=

(∫
|zkn |≥1

+

∫
|zkn |<1

)
[(zkn , Vzkn (t, zkn))− 2V (t, zkn) + (hk(t), zkn)]dt

≥
∫
|zkn |≥1

[(zkn , Vzkn (t, zkn))− 2V (t, zkn) + (hk(t), zkn)]dt

−
∫
|zkn |<1

|hk(t)||zkn|dt

≥
∫
|zkn |≥1

(c1 − ‖hk(t)‖L∞
[−kT,kT ]

)|zkn|βdt−
∫ kT

−kT
|hk(t)|dt.

(13)

This implies ∫
|zkn |≥1

|zkn|βdt ≤
(2d1 + c3)

(c1 − c4)
= M̃0. (14)

On the other hand, using a well known fact in [10, p. 378], we have∫
|z|<1

V (t, z(t))dt ≤
∫
|z|<1

V

(
t,
z(t)

|z(t)|

)
|z(t)|2dt ≤M

∫ kT

−kT
|z(t)|2dt ≤M‖z‖2

Ek
(15)

for z ∈ Ek. From (H2), (H5), (4) of (H6), (7), (11), and (15) (keeping in mind
that a1 − 2M > 0) we have
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a1

2
‖zkn||2Ek

≤
∫ kT

−kT

[
1

2
|żkn(t)|2 +K(t, zkn(t))

]
dt

= Ik(zkn) +

∫ kT

−kT
V (t, zkn(t))dt−

∫ kT

−kT
(hk(t), zkn(t))dt

= Ik(zkn) +

(∫
|zkn |≥1

+

∫
|zkn |<1

)
[V (t, zkn)− (hk(t), zkn)]dt

≤ d1 +
1

2

∫
|zkn |≥1

(zkn , Vzkn (t, zkn))dt+M‖zkn||2Ek

+

(∫ kT

−kT
|hk(t)|2dt

) 1
2
(∫ kT

−kT
|zkn|2dt

) 1
2

dt

≤ d1 +
‖zkn‖L∞[−kT,kT ]

2

∫
|zkn |≥1

|Vzkn (t, zkn)|dt+M‖zkn||2Ek

+

(∫ kT

−kT
|hk(t)|2dt

) 1
2
(∫ kT

−kT
|zkn|2dt

) 1
2

dt

≤ d1 +
%

2
‖zkn||Ek

c2

∫
|zkn |≥1

|zkn|λdt+M‖zkn||2Ek

+ ‖hk(t)‖L2
[0,2kT ]

‖zkn||Ek
.

(16)

Since λ ≤ β, we have from (14) and (16) that

(a1

2
−M

)
‖zkn||2Ek

−

(
η

2%
+
c2%M̃0

2

)
‖zkn||Ek

≤ d1. (17)

Now (17) guarantees that {‖zkn‖Ek
}n∈N is bounded. Going if necessary to

a subsequence, we can assume that there exists z ∈ Ek such that zkn ⇀ z,
as n → +∞, in Ek, which implies zkn → z uniformly on [−kT, kT ]. Hence
(I
′

k(zkn)− I ′k(z))(zkn − z)→ 0 and ‖zkn − z‖L2[−kT,kT ] → 0. Set

Φ =

∫ kT

−kT
(Vzkn (t, zkn)−Vz(t, z), zkn−z)dt−

∫ kT

−kT
(Kzkn

(t, zkn)−Kz(t, z), zkn−z)dt.

It is easy to check that Φ → 0 as n → +∞. Moreover, an easy computation
shows that

(I
′

k(zkn)− I ′k(z))(zkn − z) = ‖żkn − ż‖L2
[0,2kT ]

− Φ,

and so ‖żkn − ż‖L2
[0,2kT ]

→ 0. Consequently, ‖zkn − z‖Ek
→ 0.
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Lemma 1.5. If H, K and h satisfy (H1)–(H7), then for every k ∈ N the
system (5) possesses a 2kT -periodic solution.

Proof. The proof will be divided into three steps.

Step 1. Assume that 0 < ‖z‖L∞
[0,2kT ]

≤ 1 for z ∈ E(1)
k = E+

k . From (7), (10),

(11), and (15) we have that

Ik(z) =

∫ kT

−kT

[
1

2
|ż(t)|2+K(t, z(t))

]
dt−

∫ kT

−kT
V (t, z(t))dt+

∫ kT

−kT
(hk(t), z(t))dt

≥ a1

2
‖z‖2

Ek
−M‖z‖2

Ek
− η

2%
‖z‖Ek

=
1

2
(a1 − 2M − η)‖z‖2

Ek
+
η

2
‖z‖2

Ek
− η

2%
‖z‖Ek

.

