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Abstract. Using critical point theory, we study the existence of homoclinic orbits
for the second-order Hamiltonian system

22— K,(t, z)+ V.(t, z) = h(t),

where V' (¢, z) depends periodically on ¢ and is superquadratic.
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1. Introduction

1.1. Research background. The purpose of this paper is to study the ex-
istence of homoclinic orbits for the superquadratic second-order Hamiltonian
system

Z2—K.(t,z) + V.(t,2) = h(t) (1)

wheret € R, z € R", K,V € C}(RxR" R)is T—periodicin ¢, and h : R — R"
is a continuous and bounded function.
In recent years several authors studied homoclinic orbits for Hamiltonian

systems via critical point theory. For second order Hamiltonian systems we
refer the reader to [2,7,8,10-13] and for first order [1,3-5, 9, 14-17].
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We note that many results were obtained under the Ambrosetti-Rabinowitz
growth condition, that is, there is a p > 2 such that

0 < uVit,z) <(z,V.(t,z)) whenever z # 0. (AR)
It is easy to see that (AR) does not include some superquadratic nonlinearities
like
V(t,z) = z*(In(1 + |z["))?, p,q> 1. (2)
In this paper, we study the homoclinic solutions of (1) under some su-
perquadratic condition which covers a case like (2).
We suppose that V, K and h in (1) satisfy the following assumptions:

(Hy) There are a continuous T-periodic function k(¢) and two constants kq,
ks > 0 such that for all (¢,z) € R x R™

kalz? < k(t)|2? < K(t, 2) < klz]?
and %(Z,Kz(t, ) < K(t,2) < (2 Kot 2)).

Here and in the sequel, (+,-) : R" x R®™ — R denotes the standard inner
product in R” and | - | the induced norm.

(Hy) V(t,z) >0, for all (¢,2) € [0,T] x R™
(H3) V(t,2) = o(|]z|*) as |z| = 0 uniformly in .
(Hy) V‘(Zt"f) — 400 as |z| = +oo uniformly in ¢.
(Hs) (2,V.(t,2)) —2V(t,z) > 0 for all z, t.
(Hg) There exist positive constants 1 < A < 3, ¢; and ¢, such that
(2, Vi(t,2)) = 2V (t;2) > cy|2)P, V|z| > 1, Vt € ]0,T] (3)
and |Vi(t,2)| < col2]®,  V|z| > 1, VE€[0,T]. (4)

(Hy) Set M :=sup{V(t,z): t€[0,T),|z|=1}, a; :=min{l, 2k, }, as:=max{l, 2k, }.
There exist positive constants 7, c3 and ¢4 such that

[ o < ca ( A |h<t>|2dt)%s2%7

a; —2M —n >0, C4:It11€8f€(’h(t)| < ¢,

where p is a positive constant which will be defined in Proposition 1.3
later.
As usual, a solution z(t) of (1) is said to be homoclinic (to 0) if z(¢) — 0
as t — £oo. In addition, if z(¢) # 0 then z(¢) is called a nontrivial homoclinic
solution.
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Theorem 1.1. Suppose V€ C'([0,T] x R",R) is T-periodic in t and sat-
isfies (H1)—(H7). Then system (1) possesses a nmontrivial homoclinic solution
z € WY(R,R"™) such that 2(t) — 0 as t — Foo.

This paper is largely motivated by the work of Rabinowitz [12] in which the
existence of nontrivial homoclinic solutions for the second order Hamiltonian
system

G+ Vylt,q) =0

was proved.

1.2. Variational structure. For each k € N, let E} = W;,;T(R, R™), the

Hilbert space of 2kT-periodic functions on R with values in R"™ under the norm

kT

Ials, = [ (0P + 0P}, = € B
—kT

Furthermore, let LffkT’kT} (R,R"™) denote a space of 2kT-periodic essentially

bounded (measurable) functions from R into R" equipped with the norm

= esssup{|z(t)| : t € [-kT, kT}.

||Z||Lf3kT,m

As in [10], a homoclinic solution of (1) will be obtained as a limit, as
k — “+o00, of a certain sequence of functions z;, € F,. We consider a sequence
of systems of differential equations

5(t) — Ko(t, 2) + Vot 2) = h(t), (5)

where for each k € N, hy : R — R" is a 2kT-periodic extension of the restriction
of h to the interval [—kT, kT] and zj, a 2kT-periodic solution of (5), will be
obtained via a linking theorem.

