Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems

Chengjun Guo, Donal O'Regan, Chengjiang Wang, Ravi P. Agarwal

Abstract. Using critical point theory, we study the existence of homoclinic orbits for the second-order Hamiltonian system

$$
\ddot{z} - K_z(t, z) + V_z(t, z) = h(t),
$$

where $V(t, z)$ depends periodically on t and is superquadratic.

Keywords. Homoclinic orbit, Hamiltonian system, critical point theory Mathematics Subject Classification (2010). Primary 34K13, secondary 34K18, 58E50

1. Introduction

1.1. Research background. The purpose of this paper is to study the existence of homoclinic orbits for the superquadratic second-order Hamiltonian system

$$
\ddot{z} - K_z(t, z) + V_z(t, z) = h(t)
$$
\n(1)

where $t \in \mathbf{R}, z \in \mathbf{R}^n, K, V \in C^1(\mathbf{R} \times \mathbf{R}^n, \mathbf{R})$ is T-periodic in t, and $h: \mathbf{R} \to \mathbf{R}^n$ is a continuous and bounded function.

In recent years several authors studied homoclinic orbits for Hamiltonian systems via critical point theory. For second order Hamiltonian systems we refer the reader to [2,7,8,10-13] and for first order [1,3-5, 9, 14-17].

C. Guo, C. Wang: School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510006, China; guochj817@163.com; 871181531@qq.com

D. O'Regan: School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

R. P. Agarwal: Department of Mathematics, Texas A and M University-Kingsville, Texas, 78363, USA; Ravi.Agarwal@tamuk.edu

We note that many results were obtained under the Ambrosetti-Rabinowitz growth condition, that is, there is a $\mu > 2$ such that

$$
0 < \mu V(t, z) \le (z, V_z(t, z)) \quad \text{whenever } z \ne 0. \tag{AR}
$$

It is easy to see that (AR) does not include some superquadratic nonlinearities like

$$
V(t, z) = |z|^2 (\ln(1+|z|^p))^q, \quad p, q > 1.
$$
 (2)

In this paper, we study the homoclinic solutions of (1) under some superquadratic condition which covers a case like (2).

We suppose that V, K and h in (1) satisfy the following assumptions:

 (H_1) There are a continuous T-periodic function $k(t)$ and two constants k_1 , $k_2 > 0$ such that for all $(t, z) \in \mathbb{R} \times \mathbb{R}^n$

$$
k_1|z|^2 \le k(t)|z|^2 \le K(t, z) \le k_2|z|^2
$$

and
$$
\frac{1}{2}(z, K_z(t, z)) \le K(t, z) \le (z, K_z(t, z)).
$$

Here and in the sequel, $(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ denotes the standard inner product in \mathbb{R}^n and $|\cdot|$ the induced norm.

- (H₂) $V(t, z) \ge 0$, for all $(t, z) \in [0, T] \times \mathbb{R}^n$.
- (H₃) $V(t, z) = o(|z|^2)$ as $|z| \to 0$ uniformly in t.
- $(H_4) \frac{V(t,z)}{|z|^2}$ $\frac{f(t,z)}{|z|^2} \to +\infty$ as $|z| \to +\infty$ uniformly in t.
- (H₅) $(z, V_z(t, z)) 2V(t, z) > 0$ for all z, t.
- (H₆) There exist positive constants $1 < \lambda \leq \beta$, c_1 and c_2 such that

$$
(z, V_z(t, z)) - 2V(t, z) \ge c_1 |z|^\beta, \quad \forall |z| \ge 1, \ \forall t \in [0, T]
$$
 (3)

and
$$
|V_z(t, z)| \le c_2 |z|^\lambda, \quad \forall |z| \ge 1, \ \forall t \in [0, T]. \tag{4}
$$

(H₇) Set $\overline{M} := \sup\{V(t,z): t \in [0,T], |z|=1\}, a_1 := \min\{1, 2k_1\}, a_2 := \max\{1, 2k_2\}.$ There exist positive constants η , c_3 and c_4 such that

$$
\int_{\mathbf{R}} |h(t)| dt \leq c_3, \quad \left(\int_{\mathbf{R}} |h(t)|^2 dt\right)^{\frac{1}{2}} \leq \frac{\eta}{2\varrho},
$$

\n $a_1 - 2\overline{M} - \eta > 0, \quad c_4 = \max_{t \in \mathbf{R}} |h(t)| < c_1,$

where ϱ is a positive constant which will be defined in Proposition 1.3 later.

As usual, a solution $z(t)$ of (1) is said to be homoclinic (to 0) if $z(t) \rightarrow 0$ as $t \to \pm \infty$. In addition, if $z(t) \neq 0$ then $z(t)$ is called a nontrivial homoclinic solution.

Theorem 1.1. Suppose $V \in C^1([0,T] \times \mathbb{R}^n, \mathbb{R})$ is T-periodic in t and satisfies (H_1) – (H_7) . Then system (1) possesses a nontrivial homoclinic solution $z \in W^{1,2}(\mathbf{R}, \mathbf{R}^n)$ such that $\dot{z}(t) \to 0$ as $t \to \pm \infty$.

This paper is largely motivated by the work of Rabinowitz [12] in which the existence of nontrivial homoclinic solutions for the second order Hamiltonian system

$$
\ddot{q} + V_q(t, q) = 0
$$

was proved.

