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1. Introduction

In recent years, there are many integrable multi-component generalizations of
the Camassa-Holm equation [2,3,10]. The most popular one among them is the
following two-component Camassa-Holm shallow water system [4,5, 18, 23]:

my + 2mu, +umg +opp, =0, t>0, z € R, (1)
pi+ (pu)y =0, t>0, z€R,

where m = u — u,, and o = £1. The system (1) appears originally in [22] and
its mathematical properties, such as the local well-posedness in Sobolev spaces
and in Besov spaces, the global existence results and the blow-up phenomena of
strong solutions, the existence of global weak solutions, the orbital stability of
the smooth solitary waves and so on, have been investigated extensively in many
works [5,8,13-16, 20, 21, 26] and references therein. The great interest in the
system (1) lies in the fact that Constantin and Ivanov [5] has given the hydrody-
namical derivation of the system (1) as a valid approximation to the governing
equations for water waves in the shallow water regime without vorticity. Hence,
it has a physical interpretation. The system (1) is also integrable and has a
bi-Hamiltonian structure [9,17]. However, in contrast to the Camassa-Holm
equation, the system (1) does not have the peaked solitons (peakons) in the
form of a superposition of multi-peakons.
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In the present paper, we consider a coupled Camassa-Holm system with
peakons introduced in [11]:

my = 2mu, + myu + (mo), + nv,, t>0, z €R,
(2)
ny = 2nv, + ngv + (nu), + mu,, t>0, r €R,

with the initial data u(0,z) = ug(z) and v(0,x) = vo(x), where m = u — Uy,
and n = v — v,. Fu and Qu [11] have shown that the system (2) has peakons
in the form of a superposition of multi-peakons. The well-posedness of the
system (2) on the line R, and on the unit circle S = R/Z by applying Kato’s
semigroup theory [19] have been studied in [11,12] with initial data (ug,vg) €
H*(R) x H*(R),s > 2 and (uo,v9) € H*(S) x H*(S),s > 3, respectively. The
Littlewood-Paley decomposition and the nonhomogeneous Besov spaces have
been used to study the Cauchy problem of the system (2) in [24] with initial
data (ug,vo) € Bs, x B3, 1 <p,r <oo,s>max{3,1+ %}

For Convenience, we rewrite the system (2) with the Fourier integral oper-

ator Pi(D) = (1 —92)~! and Py(D) = 9,(1 — 9?)~! in the following form:

(e — (u+v)uy = Pi(D)(uv,) + Po(D)(u? + 2u2
gy + 307 — 11}3), t>0, x €R,
— (u+v)vy = Pi(D)(ugv) + Po(D)(v? + 302 3
+u$vx—|—%u2—%u), t>0, zeR, (3)
u(0,2) = up(z), z € R,
\ v(0,2) = wvo(x), z e R.

Following the method in [6,7,25], the purpose of our paper is to discuss the
local well-posedness of the system (3) in Besov spaces B;,; with the critical
index s = 5. More precisely, we state our main theorem as follows:

Theorem 1.1. Given (ug,vy) € 32 1 X 32 1, then there exists a mazimal T > 0,
and a unique solution (u,v) to the system (3) such that

(uv) € C(10,7); B, x Bj, ) 0 ¢ (10,7} B3, x B, ).

In addition, the solution depends contznuously on the initial data, i.e., the map-
ping W (ug, vo)»—>(u v) is continuous from 32 1><B2 | into C’([O T}, BQQIXB )
ﬂCl([O T] 321 x B3 1). Moreover, the system (3) is not locally well-posed in
Bi. % Bj..

Remark 1.2. By Fourier-Plancherel formula, we find that the Besov space
B3 5(R) coincides with the Sobolev space H*(R). Thus, we have the chain of

continuous embedding for any s’ < 2 < s: H® — B2 = Hs — 32 — H¥,
which combining with Theorem 1.1 show us some more information about local
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well-posedness on the critical value g for the system (3). However, we still

have not answered the question of the well-posedness in the intermediate spaces
3
B3, 1<r<oo.