(18)

Note from (H7) that a1 − 2M − η > 0. Set

ρ =
1

%
, α =

a1 − 2M − η
2%2

.

Let Bρ denote the open ball in Ek with radius ρ about 0 and let ∂Bρ denote its
boundary. Let Sk = ∂Bρ ∩ E+

k . If z ∈ Sk then ||z||Ek
= 1

%
(note ||z||L∞

[0,2kT ]
≤ 1

from (11)) and so (18) gives

Ik(z) ≥ α, z ∈ Sk.

Then (C3)(i) of Lemma 1.2 holds.

Step 2. Choose e ∈ E+
k with ‖e‖Ek

= 1. Let Ẽk = span{e} ⊕ E0
k and

Θk = {z ∈ Ẽk : ‖z‖Ek
= 1}. Note that dim(Ẽk) < +∞.

The argument in [6] guarantees that there exists ε1
k > 0 such that, ∀u ∈ Θk,

meas{t ∈ [0, 2kT ] : |u(t)| ≥ ε1
k} ≥ ε1

k. (19)

For z = z+ + z0 ∈ Θk, let Ωz
k = {t ∈ [0, 2kT ] : |z(t)| ≥ ε1

k}. By (H4), for
M∗

k = a2
(ε1k)3

> 0, there exists Lk such that

V (t, z) ≥M∗
k |z|2, ∀|z| ≥ Lk, uniformly in t. (20)

Let γk ≥ max
{

2η
%a2
, Lk

ε1k

}
. For γ ≥ γk, from (19) and (20) we have that

V (t, γz) ≥M∗
k |γz|2 ≥M∗

kγ
2(ε1

k)
2, ∀t ∈ Ωz

k. (21)
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From (H1) (or (7)) and (21), we have for z = z+ + z0 ∈ Θk that

Ik(γz) =

∫ kT

−kT

[
γ2

2
|ż(t)|2+K(t, γz)

]
dt−

∫ kT

−kT
V (t, γz)dt+

∫ kT

−kT
(hk(t), γz)dt

≤ a2

2
γ2 −

∫
Ωz

k

V (t, γz)dt+ γ‖hk(t)‖L2[0,2kT ]

≤ a2

2
γ2 −M∗

kγ
2(ε1

k)
3 + γ

η

2%
≤ 0.

(22)

Therefore
Ik(γz) ≤ 0, for any z ∈ Θk and γ ≥ γk. (23)

Let Qk = {γe : 0 ≤ γ ≤ 2γk} ⊕ {z ∈ E0
k : ‖z‖Ek

≤ 2γk}. It is easy to see
that ‖z‖Ek

= 2γk or ‖z‖Ek
= 0 for ∀z ∈ ∂Qk. From (H2) and (23) we have

Ik|∂Qk
≤ 0, i.e., Ik satisfies (C2)(ii) of Lemma 1.2.

Step 3. (C3)(iii) (i.e., Sk links ∂Qk) holds from the definition of Sk and Qk

and [11, p. 32]. Thus (C3)(iii) holds.
Note that (C1) and (C2) of Lemma 1.2 are true. Now from Lemma 1.2, Ik

possesses a critical value ck given by

ck = infgk∈Υk
supuk∈Qk

Ik(gk(1, uk)), (24)

where Υk satisfies (Γ1)–(Γ3). Hence, for every k ∈ N, there is z∗k ∈ Ek such
that

Ik(z
∗
k) = ck, I

′

k(z
∗
k) = 0. (25)

The function z∗k is a desired classical 2kT -periodic solution of (5). Since

ck ≥ α = a1−2M−η
2%2

> 0, z∗k is a nontrivial solution.

Lemma 1.6. Let {z∗k}k∈N be the sequence given by Lemma 1.5. There exists a
z∗0 ∈ C1(R,Rn) such that z∗k → z∗0 in C1

loc(R,R
n) as k → +∞.