1.2. Variational structure. For each $k \in \mathbb{N}$, let $E_k := W_{2k}^{1,2}(\mathbb{R}, \mathbb{R}^n)$, the Hilbert space of $2kT$ -periodic functions on **R** with values in \mathbb{R}^n under the norm

$$
||z||_{E_k}^2 := \int_{-kT}^{kT} [| \dot{z}(t) |^2 + |z(t)|^2] dt, \quad z \in E_k.
$$

Furthermore, let $L^{\infty}_{[-kT,kT]}(\mathbf{R},\mathbf{R}^n)$ denote a space of 2kT-periodic essentially bounded (measurable) functions from **R** into \mathbb{R}^n equipped with the norm

$$
||z||_{L^{\infty}_{[-kT,kT]}} := \text{ess}\sup\{|z(t)| : t \in [-kT, kT]\}.
$$

As in [10], a homoclinic solution of (1) will be obtained as a limit, as $k \to \pm \infty$, of a certain sequence of functions $z_k \in E_k$. We consider a sequence of systems of differential equations

$$
\ddot{z}(t) - K_z(t, z) + V_z(t, z) = h_k(t),
$$
\n(5)

where for each $k \in \mathbb{N}$, $h_k : \mathbb{R} \to \mathbb{R}^n$ is a 2kT-periodic extension of the restriction of h to the interval $[-kT, kT]$ and z_k , a 2kT-periodic solution of (5), will be obtained via a linking theorem.

Let

$$
\phi_k(z) = \left(\int_{-kT}^{kT} [|z(t)|^2 + 2K(t, z(t))]dt \right)^{\frac{1}{2}}.
$$
\n(6)

We have from (H_1) that

$$
a_1 \|z\|_{E_k}^2 \le \phi_k^2(z) \le a_2 \|z\|_{E_k}^2. \tag{7}
$$

Let

$$
Az = -\ddot{z} + k(t)z, \quad z \in E_k,\tag{8}
$$

$$
\langle Az, y \rangle = \int_{-kT}^{kT} (-\ddot{z} + k(t)z, y)dt, \quad \forall z, y \in E_k
$$
\n(9)

and

$$
I_k(z) = \int_{-kT}^{kT} \left[\frac{1}{2} |\dot{z}(t)|^2 + K(t, z(t)) \right] dt - \int_{-kT}^{kT} V(t, z(t)) dt
$$

+
$$
\int_{-kT}^{kT} (h_k(t), z(t)) dt
$$

=
$$
\frac{1}{2} < Az, z > + \int_{-kT}^{kT} \left[K(t, z(t)) - \frac{k(t)}{2} z^2(t) \right] dt - \int_{-kT}^{kT} V(t, z(t)) dt
$$

+
$$
\int_{-kT}^{kT} (h_k(t), z(t)) dt.
$$
 (10)

Then A has a sequence of eigenvalues

$$
0 < \xi_k^1 \le \xi_k^2 \le \cdots \le \xi_k^m \cdots
$$

with $\xi_k^m \to \infty$ as $m \to \infty$. Let φ_k^j $\frac{d}{k}$ be the eigenvector of A corresponding to ξ_k^j $\frac{j}{k}$ $j = 1, 2, \ldots, m, \ldots$ Set

 $E_k^0 = \ker(A)$, $E_k^- = \text{negative eigenspace of } A$, $E_k^+ = \text{positive eigenspace of } A$. It is easy to see that $E_k^- = \{0\}$ and $E_k = E_k^0 \oplus E_k^+$ $\frac{k+1}{k}$.

Lemma 1.2 ([11]). Let E be a real Hilbert space with $E = E^{(1)} \oplus E^{(2)}$ and $E^{(1)} = (E^{(2)})^{\perp}$. Suppose $I \in C^1(E, \mathbf{R})$ satisfies the (\mathbf{PS}) condition¹, and

- $(C_1) I(u) = \frac{1}{2}(Lu, u) + b(u),$ where $Lu = L_1 P_1 u + L_2 P_2 u, L_i : E^{(i)} \mapsto E^{(i)}$ is bounded and selfadjoint, P_i is the projector of E onto $E^{(i)}$, i=1,2,
- (C_2) b' is compact, and
- (C₃) there exists a subspace $\widetilde{E} \subset E$ and sets $S \subset E$, $Q \subset \widetilde{E}$ and constants $\alpha > \omega$ such that
	- (i) $S \subset E^{(1)}$ and $I|_{S} \ge \alpha$,
	- (ii) Q is bounded and $I|_{\partial\Omega} \leq \omega$,
	- (iii) S and ∂Q link.

Then I possesses a critical value $c \geq \alpha$ given by

$$
c = \inf_{g \in \Gamma} \sup_{u \in Q} I(g(1, u)),
$$

where

$$
\Gamma \equiv \{ g \in C([0,1] \times E, E) | g \text{ satisfies } (\Gamma_1) - (\Gamma_3) \},
$$

- (Γ_1) $g(0, u) = u$,
- (Γ_2) $q(t, u) = u$ for $u \in \partial Q$,

 (Γ_3) $g(t, u) = e^{\theta(t, u)L}u + \chi(t, u)$, where $\theta(t, u) \in C([0, 1] \times E, \mathbf{R})$ and χ is compact.

¹Condition (PS) (see [8, p. 1171]): Let E be a real Banach space, $I \in C_1(E, R)$, i.e. I is a continuously Fréchet-differentiable functional defined on E. I is said to be satisfying (PS) if any sequence $x(t) \subset E$ for which $I(x(t))$ is bounded and $I'(x(t)) \to 0$, as $t \to \infty$, possesses a convergent subsequence in E.

1.3. Proof of the main result. The following result of Rabinowitz [12] will be used.

Proposition 1.3. There is a positive constant ϱ such that for each $k \in \mathbb{N}$ and $z \in E_k$ the following inequality holds:

$$
||z||_{L^{\infty}_{[-kT,kT]}} \leq \varrho ||z||_{E_k}.
$$
\n(11)

Lemma 1.4. Under the conditions of Theorem 1.1, I_k satisfies the (PS) condition.