The remainder of the paper is dedicated to the proof of Theorem 1.1. In
Section 2, we divide our proof into four subsections to pursue our goal of The-
orem 1.1. In Section 3, we enclose the Littlewood-Paley decomposition, Besov
spaces and the transport equation theory as an Appendix for completeness.

Notation. Let C > 0 be a generic constant and N = NU{oc}. For simplicity,
we denote the function space X x X as (X)?. In the sequel, Lip denotes the
space of bounded Lipschitz functions.

2. Proof of Theorem 1.1

In this section, we will complete the proof of Theorem 1.1. We break it into the
following four subsections.

2.1. Existence of the solution. In this subsection, we will show the existence
3
of the solution for the system (3) with initial data (uo,vo) € (B3,)*.

By a standard iterative process and Lemma 3.5, starting from (u®, v%) £
(0,0), we define by induction by a sequence of smooth functions (u",v™),en
solving the following linear transport equations:

(0 — (u™ + v™)dp)u"™ = gl(t,z), t>0, z €R,
(0 — (u" + ™))™ =gh(t,z), t>0, z €R,

4
un+1|t:0 L urti(z) = Sppug, z €R, (4)
Un+1’t:0 é f[)g+1(x) — TL+1UO; T € R7
where
g7 (t, x)

ég?l(tv I’)—f—gﬁ(t, ZL‘)
=P (D)(u"0,v")+ Py(D) ((m)%%(amu”)? + (%U”E?IU”—I—%(U")Q— %(8950”)2) ,
g5 (t, )
éggl (ta x)+g1212<t7 Jf)
1

= P(D)(9,u™v"™)+ Py (D) ((v")2 + % (0,0")? +0,u" 00" + 3 (u™)?— %(8Iu")2> :

Note that P (D) € Op(S™2) and P»(D) € Op(S™'). According to Proposition
1
3.3 (vi) and the fact B3, is an algebra, we have

lga(t, 2)]| g < Cllu®]l < Ol 3 v

n
g 0" s,
5.1 Bs,

n
[ I |
Bg, 21 Bg,
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and

<

C(Jlum|?

n
t
||912( 7$)|’B§1

Thus, we can deduce that

%
BZI

o O Y

2,1 2,1

).

Mol

lgr (&, o)l g < O[] g + [lv"]| %) . (5)
B3, B3, B3,
Similarly,
2
o (t < n n _
195 ( ’x)”BQ%,l < C([|u ||B§1 + ||v ||B§1) (6)

By Lemma 3.4 (i) and (5)—(6), we find that

n+1 n+1
o g

ool

< (lluoll s +llwoll

2,1

Let us fix a 7" > 0 such that 20(||u0||

assume that

(7)

o)l 4l )}
\|B%+||v"(r 53, exp{C’/ la" ()] g ol §)d7}d7,

—|— ||vo|| )T < 1 and for all ¢ € [0, T,
l
luoll 5 =+ llwoll s
21 21
: (8)
1= 20 (ol 3 + ool 3 )
2 2
lwoll g+ llvoll 3
C/ B -dr’!
1—2C( HuoH g+ vl g )7
2 21

¢1—m%mmgg+umng)
2,1 B3,

¢1—XXWM|3+HWH3>
2 2
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Inserting the above inequality into (7) yields

n+1 i n+1 )
o) + I,

U 3 T+ ||v 3
Ml el

1—-2
¢ Cluoll 5+ leol 5 )1

, )2
o /t +HvoHB§1 ]
-
_ 0
\/1 QC(HUOHBQ% - ||vo||B§1)t (1 - 20(||u0||B§1 +llwoll g )T)

1 2,1

(”UO\!B§1

_|_

N|w

||U0||B2% + ||vo

~ 120 (Juol

3
2
2,

1
ol

1

g, ol )
Thus, (u",v")nen is uniformly bounded in C([0,T]; (32%71)2). Using the equa-
tions (4), the fact B2%,1 is an algebra and Proposition 3.3 (vi), we find that
(Opu™, Ov™)pen is uniformly bounded in C'([0, T7; (BQ% 1)?). Therefore, we gather
that the sequence (u™,v")peny is uniformly bounded in C([0,T7; (32%71)2)
NC([0.7): (Bf)?).