Proof. The first step in the proof is to show that the sequences {ck}k∈N and
{‖z∗k‖Ek

}k∈N are bounded. There exists ẑ∗1 ∈ E1 with ẑ∗1(±T ) = 0 such that

c1 ≤ I1(ẑ∗1) = infg1∈Υ1 supu1∈Q1,u1(±T )=0 I1(g1(1, u1)). (26)

For every k ∈ N, let

ẑ∗k(t) =

{
ẑ∗1(t) for |t| ≤ T

0 for T < |t| ≤ kT
(27)

and g̃k : [0, 1]× Ek → Ek be a curve given by g̃k(t, z) ≡ z, where z ∈ Ek. Then
g̃k ∈ Υk and Ik(g̃k(1, ẑ

∗
k)) = I1(g̃1(1, z∗1)) = I1(z∗1) for all k ∈ N. Therefore, from

(24), (26) and (27),

ck ≤ Ik(g̃k(1, ẑ
∗
k)) = I1(g̃1(1, z∗1)) = I1(z∗1) ≡M0. (28)
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From (H5) and (3) of (H6) we have that

2M0 ≥ 2Ik(z
∗
k)− < I

′

k(z
∗
k), z

∗
k >

≥
∫ kT

−kT
[(z∗k, Vz∗k(t, z∗k))−2V (t, z∗k)]dt+

∫ kT

−kT
(hk(t), z

∗
k)dt

=

(∫
|z∗k|≥1

+

∫
|z∗k|<1

)
[(z∗k, Vz∗k(t, z∗k))−2V (t, z∗k)+(hk(t), z

∗
k)]dt

≥
∫
|z∗k|≥1

[(z∗k, Vz∗k(t, z∗k))−2V (t, z∗k)+(hk(t), z
∗
k)]dt−

∫
|z∗k|<1

|hk(t)||z∗k|dt

≥
∫
|z∗k|≥1

(c1−c4)|z∗k|βdt−
∫ kT

−kT
|hk(t)|dt.

(29)

This implies ∫
|z∗k|≥1

|z∗k|βdt ≤
(2M0 + c3)

(c1 − c4)
= M̃∗

0 . (30)

On the other hand, from (H2), (H5), (4) of (H6), (H7), (7) and (11) (keeping in
mind a1 − 2M > 0) we have

a1

2
‖z∗k||2Ek

≤
∫ kT

−kT

[
1

2
|ż∗k|2 +K(t, z∗k)

]
dt

= Ik(z
∗
k) +

∫ kT

−kT
V (t, z∗k)dt−

∫ kT

−kT
(hk(t), z

∗
k)dt

= Ik(z
∗
k) +

(∫
|z∗k|≥1

+

∫
|z∗k|<1

)
[V (t, z∗k)− (hk(t), z

∗
k)]dt

≤M0 +
1

2

∫
|z∗k|≥1

(z∗k, Vz∗k(t, z∗k))dt+M ‖z∗k||2Ek

+

(∫ kT

−kT
|hk(t)|2dt

) 1
2
(∫ kT

−kT
|z∗k|2dt

) 1
2

dt

≤M0 +
‖z∗k‖L∞[−kT,kT ]

2

∫
|z∗k|≥1

|Vz∗k(t, z∗k)|dt+M ‖z∗k||2Ek

+

(∫ kT

−kT
|hk(t)|2dt

) 1
2
(∫ kT

−kT
|z∗k|2dt

) 1
2

dt

≤M0 +
%

2
‖z∗k||Ek

c2

∫
|z∗k|≥1

|z∗k|λdt+M‖z∗k||2Ek

+ ‖hk(t)‖L2[0,2kT ]‖z∗k||Ek
.

(31)
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Since λ ≤ β, we have from (30) and (31) that

(a1

2
−M

)
‖z∗k||2Ek

−

(
η

2%
+
c2%M̃

∗
0

2

)
‖z∗k||Ek

≤M0. (32)

Now (32) guarantees that {‖z∗k‖Ek
}k∈N is bounded. Therefore, there exists a

constant M1 > 0 such that
‖z∗k‖Ek

≤M1. (33)

We now show that for a large enough k,

‖z∗k‖L∞[−kT,kT ]
≤M2. (34)

From (11) and (33), there exists a positive constant M2 = %M1 such that (34)
holds. Since z∗k satisfies (5), we have if t ∈ [−kT, kT ]

|z̈∗k| ≤ |hk(t)|+ |Kz∗k
(t, z∗k)|+ |Vz∗k(t, z∗k)|. (35)

Therefore, (H1), (H3), (H7), (34), and (35) imply that there is M̃3 > 0 indepen-
dent of k such that

‖z̈∗k‖L∞[0,2kT ]
≤ M̃3. (36)

By (34) and (36), we have

|ż∗k(t)| =
∣∣∣∣∫ t

γk

z̈∗k(s)ds+ ż∗k(τk)

∣∣∣∣≤∫ t

t−1

|z̈∗k(s)|ds+ |z∗k(t)− z∗k(t− 1)| ≤ M̃3 + 2M2.