Proof. Assume that $\{z_{k_n}\}_{n\in\mathbb{N}}$ in E_k is a sequence such that $\{I_k(z_{k_n})\}_{n\in\mathbb{N}}$ is bounded and I'_{k} $k(z_{k_n}) \to 0$ as $n \to +\infty$. Then there exists a constant $d_1 > 0$ such that

$$
|I_k(z_{k_n})| \le d_1, \quad I'_k(z_{k_n}) \to 0 \quad \text{as} \quad n \to \infty. \tag{12}
$$

We first prove that $\{z_{k_n}\}_{n\in\mathbb{N}}$ is bounded. Let $z_{k_n} = z_{k_n}^0 + z_{k_n}^+$ $k_{k_n}^+ \in E_k^0 \oplus E_k^+$ $\frac{k+1}{k}$. From (H_1) , (H_5) , (3) of (H_6) and (H_7) we have that

$$
2d_1 \ge 2I_k(z_{k_n}) - \langle I'_k(z_{k_n}), z_{k_n} \rangle
$$

\n
$$
= \left(\int_{|z_{k_n}| \ge 1} + \int_{|z_{k_n}| < 1} \right) [(z_{k_n}, V_{z_{k_n}}(t, z_{k_n})) - 2V(t, z_{k_n}) + (h_k(t), z_{k_n})] dt
$$

\n
$$
\ge \int_{|z_{k_n}| \ge 1} [(z_{k_n}, V_{z_{k_n}}(t, z_{k_n})) - 2V(t, z_{k_n}) + (h_k(t), z_{k_n})] dt
$$

\n
$$
- \int_{|z_{k_n}| < 1} |h_k(t)| |z_{k_n}| dt
$$

\n
$$
\ge \int_{|z_{k_n}| \ge 1} (c_1 - ||h_k(t)||_{L_{[-kT, kT]}^{\infty}}) |z_{k_n}|^{\beta} dt - \int_{-kT}^{kT} |h_k(t)| dt.
$$
\n(13)

This implies

$$
\int_{|z_{k_n}| \ge 1} |z_{k_n}|^{\beta} dt \le \frac{(2d_1 + c_3)}{(c_1 - c_4)} = \widetilde{M}_0.
$$
\n(14)

On the other hand, using a well known fact in [10, p. 378], we have

$$
\int_{|z|<1} \!\!\! V(t,z(t))dt \leq \int_{|z|<1} \!\!\! V\!\left(t,\frac{z(t)}{|z(t)|}\right) |z(t)|^2 dt \leq \overline{M} \int_{-k}^{k} \!\!\! |z(t)|^2 dt \leq \overline{M} \|z\|_{E_k}^2 \tag{15}
$$

for $z \in E_k$. From (H_2) , (H_5) , (4) of (H_6) , (7) , (11) , and (15) (keeping in mind that $a_1 - 2\overline{M} > 0$) we have

$$
\frac{a_{1}}{2}||z_{k_{n}}||_{E_{k}}^{2} \leq \int_{-kT}^{kT} \left[\frac{1}{2} |z_{k_{n}}(t)|^{2} + K(t, z_{k_{n}}(t)) \right] dt \n= I_{k}(z_{k_{n}}) + \int_{-kT}^{kT} V(t, z_{k_{n}}(t)) dt - \int_{-kT}^{kT} (h_{k}(t), z_{k_{n}}(t)) dt \n= I_{k}(z_{k_{n}}) + \left(\int_{|z_{k_{n}}| \geq 1} + \int_{|z_{k_{n}}| < 1 \right) [V(t, z_{k_{n}}) - (h_{k}(t), z_{k_{n}})] dt \n\leq d_{1} + \frac{1}{2} \int_{|z_{k_{n}}| \geq 1} (z_{k_{n}}, V_{z_{k_{n}}}(t, z_{k_{n}})) dt + \overline{M} ||z_{k_{n}}||_{E_{k}}^{2} \n+ \left(\int_{-kT}^{kT} |h_{k}(t)|^{2} dt \right)^{\frac{1}{2}} \left(\int_{-kT}^{kT} |z_{k_{n}}|^{2} dt \right)^{\frac{1}{2}} dt \n\leq d_{1} + \frac{||z_{k_{n}}||_{L_{[-kT,kT]}^{\infty}}}{2} \int_{|z_{k_{n}}| \geq 1} |V_{z_{k_{n}}}(t, z_{k_{n}})| dt + \overline{M} ||z_{k_{n}}||_{E_{k}}^{2} \n+ \left(\int_{-kT}^{kT} |h_{k}(t)|^{2} dt \right)^{\frac{1}{2}} \left(\int_{-kT}^{kT} |z_{k_{n}}|^{2} dt \right)^{\frac{1}{2}} dt \n\leq d_{1} + \frac{\varrho}{2} ||z_{k_{n}}||_{E_{k}} c_{2} \int_{|z_{k_{n}}| \geq 1} |z_{k_{n}}|^{2} dt + \overline{M} ||z_{k_{n}}||_{E_{k}}^{2} \n+ ||h_{k}(t)||_{L_{[0,2kT]}^{\frac{1}{2}} ||z_{k_{n}}||_{E_{k}}^{2}.
$$
\n(16)

Since $\lambda \leq \beta$, we have from (14) and (16) that

$$
\left(\frac{a_1}{2} - \overline{M}\right) \|z_{k_n}\|_{E_k}^2 - \left(\frac{\eta}{2\varrho} + \frac{c_2 \varrho \widetilde{M}_0}{2}\right) \|z_{k_n}\|_{E_k} \le d_1.
$$
 (17)

 \Box

Now (17) guarantees that $\{\|z_{k_n}\|_{E_k}\}_{n\in\mathbb{N}}$ is bounded. Going if necessary to a subsequence, we can assume that there exists $z \in E_k$ such that $z_{k_n} \rightharpoonup z$, as $n \to +\infty$, in E_k , which implies $z_{k_n} \to z$ uniformly on $[-kT, kT]$. Hence (I'_k) $\int_{k}^{'} (z_{k_n}) - I_{k}^{'}$ $f'_k(z)(z_{k_n} - z) \to 0$ and $||z_{k_n} - z||_{L^2[-kT, kT]} \to 0$. Set

$$
\Phi = \int_{-kT}^{kT} (V_{z_{k_n}}(t, z_{k_n}) - V_z(t, z), z_{k_n} - z) dt - \int_{-kT}^{kT} (K_{z_{k_n}}(t, z_{k_n}) - K_z(t, z), z_{k_n} - z) dt.
$$