From Proposition 3.3 (ii), the Arzela-Ascoli theorem and Cantor’s diag-
onal process enable us to get that, up to an extraction, (u™,v"),en tends
to a limit (u,v) in C([0,T]; (BQ%J)?OC). Since (u™,v"™),en is uniformly bounded
in C([0,7]; (32%71)2), we infer that, according to Proposition 3.3 (iv), (u,v) €
L>(0,T; (Bil)z). Then by Proposition 3.3 (v), we can prove that (u™, v"),en
tends to (u,v) in C([0,T]; (Bs,)3,) for all s < 2. Thus, it is easy to pass
to the limit in the equations (4) and to conclude that (u,v) indeed solves the
system (3) in the sense of distributions.

Thanks to (u,v) € L>(0,T; (32%1)2), the system (3) and Lemma 3.4 (iv), we
have (u,v) € C([0,T7; (351)2). Using the system (3) again, we get (O;u, dyv) €
C(10,7); (BZ%J)Q). Hence, we prove that the system (3) has a solution (u,v) €
C([0,T); (BS,)?) N C([0,T); (Bf))?).

2.2. Uniqueness of the solution. This subsection is devoted to give a priori
estimate, which implies the uniqueness of the solution for the system (3).

3 1
Suppose that (u',v'), (u?,v?) € L=(0,T; (B}, N Lip)*) N C([0, T]; (B3 4)?)
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are two given solutions to the system (3) with the initial data (u}, v}), (ug, v3) €

2 1 2

3
(B3, N Lip)?, respectively. Denote u'? £ 42 — ! and v'2 £ »2 — ¢!, Assume

that there exists a positive constant C' such that for some 7% < T,

—c [fuydr 12 12
sup <e 0 U 1 +|v 1 ) <1. 9
S (I ”322,00 I HB;’,O@) (9)

We will prove, for all ¢ € [0, 7],

(0]

12
p IR

Do
Do

B

(oo}

(&
(10)
xp(—C [f®(V (7))dr)
Jaf?ll g +lleg?ll y \ P

1 1
B2 2
< eC’ fot U(r)dr 2,00 2,00

where the function

®(z) = rln(e + Mx),
lut2()]

3
A Bg,
1
2
2

M = sup
teo,r) \ [[V2(@)]]

U(t) = [|0au' (1)]]

1
2 2
B NL> B2 _NL>

£ 2 1 2 2 .
V2 s+ s L

,00

Indeed, (u'?, v'?) solves the following transport equations:

ou'? — (ur +v1)out? = (u'? + 0?0 + fi(t,x), t>0, r €R,
002 — (u! + 013,012 = (u2 1 012)9,0% + folt,z), t>0, z € R,

12 A 12 _ 2 1
u ‘t:O_UU (x) =ug — uy, z € R,
12 A 12 2 1

v ‘t:O_UO (x) =v§ — vy, r €R,

where
filt,x) = fult,z) + fiolt, x)
= P(D)(u'?0,v* 4+ u'0,v'?) + Py(D) <u12(u1—|— u?) + %&Eul?@m(uljL u?)
+ 0,020,074 D,ul 0,02 + %vm(vl—i— V%) — %8xvl28$(v1+ ),
folt,x) 2 far(t,2) + fao(t, 7)
= P(D)(v"?0,u*+ v'0,u'?) + P(D) <v12(v1+ v?) + %axv”az(vhr v?)

1 1
+ 0,ur?0,0% 4 Oputo,u? + §u12(u1—|— u?) — §axu12ax(u1+ u2)>
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Note that P;(D) € Op(S™2) and P,(D) € Op(S~!). Using Proposition 3.3
(vi) and (vii) with p = 2, we obtain

el < Clu0a + o™, (1)
2,00 2,00
< 12 2 12 1
< 0 (I 1y Iy el ).
and
12 12
Il < (I, + 101, ) v (12
Since,
O o IR U P (13

< 12 12 2 ]
< o (e 1o ) Iy

Thus, by (11)—(13) and Lemma 3.4 (i), we derive that

t
||u12|| % <e fo ’T)dT(H 12” % C/e_ch‘FU(T')dT’<Hu12”B +||1)12|| %) (T)d7>
B3 oo B3 oo 0 2,1 B3y