Thus for every k ∈ N we have

‖ż∗k‖L∞[0,2kT ]
≤ M̃4. (37)

Let k ∈ N and t, t0 ∈ R, then

|z∗k(t)− z∗k(t0)| =
∣∣∣∣∫ t

t0

ż∗k(s)ds

∣∣∣∣ ≤ ∫ t

t0

|ż∗k(s)|ds ≤ M̃4(t− t0).

and

|ż∗k(t)− ż∗k(t0)| =
∣∣∣∣∫ t

t0

z̈∗k(s)ds

∣∣∣∣ ≤ ∫ t

t0

|z̈∗k(s)|ds ≤ M̃3(t− t0).

Since both {z∗k}k∈N and {ż∗k}k∈N are bounded in L∞[−kT,kT ](R,R
2n) and equicon-

tinuous, we obtain that the sequence {z∗k}k∈N converges to a certain
z∗0 ∈ C1(R,Rn) by using the Arzelà-Ascoli theorem.

Lemma 1.7. The function z∗0 determined by Lemma 1.5 is the desired homo-
clinic solution of (1.1).
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The following result of Izydorek and Janczewska [10] will be used.

Proposition 1.8. Let z : R → Rn be a continuous mapping such that ż ∈
L2
loc(R,R

n). For every t ∈ R the following inequality holds:

|z(t)| ≤
√

2

[∫ t+ 1
2

t− 1
2

(|z(s)|2 + |ż(s)|2)ds

] 1
2

. (38)

Proof of Lemma 1.7. The proof will be divided into four steps.

Step 1. We prove that z∗0(t)→ 0, as t→ ±∞. Note we have∫ +∞

−∞
(|z∗0(t)|2 + |ż∗0(t)|2)dt = lim

j→+∞

∫ jT

−jT
(|z∗0(t)|2 + |ż∗0(t)|2)dt

= lim
j→+∞

lim
k→+∞

∫ jT

−jT
(|z∗k(t)|2 + |ż∗k(t)|2)dt.

Clearly, by (32), for every j ∈ N there exists nj ∈ N such that for all k ≥ nj
we have ∫ jT

−jT
(|z∗nk

(t)|2 + |ż∗nk
(t)|2)dt ≤ ‖z∗nk

‖2
Enk
≤M2

1 ,

Letting k → +∞, we get
∫ jT
−jT (|z∗0(t)|2 + |ż∗0(t)|2)dt ≤ M2

1 , and now, letting

j → +∞, we have
∫ +∞
−∞ (|z∗0(t)|2 + |ż∗0(t)|2)dt ≤M2

1 , and so∫
|t|≥m

(|z∗0(t)|2 + |ż∗0(t)|2)dt→ 0, as m→ +∞. (39)

Then (39) shows that our claim holds.

Step 2. We now show that ż∗0(t)→ 0, as t→ ±∞. Note that from (38) we
get

|ż∗0(t)|2 ≤ 2

∫ t+ 1
2

t− 1
2

|ż∗0(s)|2ds+ 2

∫ t+ 1
2

t− 1
2

|z̈∗0(s)|2ds

≤ 2

∫ t+ 1
2

t− 1
2

(|z∗0(s)|2 + |ż∗0(s)|2)ds+ 2

∫ t+ 1
2

t− 1
2

|z̈∗0(s)|2ds.
(40)

Since we have (39) and (40) it suffices to prove that∫ m+1

m

|z̈∗0(t)|2dt→ 0, as m→ +∞. (41)
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By (5) we obtain

∫ m+1

m

|z̈∗0(t)|2dt =

∫ m+1

m

(|Kz∗0
(t, Z∗0(t))− Vz∗0 (t, z∗0(t))|2dt

− 2

∫ m+1

m

(Vz∗0 (t, z∗0(t)), h(t))dt

+

∫ m+1

m

|h(t)|2)dt+ 2

∫ m+1

m

(Kz∗0
(t, z∗0(t)), h(t))dt.

Since V (t, 0) = 0, Kz(t, 0) = 0 for all t ∈ R, z∗0(t) → 0, as t → ±∞ and∫ m+1

m
|h(t)|2dt→ 0, as m→ ±∞, (41) follows.