It is easy to check that $\Phi \to 0$ as $n \to +\infty$. Moreover, an easy computation shows that

$$
(I'_{k}(z_{k_n})-I'_{k}(z))(z_{k_n}-z)=\|\dot{z}_{k_n}-\dot{z}\|_{L^2_{[0,2k]}-\Phi},
$$

and so $\|\dot{z}_{k_n} - \dot{z}\|_{L^2_{[0,2kT]}} \to 0$. Consequently, $\|z_{k_n} - z\|_{E_k} \to 0$.

Lemma 1.5. If H, K and h satisfy (H_1) – (H_7) , then for every $k \in \mathbb{N}$ the system (5) possesses a 2kT-periodic solution.

Proof. The proof will be divided into three steps.

Step 1. Assume that $0 < ||z||_{L_{[0,2kT]}^{\infty}} \leq 1$ for $z \in E_k^{(1)} = E_k^+$ $k \atop k$. From (7), (10), (11) , and (15) we have that

$$
I_k(z) = \int_{-kT}^{kT} \left[\frac{1}{2} |\dot{z}(t)|^2 + K(t, z(t)) \right] dt - \int_{-kT}^{kT} V(t, z(t)) dt + \int_{-kT}^{kT} (h_k(t), z(t)) dt
$$

\n
$$
\geq \frac{a_1}{2} ||z||_{E_k}^2 - \overline{M} ||z||_{E_k}^2 - \frac{\eta}{2\varrho} ||z||_{E_k}
$$

\n
$$
= \frac{1}{2} (a_1 - 2\overline{M} - \eta) ||z||_{E_k}^2 + \frac{\eta}{2} ||z||_{E_k}^2 - \frac{\eta}{2\varrho} ||z||_{E_k}.
$$
\n(18)

Note from (H_7) that $a_1 - 2\overline{M} - \eta > 0$. Set

$$
\rho = \frac{1}{\varrho}, \quad \alpha = \frac{a_1 - 2\overline{M} - \eta}{2\varrho^2}.
$$

Let B_ρ denote the open ball in E_k with radius ρ about 0 and let ∂B_ρ denote its boundary. Let $S_k = \partial B_\rho \cap E_k^+$ ^t_k. If $z \in S_k$ then $||z||_{E_k} = \frac{1}{\varrho}$ $\frac{1}{\varrho}$ (note $||z||_{L_{[0,2kT]}^{\infty}} \leq 1$ from (11) and so (18) gives

$$
I_k(z) \ge \alpha, \quad z \in S_k.
$$

Then $(C_3)(i)$ of Lemma 1.2 holds.

 $Step\ 2. \nChoose\ e \in E_k^+ \nwith \ \|e\|_{E_k} = 1. \nLet\ \widetilde{E}_k = span\{e\} \oplus E_k^0 \nand$ $\Theta_k = \{z \in \widetilde{E}_k : ||z||_{E_k} = 1\}.$ Note that $dim(\widetilde{E}_k) < +\infty.$

The argument in [6] guarantees that there exists $\varepsilon_k^1 > 0$ such that, $\forall u \in \Theta_k$,

$$
meas\{t \in [0, 2kT] : |u(t)| \ge \varepsilon_k^1\} \ge \varepsilon_k^1. \tag{19}
$$

For $z = z^+ + z^0 \in \Theta_k$, let $\Omega_k^z = \{t \in [0, 2k] : |z(t)| \geq \varepsilon_k^1\}$. By (H_4) , for $M_k^* = \frac{a_2}{(\varepsilon_k^1)}$ $\frac{a_2}{(\epsilon_k^1)^3} > 0$, there exists L_k such that

$$
V(t, z) \ge M_k^* |z|^2, \quad \forall |z| \ge L_k, \quad \text{uniformly in } t. \tag{20}
$$

Let $\gamma_k \geq \max\left\{\frac{2\eta}{qa} \right\}$ $\frac{2\eta}{\varrho a_2}, \frac{L_k}{\varepsilon_k^1}$ ε^1_k For $\gamma \geq \gamma_k$, from (19) and (20) we have that

$$
V(t, \gamma z) \ge M_k^* |\gamma z|^2 \ge M_k^* \gamma^2 (\varepsilon_k^1)^2, \quad \forall t \in \Omega_k^z.
$$
 (21)

34 C. Guo et al.

From (H₁) (or (7)) and (21), we have for $z = z^+ + z^0 \in \Theta_k$ that

$$
I_{k}(\gamma z) = \int_{-kT}^{kT} \left[\frac{\gamma^{2}}{2} |\dot{z}(t)|^{2} + K(t, \gamma z) \right] dt - \int_{-kT}^{kT} V(t, \gamma z) dt + \int_{-kT}^{kT} (h_{k}(t), \gamma z) dt
$$

\n
$$
\leq \frac{a_{2}}{2} \gamma^{2} - \int_{\Omega_{k}^{z}} V(t, \gamma z) dt + \gamma \| h_{k}(t) \|_{L^{2}[0, 2kT]}
$$

\n
$$
\leq \frac{a_{2}}{2} \gamma^{2} - M_{k}^{*} \gamma^{2} (\varepsilon_{k}^{1})^{3} + \gamma \frac{\eta}{2\varrho}
$$

\n
$$
\leq 0.
$$
\n(22)

Therefore

$$
I_k(\gamma z) \le 0, \quad \text{for any } z \in \Theta_k \text{ and } \gamma \ge \gamma_k. \tag{23}
$$

Let $Q_k = \{ \gamma e : 0 \leq \gamma \leq 2\gamma_k \} \oplus \{ z \in E_k^0 : ||z||_{E_k} \leq 2\gamma_k \}.$ It is easy to see that $||z||_{E_k} = 2\gamma_k$ or $||z||_{E_k} = 0$ for $\forall z \in \partial Q_k$. From (H_2) and (23) we have $I_k|_{\partial Q_k} \leq 0$, i.e., I_k satisfies (C_2) (ii) of Lemma 1.2.