Similarly,

I () e (T R T
2 2 21

21

) (14)
<y +Io c/ RV (2 ) 4 2@y )V
BS BS B3, B3,

On the other hand, applying Proposition 3.3 (viii) with p = 2, we get

Thus,

e*CfOtU(T)dT ||u12 (t) ”

“w\»—

2@l 1+l @)

1 1
B2 B}
||U12||BZ% =T 1 )
12 12 - Phio0
w ()| 1+ <Cllu @) + Inle+ 7
| ()HBQ{I | ()HBEM ( ||U12<t)||32%,oo+”vm(t)|BQ%,OO ),
and
||u12(t)HB% +||v12(t)||B%
[0 s TG Rr—
12 12 - Pioe
t < Clv™(t 1 ’
V5Ol < IOl “(6* POl -+l )
2,00 2,00
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Substituting the above two inequalities into (14), we find that

676’ fot U(r)dr (Huw(t) H

t
12 12 —C [T U(T"dr! 12 12
<Iulfly + Il +C [ e (july + 1ol )
12 12
1 ( R G <T>B§w)>‘/()d
XIn|e - : T)aT
[Ty + Tl
t
12 12 —C [T U(T")dr! 12 12
< [adfl g+l +0 [ RO ()4 + 1ol )
MV
x In (e + (7) ) V(r)dr.
—C [T U(T")dT!
R (TR TCTI

Denote W (t) £ e_CfOtU(T)dT(||u12(t)HB% + |v'2(t) . In view of (9) and

2,00

7 HBém)
the fact that In(e + 2) < In(e + a)(1 —Inz) for all x € (0,1], @ > 0, we can

rewrite (15) as
W(t) < W(0)+ C/t V(r)ln(e4+ MV (7)) (1 —InW (1)) W(7)dr. (16)

Applying Lemma 3.7 with p(r) = r(1 —Inr) to (16) under the hypothesis (9),
we obtain

W(t)

(&

<

<

Y

(W(O) ) exp(—C [7 V(r) In(e+MV (r))dr)
e

<W(0) ) exp(—C 5 ®(V())dr)

e

which proves (10). In particular, if ||u(1)2||B% + HvéQHB% < el-exp(C Jy S(V(r))dr)
2,00 2,00

then (10) is true on [0, T'], since the above inequality implies that (9) holds with
T =T.

2.3. Continuity with respect to initial data. In this subsection, we will
prove the continuity with respect to initial data. We divide the proof into three
steps.
1 3
First step: Continuity in C([0, T]; (Bg,)?). For a fixed (ug, vo) € (B3,)” and
a d > 0. We claim that there exist 7, A > 0 such that for any (ug, v

: / / .
with [ — w0t~ )l 3
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system (3) with (), v}) belongs to C(0,1; (B3,)?) N C([0,T7; (B3,)?) and

satisfies ||(u/,v")]] 3 <A
L>=(0,T;(B31)?)

Indeed, if we take

1 A
T = and A=2 <]|(u0,vo)\|(321)2 + (5) :

4C' , 3 +90
(ool +9)

then we can deduce the claim from (8) in Subsection 2.1. Thus, combining the
a priori estimate in Subsection 2.2 with the above claim, we have

1% (i, v5) = (o, UO)HL“(O,T;(BQ% )?)

, OO

e
U —u ,UI — exp(—CAT In(e+MA))
M=t wl
S e )
e
provided that || (uf,—uo, Ué_UO)H(B% ; < l-eP(CAT I+ MA) [nterpolating with
2,

3 3
the uniform bounds in C([0,T7; (B ,)?), we gather that the map V¥ : (B;,)* —
1
C([0,T]; (B3,)?) is continuous.
3
Second step:  Continuity in C([0,T];(B3,)%). Let (u",v"),cx be the
solution of the system (3) corresponding to datum (ug,v{). Assume that
3 3
(ug®, vg®) € (Bsy)* and (uf,vy) — (ug®,vg®) in (B3,)% as n — oco. To pur-
sue our goal, according to the first step, it suffices to prove that (w",z") =
(Bpu™, Bv™) — (W™, 2%) £ (9,u™, 0,v>°) in C([0,T]; (B3,)?) as n — oc.