Let

o= ([t +ence z(tmdt)é | 0

kT
We have from (H;) that

a|zl|E, < 0(2) < asfl2]|F, - (7)
Let
Az = -2+ k(t)z, z¢€ Ej, (8)
kT
< Azjy > = / (=24 k(t)z,y)dt, Vz,y € Ej 9)
—kT
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and
kT kT
@@yiKMBu@P+KU¢@4ﬁ—/%ymdmﬁ
+ [ ) oy
1 - kT k’(t) kT <10)
=35 < Az, z > +/_kT [K(t,z(t)) - % (t)} dt — _kTV(t, z(t))dt
+/_kT(hk(t),z(t))dt.

Then A has a sequence of eigenvalues

0<gl<g< g
with & — co as m — oco. Let @‘,i be the eigenvector of A corresponding to ﬁi,
i=1,2,...,m,.... Set
E)=ker(A), E, =negative eigenspace of A, E}=positive eigenspace of A.
It is easy to see that F; = {0} and Ej, = E) ® E;".
Lemma 1.2 ([11]). Let E be a real Hilbert space with E = EW @& E? and
EW = (E@)L. Suppose I € C*(E,R) satisfies the (PS) condition', and
(C1) I(u) = (Lu,u) + b(u), where Lu = LiPiu+ LyPou, L; : EY — E® s

bounded and selfadjoint, P, is the projector of E onto EW, i=1,2,

(Cy) b is compact, and

(C3) there exists a subspace E C E and sets S C E, Q C E and constants
a > w such that

(i) S c EW and I|s > a,
(ii) @ is bounded and 9o < w,
(iii) S and 0Q link.
Then I possesses a critical value ¢ > « given by
¢ = infgersup,cq I(9(1, 1)),
where

I'={ge€C(0,1] x E,E)| g satisfies (I'y)~(I's)},
(') 9(0,u) =,

LCondition (PS) (see [8, p. 1171]): Let E be a real Banach space, I € C1(E, R), i.e. I is
a continuously Fréchet-differentiable functional defined on E. I is said to be satisfying (PS)
if any sequence z(t) C E for which I(z(t)) is bounded and I'(z(t)) — 0, as ¢ — 0o, possesses
a convergent subsequence in F.
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1.3. Proof of the main result. The following result of Rabinowitz [12] will
be used.

Proposition 1.3. There is a positive constant o such that for each k € N and
z € Ly the following inequality holds:

ol < ellzle (11)

Lemma 1.4. Under the conditions of Theorem 1.1, I}, satisfies the (PS) con-

dition.

Proof. Assume that {zj, }nen in Fj is a sequence such that {Ix(zg,)}nen is
bounded and I,(z,) — 0 as n — +oo. Then there exists a constant d; > 0
such that

| I (2x, )| < di, I,;(zkn)—>0 as n — o0. (12)

We first prove that {2, }nen is bounded. Let z,, = 2z} + 2z € E) & E;.
From (H;), (Hs), (3) of (Hg) and (H7) we have that

2dy > 2L (2,)— < L(2k,), 2k, >

n

:</x+/|1>WW”““%”‘”WJW+Umm%Mﬁ

- /|;kn|21[(2kn’ Voo (6 21,)) = 2Vt 21, ) + (hie(t), 21, )]t (13

—/ o (0)] 20, |t
|an|<1

kT
z%’m@rwmwmﬁmymﬁﬁ—/ )t
an = —

kT

This implies

2d —~
/ |2, [Pdt < @ = M,. (14)
|2, |21 (01 04)

On the other hand, using a well known fact in [10, p. 378], we have

/|z V(t,z(t))dt§/| V(t,%)p(t)ﬁdtgﬁ/gz(tﬂ?dtgﬂuzngk (15)

<1 z|<1

for z € Ey. From (Hy), (Hs), (4) of (Hs), (7), (11), and (15) (keeping in mind
that a; — 2M > 0) we have
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a ) kT ' )
Sl < [ Gl 0P + Kt o)] o
= () + / Vit ()i - / (ule) 2, ()

:nvm+<ﬁmﬂ+ﬁwd)ww%»wmmwww
1

s@+—/ (2t Viu (6,22, ))dt + B |2, | 2,
|25, [>1

(o) ([sa)'s

| 2k, [ Lo

<y [ (e T
|2k, 21

kT 3, kT 3
+ (/ |hk(t)|2dt) (/ |zkn|2dt) dt
—kT —kT

Q —_—
<dit Denlises [ P+ Ml I,

|2k, |21

+ 7).z

. R

Since A < 3, we have from (14) and (16) that

aq —-_— n CQQ]/—\ZO
(E—MM%%;<5+—;JWMMS¢. (17)