Step 3. (C₃)(iii) (i.e., S_k links ∂Q_k) holds from the definition of S_k and Q_k and [11, p. 32]. Thus $(C_3)(iii)$ holds.

Note that (C_1) and (C_2) of Lemma 1.2 are true. Now from Lemma 1.2, I_k possesses a critical value c_k given by

$$
c_k = \inf_{g_k \in \Upsilon_k} \sup_{u_k \in Q_k} I_k(g_k(1, u_k)), \tag{24}
$$

where Υ_k satisfies (Γ_1) - (Γ_3) . Hence, for every $k \in \mathbb{N}$, there is $z_k^* \in E_k$ such that

$$
I_k(z_k^*) = c_k, \quad I'_k(z_k^*) = 0.
$$
\n(25)

The function z_k^* is a desired classical $2kT$ -periodic solution of (5). Since $c_k \geq \alpha = \frac{a_1 - 2M - \eta}{2a^2}$ $\frac{2M-\eta}{2\varrho^2} > 0$, z_k^* is a nontrivial solution. \Box

Lemma 1.6. Let $\{z_k^*\}_{k\in\mathbb{N}}$ be the sequence given by Lemma 1.5. There exists a $z_0^* \in C^1(\mathbf{R}, \mathbf{R}^n)$ such that $z_k^* \to z_0^*$ in $C^1_{loc}(\mathbf{R}, \mathbf{R}^n)$ as $k \to +\infty$.

Proof. The first step in the proof is to show that the sequences ${c_k}_{k\in\mathbb{N}}$ and $\{\Vert z_k^*\Vert_{E_k}\}_{k\in\mathbb{N}}$ are bounded. There exists $\hat{z}_1^*\in E_1$ with $\hat{z}_1^*(\pm T)=0$ such that

$$
c_1 \le I_1(\hat{z}_1^*) = \inf_{g_1 \in \Upsilon_1} \sup_{u_1 \in Q_1, u_1(\pm T) = 0} I_1(g_1(1, u_1)).
$$
 (26)

For every $k \in \mathbf{N}$, let

$$
\widehat{z}_{k}^{*}(t) = \begin{cases} \widehat{z}_{1}^{*}(t) & \text{for } |t| \leq T \\ 0 & \text{for } T < |t| \leq kT \end{cases}
$$
\n(27)

and $\widetilde{g}_k : [0,1] \times E_k \to E_k$ be a curve given by $\widetilde{g}_k(t,z) \equiv z$, where $z \in E_k$. Then $\widetilde{g}_k \in \Upsilon_k$ and $I_k(\widetilde{g}_k(1, \widehat{z}_k^*)) = I_1(\widetilde{g}_1(1, z_1^*)) = I_1(z_1^*)$ for all $k \in \mathbb{N}$. Therefore, from (24), (26) and (27),

$$
c_k \le I_k(\tilde{g}_k(1, \tilde{z}_k^*)) = I_1(\tilde{g}_1(1, z_1^*)) = I_1(z_1^*) \equiv M_0.
$$
 (28)

From (H_5) and (3) of (H_6) we have that

$$
2M_0 \ge 2I_k(z_k^*) - \langle I'_k(z_k^*), z_k^* \rangle
$$

\n
$$
\ge \int_{-kT}^{kT} [(z_k^*, V_{z_k^*}(t, z_k^*)) - 2V(t, z_k^*)]dt + \int_{-kT}^{kT} (h_k(t), z_k^*)dt
$$

\n
$$
= \left(\int_{|z_k^*| \ge 1} + \int_{|z_k^*| < 1} \right) [(z_k^*, V_{z_k^*}(t, z_k^*)) - 2V(t, z_k^*) + (h_k(t), z_k^*)]dt
$$

\n
$$
\ge \int_{|z_k^*| \ge 1} [(z_k^*, V_{z_k^*}(t, z_k^*)) - 2V(t, z_k^*) + (h_k(t), z_k^*)]dt - \int_{|z_k^*| < 1} |h_k(t)| |z_k^*|dt
$$

\n
$$
\ge \int_{|z_k^*| \ge 1} (c_1 - c_4) |z_k^*|^\beta dt - \int_{-kT}^{kT} |h_k(t)| dt.
$$
\n(29)

This implies

$$
\int_{|z_k^*| \ge 1} |z_k^*|^\beta dt \le \frac{(2M_0 + c_3)}{(c_1 - c_4)} = \widetilde{M}_0^*.
$$
\n(30)