Indeed, (w™, z"),cx solves the following transport equations:

O™ — (u" +v")0,w™ = F"(t,x), t>0, v €R,
02" — (U™ +0")0,2" = G™(t,x), t>0, v eR,
w”‘tzo £ Q,ul(r), x €R,
z”‘t 0 £ 0,v5(z), 7 €R,
where
1 1 1
F'(t,z) = é(amu"f — (u™)? - 5(1}")2 + 5(&,31)")2 + Po(D)(u"00™)
1 1 1
+ Py(D)((u™)? + 5(8xun)2 + 0, u" 0 v" + 5(1}”)2 - 5(8xv")2),
1 1 1
G"(t,x) = 5(83,0”)2 — (v™)? — é(u”)2 + 5(3mu”)2 + Po(D)(0,u"v"™)
1 1 1
+ Py(D)((v")* + 5(8;#1”)2 + 0, u" 00" + Q(u")2 — 5(8xun)2)
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Following [19], we decompose w"™ = w} + w} and 2" = 2] + 2§ for n € N with

Jpwt — (u" + v") 0w} =
Oz — (U™ +0™")0,27 =

(F" — F*)(t,x), t>0, zeR,
(G"—G™)(t,x), t>0,z€eR,
w’f|t:0 zg@ Lup — O,ul’)(z), v €R,

(17)
Zﬂt:o Opvfy — 0pvg®) (z), = € R,
and
oy — (u + v 0wy = F>(t, x), t>0, v € R,
Oz — (U™ + 00,28 = G=(t,z), t>0, v €R, (18)

wg‘tzo £ 9u(r), z€R,
z’;’tzo £ 0,v5°(r), z€R,
According to the claim of the first step, using the similar way exhibitled for (5),

we have (F™),cx and (G"),ex are uniformly bounded in C([0,T]; By ;). More-
over, one can easily get

IF" = F=|| 4 IG" =G| 4
B3y Bsa
< ( n [e%¢} n oo ) ( ™
< (||u ||B2%1+||u ||B§1+||v |!B2%1+||v ||B§1 X (|lu" — u ||BQ%’1

" = 0]y 4 o = oy 4 00" = 0]y ).

1 2,1 2,1

Thus, applying Lemma 3.4 (i) to the equations of (17), we have

lwi' (O3 +l=r @)

t
<o {ef (@, +1m 0l yir | (10 -0051

21 ,1

Hlow =0y + [ (1P = F¥)(0)

< CAeCAT<||8 =0y +0uf 0|

21

G =G=) )]y )dr)

3
B3, 2,1

1
B2
2

[ =)+ 1= o)l i

2
1 B3,

= [0 =0.=))1 +0" =027

)dT).
3
On the other hand, since (u",v"),,cx is uniformly bounded in C([0,T]; (B3,)?)
and (u™,v") — (u™,v*) in (BQ%J)Q, as n — 00, we then derive (w}, z%) tends
to (w™, z°°) = (0,u, 0,v>°) by applying Lemma 3.6 to the equations of (18).
Thus, combining the above result of convergence and the results of the first step
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with (19), for sufficiently small € > 0 and large enough n € N, we obtain

+ || 00" — 0,07

[0zu™ — Ou™|| 4 B2
2,1 2
< n n __ ,,00 n n __ 00
< ol o+ e =l + a8,y +1 =2 HB§
< £+ AN (T + 0.0 — Doy + 1900 — 00l
2 2

3Aw@M—@www§

,1

+M@w—aw%vwﬁ>w)

Therefore, applying Gronwall’s lemma to the above inequality, we then get the
desired result. X

Third step: Continuity in C'([0,T]; (B3,)?). Combining the claim of the
first step with the system (3), according to the second step, we reach this step.

2.4. Counterexamples. In this subsection, inspired by [7], we will show that

3
local well-posedness of the system (3) in (B3 ,)* fails.