Now (17) guarantees that {||zx,| g, }nenx is bounded. Going if necessary to
a subsequence, we can assume that there exists z € Ej such that z;, — z,
as n — +o00, in Ej, which implies 2z, — z uniformly on [—kT,kT]. Hence
(Iy(zx,) — 1(2)) (24, — 2) — 0 and ||z, — 2||z2(—krpr) — 0. Set

kT

kT
d :/ (Var, (21, ) — V28, z),zkn—z)dt—/ (K., (t, 2k,) — K.(t, 2), 21, — 2)dt.

kT —kT

It is easy to check that & — 0 as n — +00. Moreover, an easy computation
shows that

(T(z) = Le(2) (2, = 2) = o, = Zllig, 0 — @,

[0,2kT)

and so ||2x, — Z||12

2 e — 0. Consequently, ||z, — 2|z, — 0. n
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Lemma 1.5. If H, K and h satisfy (Hy)—(H7), then for every k € N the
system (5) possesses a 2kT -periodic solution.

Proof. The proof will be divided into three steps.

Step 1. Assume that 0 < HZHLFS%T] <lforze E]gl) = E}f. From (7), (10),
(11), and (15) we have that

L(2) = /_ kT[l\z(t)PJrK(t, z<t))1 dt — / Vit ()t 1 /_  he(0), 2(1))t

kT 2 —kT kT
aq —_— n
> S lzlE, — M2z, - 517115 (18)

1 — n n
= 5(@1 —2M —n)|z|l%, + §||Z||%k - 2—Q||Z||Ek-

Note from (H;) that a; — 2M —n > 0. Set

1 a1 —2M —n
p_g7 - 2‘92 .

Let B, denote the open ball in Fj, with radius p about 0 and let 0B, denote its
boundary. Let S, = 0B, N E;". If z € Sy, then ||z]|g, = % (note ||Z||Lf6’2m <1
from (11)) and so (18) gives

Ii(z) > o, z€ Sk

Then (Cs)(i) of Lemma 1.2 holds.

Step 2. Choose e € E; with |e|g, = 1. Let E), = span{e} & E° and
Or = {z € E} : ||2]|g, = 1}. Note that dim(Ey) < +oc.
The argument in [6] guarantees that there exists €; > 0 such that, Yu € Oy,

meas{t € [0,2kT] : |u(t)| > .} > ;. (19)

For z = 27 + 2% € Oy, let Qf = {t € [0,2kT] : |2(t)] > e.}. By (Hy), for
M} = 25 > 0, there exists Ly such that

(e3)®

V(t,z) > M}|z|*, V|z| > Lg, uniformly in . (20)
Let v, > max {2—" Ly } For v > 7, from (19) and (20) we have that

s o1
oaz’ €}

V(t,vz) = Milyal? > Miy*(e)?, V€ Q. (21)
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From (H;) (or (7)) and (21), we have for z = 2 + 2 € ©; that

Ti(v2) = / kT[%2|z'(t>|2+K(t,7z>] dt — / e+ /  halt),y2)dt

—kT —kT —kT
a2 o
< —=~v° — Vit dt hi(t)| r2
< 5 = [ Vel 02)
a2 x U
< 572 — Miv*(er)’ + 750
<0.
Therefore
I(yz) <0, forany z € ©f and v > ;. (23)

Let Qp = {ve : 0 < v <2y} @ {z € EY : ||z]|lg, < 27} It is easy to see
that ||z]|g, = 27 or ||z||g, = 0 for Vz € 0Q. From (Hy) and (23) we have
Ii|og, <0, ie., I satisfies (Cq)(ii) of Lemma 1.2.

Step 3. (Cs)(iii) (i.e., Sk links Q) holds from the definition of Sy and Q)
and [11, p. 32]. Thus (Cs)(iii) holds.

Note that (C;) and (Cs) of Lemma 1.2 are true. Now from Lemma 1.2, I}
possesses a critical value ¢ given by

Ck = infngTk SUPy, Qs Ik’(gk(la uk))v (24>
where Yy satisfies (I';)—(I'3). Hence, for every k € N, there is z; € Ej such
that

Iu(zp) = e, L(2) = 0. (25)
The function zj is a desired classical 2kT-periodic solution of (5). Since
Cp > o= % > 0, z; is a nontrivial solution. O
Lemma 1.6. Let {z} }ren be the sequence given by Lemma 1.5. There ezists a
2z € CYR,R") such that z; — 2z in CL(R,R") as k — +oo0.