On the other hand, from (H_2) , (H_5) , (4) of (H_6) , (H_7) , (7) and (11) (keeping in mind $a_1 - 2\overline{M} > 0$) we have

$$
\frac{a_{1}}{2}||z_{k}^{*}||_{E_{k}}^{2} \leq \int_{-kT}^{kT} \left[\frac{1}{2} |z_{k}^{*}|^{2} + K(t, z_{k}^{*}) \right] dt \n= I_{k}(z_{k}^{*}) + \int_{-kT}^{kT} V(t, z_{k}^{*}) dt - \int_{-kT}^{kT} (h_{k}(t), z_{k}^{*}) dt \n= I_{k}(z_{k}^{*}) + \left(\int_{|z_{k}^{*}| \geq 1} + \int_{|z_{k}^{*}| < 1} \right) [V(t, z_{k}^{*}) - (h_{k}(t), z_{k}^{*})] dt \n\leq M_{0} + \frac{1}{2} \int_{|z_{k}^{*}| \geq 1} (z_{k}^{*}, V_{z_{k}^{*}}(t, z_{k}^{*})) dt + \overline{M} ||z_{k}^{*}||_{E_{k}}^{2} \n+ \left(\int_{-kT}^{kT} |h_{k}(t)|^{2} dt \right)^{\frac{1}{2}} \left(\int_{-kT}^{kT} |z_{k}^{*}|^{2} dt \right)^{\frac{1}{2}} dt \n\leq M_{0} + \frac{||z_{k}^{*}||_{L_{[-kT,kT]}^{\infty}}}{2} \int_{|z_{k}^{*}| \geq 1} |V_{z_{k}^{*}}(t, z_{k}^{*})| dt + \overline{M} ||z_{k}^{*}||_{E_{k}}^{2} \n+ \left(\int_{-kT}^{kT} |h_{k}(t)|^{2} dt \right)^{\frac{1}{2}} \left(\int_{-kT}^{kT} |z_{k}^{*}|^{2} dt \right)^{\frac{1}{2}} dt \n\leq M_{0} + \frac{\varrho}{2} ||z_{k}^{*}||_{E_{k}} c_{2} \int_{|z_{k}^{*}| \geq 1} |z_{k}^{*}|^{2} dt + \overline{M} ||z_{k}^{*}||_{E_{k}}^{2} \n+ ||h_{k}(t)||_{L^{2}[0,2kT]} ||z_{k}^{*}||_{E_{k}}.
$$

Since $\lambda \leq \beta$, we have from (30) and (31) that

$$
\left(\frac{a_1}{2} - \overline{M}\right) \|z_k^*\|_{E_k}^2 - \left(\frac{\eta}{2\varrho} + \frac{c_2 \varrho \widetilde{M}_0^*}{2}\right) \|z_k^*\|_{E_k} \le M_0. \tag{32}
$$

Now (32) guarantees that $\{\Vert z_k^*\Vert_{E_k}\}_{k\in\mathbb{N}}$ is bounded. Therefore, there exists a constant $M_1 > 0$ such that

$$
||z_k^*||_{E_k} \le M_1. \tag{33}
$$

We now show that for a large enough k ,

$$
||z_k^*||_{L_{[-kT,kT]}^{\infty}} \le M_2. \tag{34}
$$

From (11) and (33), there exists a positive constant $M_2 = \rho M_1$ such that (34) holds. Since z_k^* satisfies (5), we have if $t \in [-kT, kT]$

$$
|\ddot{z}_k^*| \le |h_k(t)| + |K_{z_k^*}(t, z_k^*)| + |V_{z_k^*}(t, z_k^*)|.
$$
\n(35)

Therefore, (H_1) , (H_3) , (H_7) , (34) , and (35) imply that there is $\widetilde{M}_3 > 0$ independent of k such that

$$
\|\ddot{z}_k^*\|_{L_{[0,2kT]}^{\infty}} \le \widetilde{M}_3. \tag{36}
$$

By (34) and (36) , we have

$$
|\dot{z}_k^*(t)| = \left| \int_{\gamma_k}^t \tilde{z}_k^*(s)ds + \dot{z}_k^*(\tau_k) \right| \leq \int_{t-1}^t |\tilde{z}_k^*(s)|ds + |z_k^*(t) - z_k^*(t-1)| \leq \widetilde{M}_3 + 2M_2.
$$

Thus for every $k \in \mathbb{N}$ we have

$$
\|\dot{z}_k^*\|_{L_{[0,2kT]}^{\infty}} \le \widetilde{M}_4. \tag{37}
$$

Let $k \in \mathbf{N}$ and $t, t_0 \in \mathbf{R}$, then

$$
|z_k^*(t) - z_k^*(t_0)| = \left| \int_{t_0}^t \dot{z}_k^*(s) ds \right| \leq \int_{t_0}^t |\dot{z}_k^*(s)| ds \leq \widetilde{M}_4(t - t_0).
$$

and

$$
|\dot{z}_k^*(t) - \dot{z}_k^*(t_0)| = \left| \int_{t_0}^t \ddot{z}_k^*(s) ds \right| \leq \int_{t_0}^t |\ddot{z}_k^*(s)| ds \leq \widetilde{M}_3(t - t_0).
$$

Since both $\{z_k^*\}_{k\in\mathbb{N}}$ and $\{z_k^*\}_{k\in\mathbb{N}}$ are bounded in $L^{\infty}_{[-kT,kT]}(\mathbf{R},\mathbf{R}^{2n})$ and equicontinuous, we obtain that the sequence $\{z_k^*\}_{k\in\mathbb{N}}$ converges to a certain $z_0^* \in C^1(\mathbf{R}, \mathbf{R}^n)$ by using the Arzelà-Ascoli theorem. \Box

Lemma 1.7. The function z_0^* determined by Lemma 1.5 is the desired homo*clinic solution of* (1.1) *.*

The following result of Izydorek and Janczewska [10] will be used.

Proposition 1.8. Let $z : \mathbf{R} \to \mathbf{R}^n$ be a continuous mapping such that $\dot{z} \in \mathbf{R}$ $L^2_{loc}(\mathbf{R}, \mathbf{R}^n)$. For every $t \in \mathbf{R}$ the following inequality holds:

$$
|z(t)| \le \sqrt{2} \left[\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} (|z(s)|^2 + |\dot{z}(s)|^2) ds \right]^{\frac{1}{2}}.
$$
 (38)

Proof of Lemma 1.7. The proof will be divided into four steps.