Step 3. We show that z∗0 6≡ 0 when h(t) ≡ 0. Now, up to a subsequence, we
have either∫ +∞

−∞
|z∗0(t)|2dt = lim

j→+∞

∫ jT

−jT
|z∗0(t)|2dt = lim

j→+∞
lim

k→+∞

∫ jT

−jT
|z∗nk

(t)|2dt = 0. (42)

or there exist α > 0 such that∫ +∞

−∞
|z∗0(t)|2dt ≥ α > 0. (43)

In the first case we shall say that z∗0 is vanishing, in the second we shall say
that z∗0 is nonvanishing.

By assumptions (H3)–(H5), for any ε > 0 there exists Cε > 0 such that

|Vz∗nk
(t, z∗nk

)| ≤ ε|z∗nk
|+ Cε|z∗nk

|λ. (44)

Hence, from (44) there exists a positive constant γ̃ such that

∫ kT

−kT
|(z∗nk

)+||Vz∗nk
(t, z∗nk

)|dt≤ γ̃(ε‖z∗nk
‖Ek
‖(z∗nk

)+‖Ek
+Cε‖z∗nk

‖λEk
‖(z∗nk

)+‖Ek
. (45)

Arguing indirectly, we suppose {z∗nk
}∞k=1 is vanishing. From (42) and (44) we

have that

lim
k→∞

∫ kT

−kT
((z∗nk

)+, Vz∗nk
(t, z∗nk

))dt = lim
k→∞

∫ kT

−kT
V (t, z∗nk

)dt = 0. (46)

Since < I
′

k(z
∗
nk

), (z∗nk
)± >= 0, for some positive constant C̃, we obtain using (42)
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and (45) that

ξ1‖(z∗nk
)+‖2

Ek

≤ < A(z∗nk
)+, (z∗nk

)+ >

≤ −
∫ kT

−kT
[(Kz∗nk

(t, z∗nk
)−k(t)(z∗nk

)+, (z∗nk
)+)]dt+

∫ kT

−kT
((z∗nk

)+, Vz∗nk
(t, z∗nk

))dt

≤
∫ kT

−kT
((z∗nk

)+, Vz∗nk
(t, z∗nk

))dt

≤ ξ1

4
‖z∗nk
‖2
Ek

+ C̃‖z∗nk
‖λ+1
Ek

,

(47)

where ξ1 is the smallest positive eigenvalue of operator A.
On the other hand, note that dim(E0

k) < +∞, there exist two positive
constants b1 and b2 such that

b1|(z∗nk
)0|22 ≤ ‖(z∗nk

)0‖2
Ek
≤ b2|(z∗nk

)0|22. (48)

From (42) and (48) we have that

ξ1‖(z∗nk
)0‖2

Ek
≤ bε‖z∗nk

‖2
Ek
, (49)

where 0 < bε ≤ ξ1
4

.
Hence from (47) and (49) we have that

ξ1‖z∗nk
‖2
Ek
≤ ξ1

2
‖z∗nk
‖2
Ek

+ C̃‖z∗nk
‖λ+1
Ek

,

and ‖z∗nk
‖Ek
≥ c̃ for some c̃ > 0.

On the other hand, we have from (42), (46)–(48) we have that
‖(z∗nk

)+‖2
Ek
→ 0 and ‖(z∗nk

)0‖2
Ek
→ 0 as k → ∞. This means that ‖z∗nk

‖Ek
→ 0

as k →∞, which leads to a contradiction. Hence {z∗nk
} is nonvanishing, so (43)

holds, and this shows that our claim holds.

Step 4. We show that z∗0(t) is a nontrivial homoclinic solution of (1). Ac-
cording to Step 3, z∗0(t) 6≡ 0, so it suffices to prove for any ϕ ∈ C∞0 (R,Rn)∫ +∞

−∞
((z̈∗0(t)−Kz∗0

(t, z∗0) + Vz∗0 (t, z∗0)− h(t)), ϕ(t))dt = 0. (50)

By Step 1, we can choose k0 such that suppϕ ⊆ [−kiT, kiT ] for all ki ≥ k0, and
we have for ki ≥ k0∫ +∞

−∞
((z̈∗ki(t)−Kz∗ki

(t, z∗ki) + Vz∗ki
(t, z∗0)− hi(t)), ϕ(t))dt = 0. (51)

By (39) and (51), letting ki →∞ we get (50), which shows z∗0(t) is a nontrivial
homoclinic solution of (1).
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Proof of Theorem 1.1. The result follows from Lemma 1.7.
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