Proof. The first step in the proof is to show that the sequences {cj}ren and
{llz¢ll &, } kenw are bounded. There exists 2] € Ey with 27(£7") = 0 such that

cr < I1(Z)) = infyex, SUPy, ey @r)=o0 11(91(1, u1)). (26)
For every k € N, let

Zi(t) =

{ Zi(t)  for |t <T 2

0 for T < |t| < kT

and g, : [0,1] X By — Ej be a curve given by gx(t, z) = z, where z € Ej. Then
gr € Y and I1(gr(1,25)) = Li(g1(1, 27)) = I1(27) for all k£ € N. Therefore, from
(24), (26) and (27),

cr < Le(gk(1,2)) = Li(91(1, 27)) = L(2)) = Mo. (28)
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From (Hj;) and (3) of (Hg) we have that

IMy > 20 (20)— < I(2)), 2 >

kT o
- /kT[(ZZ’ Vi (8, 27)) =2V (8, zp)ldt + / (ha(0), 2})dt

=<A%ﬂﬁﬁwjK%J%@%D—%%wUHmwwmﬁ )

z/ m%nwwm—mﬁwnummxmw—LwyamwMt

zf|>1

KT

> [ el [ hetoae
|25 >1 —kT
This implies
2M ~
/ 125|Pdt < @My + c5) = M. (30)
|25 >1 (c1 —ca)

On the other hand, from (Hs), (Hs), (4) of (Hs), (H7), (7) and (11) (keeping in
mind a; — 2M > 0) we have

A1 4112 kT 1 2k |2 *
EHZk‘HEk < §|Zk| + K (t,2)| dt
—kT

kT kT
—n+ [ vesa- [ s

k

=mm+<ﬁﬂ+/ujwwm—mmmMﬁ
1

gMﬁ—/|@M@W@W+MWMA
zp|>1

(e ([

i _
< Mo+ e s 3,
2121

KT 3 kT 3
+(/ |hk(t)|2dt> (/ |z;;|2dt) dt
—kT —kT

4% * AT %
< Mo+ Zsgllmen [ Jaipde+ W5,
|2z I>1

+ (O] 2o 26| 27 5 -
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Since A < 3, we have from (30) and (31) that

a7\ T AY
(5—M)||zkr|%k—(2—g+ 2°)||zk||EkSMo. (32)

Now (32) guarantees that {||z;| g, }renx is bounded. Therefore, there exists a
constant M; > 0 such that
|12kl < M. (33)

We now show that for a large enough k,

12l e gy < M- (34)

[—kT,kT] —

From (11) and (33), there exists a positive constant My = oM; such that (34)
holds. Since zj satisfies (5), we have if ¢ € [—kT, kT

1] < The(O)] + K (& 20)] + [Var (8 20 (35)

Therefore, (Hy), (Hs), (H;), (34), and (35) imply that there is Ms > 0 indepen-
dent of k such that

125 2gg gy < M. (36)

By (34) and (36), we have

t t o
/é,:(s)ds—i—z’,:(m) g/ 152 (s)|ds + |25(8) — 25t — 1)| < M + 2Mo.
t—1

Tk

|2:()] =
Thus for every k£ € N we have

128 2gg gy < M. (37)

Let k € N and t,ty € R, then

125(t) — 25 (to)| = / s1(s)ds| < / 152(9)|ds < DIa(t — to).

and

E(0) — 21(t0)] = / 51(s)ds| < / 51(s)|ds < Dy(t — to).

Since both {2} }ren and {£; }ren are bounded in L%, (R, R*") and equicon-
tinuous, we obtain that the sequence {zf}ren converges to a certain
26 € CY(R,R") by using the Arzela-Ascoli theorem. O

Lemma 1.7. The function z; determined by Lemma 1.5 is the desired homo-
clinic solution of (1.1).
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The following result of Izydorek and Janczewska [10] will be used.

Proposition 1.8. Let z : R — R" be a continuous mapping such that z €
L (R,R™). For every t € R the following inequality holds:

loc

1
2

(I=(s)I” + IZ'(S)IQ)dSI : (38)

t+3
|Ams~6l[l

Proof of Lemma 1.7. The proof will be divided into four steps.