Step 1. We prove that $z_0^*(t) \to 0$, as $t \to \pm \infty$. Note we have

$$
\int_{-\infty}^{+\infty} (|z_0^*(t)|^2 + |\dot{z}_0^*(t)|^2) dt = \lim_{j \to +\infty} \int_{-jT}^{jT} (|z_0^*(t)|^2 + |\dot{z}_0^*(t)|^2) dt
$$

$$
= \lim_{j \to +\infty} \lim_{k \to +\infty} \int_{-jT}^{jT} (|z_k^*(t)|^2 + |\dot{z}_k^*(t)|^2) dt.
$$

Clearly, by (32), for every $j \in \mathbb{N}$ there exists $n_j \in \mathbb{N}$ such that for all $k \geq n_j$ we have

$$
\int_{-jT}^{jT} (|z_{n_k}^*(t)|^2 + |\dot{z}_{n_k}^*(t)|^2) dt \leq ||z_{n_k}^*||_{E_{n_k}}^2 \leq M_1^2,
$$

Letting $k \to +\infty$, we get $\int_{-jT}^{jT} (|z_0^*(t)|^2 + |z_0^*(t)|^2) dt \leq M_1^2$, and now, letting $j \to +\infty$, we have $\int_{-\infty}^{+\infty} (|z_0^*(t)|^2 + |\dot{z}_0^*(t)|^2) dt \leq M_1^2$, and so

$$
\int_{|t| \ge m} (|z_0^*(t)|^2 + |z_0^*(t)|^2) dt \to 0, \quad \text{as } m \to +\infty.
$$
 (39)

Then (39) shows that our claim holds.

Step 2. We now show that $\dot{z}_0^*(t) \to 0$, as $t \to \pm \infty$. Note that from (38) we get

$$
|z_0^*(t)|^2 \le 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |z_0^*(s)|^2 ds + 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |z_0^*(s)|^2 ds
$$

\n
$$
\le 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} (|z_0^*(s)|^2 + |z_0^*(s)|^2) ds + 2 \int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |z_0^*(s)|^2 ds.
$$
\n(40)

Since we have (39) and (40) it suffices to prove that

$$
\int_{m}^{m+1} |\ddot{z}_0^*(t)|^2 dt \to 0, \quad \text{as } m \to +\infty. \tag{41}
$$

By (5) we obtain

$$
\int_{m}^{m+1} |\ddot{z}_{0}(t)|^{2} dt = \int_{m}^{m+1} (|K_{z_{0}^{*}}(t, Z_{0}^{*}(t)) - V_{z_{0}^{*}}(t, z_{0}^{*}(t))|^{2} dt
$$

$$
- 2 \int_{m}^{m+1} (V_{z_{0}^{*}}(t, z_{0}^{*}(t)), h(t)) dt
$$

$$
+ \int_{m}^{m+1} |h(t)|^{2} dt + 2 \int_{m}^{m+1} (K_{z_{0}^{*}}(t, z_{0}^{*}(t)), h(t)) dt.
$$

Since $V(t,0) = 0, K_z(t,0) = 0$ for all $t \in \mathbb{R}, z_0^*(t) \to 0$, as $t \to \pm \infty$ and $\int_{m}^{m+1} |h(t)|^2 dt \to 0$, as $m \to \pm \infty$, (41) follows.

Step 3. We show that $z_0^* \neq 0$ when $h(t) \equiv 0$. Now, up to a subsequence, we have either

$$
\int_{-\infty}^{+\infty} |z_0^*(t)|^2 dt = \lim_{j \to +\infty} \int_{-jT}^{jT} |z_0^*(t)|^2 dt = \lim_{j \to +\infty} \lim_{k \to +\infty} \int_{-jT}^{jT} |z_{n_k}^*(t)|^2 dt = 0.
$$
 (42)

or there exist $\alpha > 0$ such that

$$
\int_{-\infty}^{+\infty} |z_0^*(t)|^2 dt \ge \alpha > 0.
$$
 (43)

In the first case we shall say that z_0^* is vanishing, in the second we shall say that z_0^* is nonvanishing.

By assumptions $(H_3)-(H_5)$, for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$
|V_{z_{n_k}^*}(t, z_{n_k}^*)| \le \varepsilon |z_{n_k}^*| + C_{\varepsilon} |z_{n_k}^*|^\lambda. \tag{44}
$$

Hence, from (44) there exists a positive constant $\tilde{\gamma}$ such that

$$
\int_{-kT}^{kT} |(z_{n_k}^*)^+||V_{z_{n_k}^*}(t, z_{n_k}^*)|dt \leq \widetilde{\gamma}(\varepsilon||z_{n_k}^*||_{E_k}||(z_{n_k}^*)^+||_{E_k}+C_{\varepsilon}||z_{n_k}^*||_{E_k}||(z_{n_k}^*)^+||_{E_k}.\tag{45}
$$

Arguing indirectly, we suppose $\{z_{n_k}^*\}_{k=1}^\infty$ is vanishing. From (42) and (44) we have that

$$
\lim_{k \to \infty} \int_{-kT}^{kT} ((z_{n_k}^*)^+, V_{z_{n_k}^*}(t, z_{n_k}^*)) dt = \lim_{k \to \infty} \int_{-kT}^{kT} V(t, z_{n_k}^*) dt = 0.
$$
 (46)

Since $\langle I'_k(z^*_{n_k}), (z^*_{n_k})^{\pm} \rangle = 0$, for some positive constant \widetilde{C} , we obtain using (42)

and (45) that

$$
\xi_{1} \|(z_{n_{k}}^{*})^{+}\|_{E_{k}}^{2}
$$
\n
$$
\leq \langle A(z_{n_{k}}^{*})^{+}, (z_{n_{k}}^{*})^{+} \rangle
$$
\n
$$
\leq -\int_{-kT}^{kT} [(K_{z_{n_{k}}^{*}}(t, z_{n_{k}}^{*}) - k(t)(z_{n_{k}}^{*})^{+}, (z_{n_{k}}^{*})^{+})]dt + \int_{-kT}^{kT} ((z_{n_{k}}^{*})^{+}, V_{z_{n_{k}}^{*}}(t, z_{n_{k}}^{*}))dt
$$
\n
$$
\leq \int_{-kT}^{kT} ((z_{n_{k}}^{*})^{+}, V_{z_{n_{k}}^{*}}(t, z_{n_{k}}^{*}))dt
$$
\n
$$
\leq \frac{\xi_{1}}{4} \|z_{n_{k}}^{*}\|_{E_{k}}^{2} + \widetilde{C} \|z_{n_{k}}^{*}\|_{E_{k}}^{\lambda+1}, \tag{47}
$$

where ξ_1 is the smallest positive eigenvalue of operator A.