2

Step 1. We prove that z{(t) — 0, as t — +00. Note we have

+o00 g1
/ (lz5 () + [25(t)[*)dt = lim (lzg (O + 125 @) [*)dt
—c0 Jj—+o0 —§T
5T
= lim lim (|2 (@) + |25 () ) dt.

Jj—+00 k—+o00 5T

Clearly, by (32), for every j € N there exists n; € N such that for all & > n;
we have

JT
[ G0 + Iz, 00 < e I, < 02,
—-J

Letting k — +o0, we get fffT(|z§(t)|2 + 25(8)]?)dt < M, and now, letting
j — 400, we have [*2(|z5 () + |25(£)[?)dt < M2, and so

/|t> (]zS(t)]Z + |2§(t)|2)dt — 0, asm — +oo. (39)

Then (39) shows that our claim holds.

Step 2. We now show that 2j(t) — 0, as t — +o00. Note that from (38) we
get

. t+1 t+3
r <2 [ it [P
t

t—3
t+3 (40)

2
t+% * 2 <k 2 sk 2
<2 [ NP+l [P
t—3 t—=5

2 2

Since we have (39) and (40) it suffices to prove that

m+1
/ |Z5(t)[Pdt — 0, as m — +o0. (41)

m
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By (5) we obtain

/ " )t = / s (1 Z5() — Vis (8, 20(0)) Pt

m m

2 [ Vst b0y

m

m+1 m+1
s [ moPee2 [ @) b
Since V'(t,0) = 0,K,(t,0) = 0 for all t € R, z5(t) — 0, as t — oo and
[ () Pdt — 0, as m — oo, (41) follows.

Step 3. We show that 2§ # 0 when h(t) = 0. Now, up to a subsequence, we
have either

3T

+o00 g1
/ lze()|?dt = lim / lze(t)|?dt = lim lim |2 (O))Pdt = 0. (42)
_ J—+o0 —iT

o Jj—+00 k—+o0 4T

or there exist o« > 0 such that

+oo
/ |z ()2 dt > a > 0. (43)

o0

In the first case we shall say that z; is vanishing, in the second we shall say
that z; is nonvanishing.
By assumptions (H3)—(Hs), for any € > 0 there exists C. > 0 such that

Hence, from (44) there exists a positive constant 7 such that

kT
/kTI(ZZk)ﬂIVz;k(t,ZZk)IdtS'i(&IIZZkIIEk||(Z;';k)+||Ek+Ce||ZZkll%kII(ZZk)+||Ek- (45)

Arguing indirectly, we suppose {z; }72, is vanishing. From (42) and (44) we
have that

kT kT
lim ()", Ve (8, 27,))dt = lim V(t, 2 )dt = 0. (46)

ng ’ TN
k—oco | _pp k=00 J_pr

Since < I(2;, ), (2 )* >= 0, for some positive constant C, we obtain using (42)
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and (45) that

&ll(z,) "N,

< <Az, (2)7 >

ng

< [0, i) RO G ()% 07, -

kT
< [ (e, (623,

kT
51 2 ~ A+1
< e+ Ol
where & is the smallest positive eigenvalue of operator A.

On the other hand, note that dim(E}) < +oo, there exist two positive
constants b; and by such that

bul(z)°3 < 11(25,) I, < bl (25,)°15: (48)
From (42) and (48) we have that
&ull (22 ) W%, < bellz, I, (49)

where 0 < b, <

&
L.
Hence from (47) and (49) we have that

& ~
Gl s, < Sl s, + Clla iz

and ||z}, ||z, > ¢ for some ¢ > 0.

On the other hand, we have from (42), (46)—(48) we have that
(2 )" 1%, — 0 and ||(2;,)°[|3, — 0 as k — oo. This means that ||z}, ||z, — 0
as k — oo, which leads to a contradiction. Hence {z;; } is nonvanishing, so (43)
holds, and this shows that our claim holds.

Step 4. We show that z(¢) is a nontrivial homoclinic solution of (1). Ac-
cording to Step 3, z;(t) # 0, so it suffices to prove for any ¢ € C5°(R,R")

| (G0 - Kale ) + Viez) — b)) =0. 60

o0

By Step 1, we can choose kg such that suppp C [—k;T, k; T for all k; > ko, and
we have for k; > ko

[ G0 - K (05 + Ve (025) - o) e = 0. (5)

—0o0

By (39) and (51), letting k; — oo we get (50), which shows z{(#) is a nontrivial
homoclinic solution of (1). O
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Proof of Theorem 1.1. The result follows from Lemma 1.7. n
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