On the other hand, note that $dim(E_k^0) < +\infty$, there exist two positive constants b_1 and b_2 such that

$$
b_1|(z_{n_k}^*)^0|_2^2 \le ||(z_{n_k}^*)^0||_{E_k}^2 \le b_2|(z_{n_k}^*)^0|_2^2. \tag{48}
$$

From (42) and (48) we have that

$$
\xi_1 \|(z_{n_k}^*)^0\|_{E_k}^2 \le b_{\varepsilon} \|z_{n_k}^*\|_{E_k}^2,\tag{49}
$$

where $0 < b_{\varepsilon} \leq \frac{\xi_1}{4}$ $\frac{1}{4}$.

Hence from (47) and (49) we have that

$$
\xi_1 \|z^*_{n_k}\|_{E_k}^2 \leq \frac{\xi_1}{2} \|z^*_{n_k}\|_{E_k}^2 + \widetilde{C} \|z^*_{n_k}\|_{E_k}^{\lambda+1},
$$

and $||z_{n_k}^*||_{E_k} \geq \tilde{c}$ for some $\tilde{c} > 0$.
On the other hand we

On the other hand, we have from (42) , $(46)-(48)$ we have that $||(z_{n_k}^*)^+||_{E_k}^2 \to 0$ and $||(z_{n_k}^*)^0||_{E_k}^2 \to 0$ as $k \to \infty$. This means that $||z_{n_k}^*||_{E_k} \to 0$ as $k \to \infty$, which leads to a contradiction. Hence $\{z_{n_k}^*\}$ is nonvanishing, so (43) holds, and this shows that our claim holds.

Step 4. We show that $z_0^*(t)$ is a nontrivial homoclinic solution of (1). According to Step 3, $z_0^*(t) \neq 0$, so it suffices to prove for any $\varphi \in C_0^{\infty}(\mathbf{R}, \mathbf{R}^n)$

$$
\int_{-\infty}^{+\infty} ((\ddot{z}_0^*(t) - K_{z_0^*}(t, z_0^*) + V_{z_0^*}(t, z_0^*) - h(t)), \varphi(t))dt = 0.
$$
 (50)

By Step 1, we can choose k_0 such that $supp\varphi \subseteq [-k_iT, k_iT]$ for all $k_i \ge k_0$, and we have for $k_i \geq k_0$

$$
\int_{-\infty}^{+\infty} ((\ddot{z}_{k_i}^*(t) - K_{z_{k_i}^*}(t, z_{k_i}^*) + V_{z_{k_i}^*}(t, z_0^*) - h_i(t)), \varphi(t))dt = 0.
$$
 (51)

By (39) and (51), letting $k_i \to \infty$ we get (50), which shows $z_0^*(t)$ is a nontrivial homoclinic solution of (1). \Box Proof of Theorem 1.1. The result follows from Lemma 1.7.

Acknowledgement. This project is supported by National Natural Science Foundation of China (No. 51275094), by high-level personnel project of Guangdong Province (No. 2014011) and by Natural Science Foundation of Guangdong Province (No. 10151009001000032).

References

- [1] Coti Zelati, V., Ekeland, I. and Sésé, E., A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 228 (1990), $133 - 160$.
- [2] Coti Zelati, V. and Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991), $693 - 727$.
- [3] Ding, Y. H., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 25 (1995), 1095 – 1113.
- [4] Ding, Y. H. and Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. J. Math. Anal. Appl. 189 (1995), 585 – 601.
- [5] Ding, Y. H. and Jeanjean, L., Homoclinic orbits for a nonperiodic Hamiltonian system. J. Diff. Equ. 237 (2007), 473 – 490.
- [6] Fei, G. H., On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Diff. Equ. 8 (2002) , 1 – 12.
- [7] Guo, C. J., O'Regan, D. and Agarwal, R., Homoclinic orbits for singular second-order neutral differential equation. J. Math. Anal. Appl. 366 (2010), $550 - 560.$
- [8] Guo, C. J., O'Regan, D. and Agarwal, R., Existence of subharmonic solutions and homoclinic orbits for a class of high-order differential equations. Appl. Anal. 9 $(2011)(7)$, 1169 – 1183.
- [9] Hofer, H. and Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. *Math. Ann.* $228(1990)$, $483 - 503$.
- [10] Izydorek, M. and Janczewska, J., Homoclinic solutions for a class of the second order Hamiltonian systems. J. Diff. Equ. 219 (2005), 375 – 389.
- [11] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf. Ser. Math. 65. Providence (RI): Amer. Math. Soc. 1986.
- [12] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 33 – 38.
- [13] Rabinowitz, P. H. and Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206 (1991), 472 – 499.
- [14] Sésé, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems. *Math. Z.* 209 (1993), $561 - 590$.
- [15] Szulkin, A. and Zou, W. M., Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001), $25 - 41$.
- [16] Xu, X. J., Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete Contin. Dyn. Syst. Ser. B 3 $(2003)(4)$, 643 – 654.
- [17] Xu, X. J., Homoclinic orbits for first order Hamiltonian systems with convex potentials. Adv. Nonlinear Stud. 6 (2006), 399 – 410.

Received September 27, 2013