Example 2.1. For v = 0, the system (3) becomes the Camassa-Holm
equation. Thelfefore, as Proposition 4 in [7], there exists a global solution
u € L“(R*;Bim) and v = 0 to the system (3) such that for any positive
T and ¢, there exists a solution u’ € L*>(0,T; BQ%OO) and v = 0 with

) < — > 1.
Hu(0> U (0)”B2%Oo S € and ||u U ||Loo(07T;B2%’OO) =1

Example 2.2. For u = v, the system (3) reduces to the scalar Camassa-Holm
equation:

Up — Upgy = OUUy — DUpUypy — 2UlUgpy- (20)

One can easily check that the equation (20) has the same form of peakon
uc(t,r) = ce”*= as the Camassa-Holm equation. Thus, we can follow the
method in [7] to show that the system (3) is not locally well-posed in (B3 : )%
Then there exists a global solution (u,u) € L>®(R™; (B2 )?) to the system (3)

3
such that for any 7'>0 and € >0, there exists a solution (u,u’) € L*(0,T;(B3 . )?)
with

lu(0) =« (0)]] 3 <e and |u—u| s > 1.

B Loo(o,T;BQ?oo)
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3. Appendix

In this section, we will enclose some basic theory of the Littlewood-Paley decom-
position and the transport equation theory on Besov spaces for completeness.

Proposition 3.1 ([1, 6, 7] (Littlewood-Paley decomposition)). Let B =
{€eR, ¢ <3} and CE{E € R, 2 < €] < &}, Then there exist (§) € C°(B)
and p(&) € CX(C) such that

PO+ p27%) =1, VEER

qgeN
and

Suppp(279-) N Suppp(277-) =0, if |g—q'| > 2,
Suppp(-) N Suppp(279-) =0, ifqg> 1.

Then for all uw € 8" (S’ denotes the tempered distribution spaces), we can define
the nonhomogeneous Littlewood-Paley decomposition of a distribution wu.

u = ZAqu,

q€Z

where the localization operators are defined as follows:
Au20, forq<—2 A u2p(Du=F"(yFu),

and
AguE (279 D)u = FH(p(279) Fu), forq>0.

Furthermore, we can define the low frequency cut-off operator S, as follows:
q—1
Sgu 2> Aju=1p(27D)u = F ' (h(279€) Fu).
i=—1

Definition 3.2 ([1,6,7] (Besov spaces)). Let s € R, 1 < p,r < oo. The
nonhomogeneous Besov space B, .(R) (B, for short) is defined by

B,, = {ue S R); |u|

st),r < OO},

where X
(> 29| Agullze) ™, T < oo,
qE€Z

A
lulls;, = sup 2%°|| A ul| e, r = 00.
q€EZ
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If s = oo, BI‘;" = (Nyer By, In particular, as p = 2, the norm

equivalent to the following norm
28 (5 () (2 :
([ arertaora)
20<[¢|<20+1

A ! 2\s| ~ 2 )g
5 (( / (reylrae) + 3

with an obvious modification if » = +4o0.

is

S =

|u

Next, we list the following useful properties for Besov spaces.

Proposition 3.3 ([1,6,7]). Let s € R, 1 <p,r,p;,r; < o0,i=1,2. Then
(i) Density: if 1 < p,r < oo, then C° is dense in B, .

11
(ii) Embedding: BS . < Bm,(p1 ”), for p1 < py and ry < 1o,

p1,71

B, = B}l locally compact,  for sy < ss.

p,r2
(iii) Algebraic properties: if s > 0, Bs N L is an algebra. Furthermore, By,
1s an algebra, provided that s > 13 ors>1 5 and r = 1.

(iv) Fatou lemma: if {u™},en is bounded in B, . and tends to u in S', then
u € By .. Moreover,

(v) Complex interpolation: if u € Byl N B2, then for all 0 € [0,1], we have
E Bzé’?rl‘f’(l*@)é;g

Bs .

B, < lim inf a5,

. Moreover,

Il gosy va-orea < Null sy [l

(vi) Action of Fourier multipliers on Besov spaces: let m € R and f be a
S™-multiplier (i.e., f : R — R is a smooth function and satisfies that
for each multi-index o, there exists a constant C, such that |0*f(&)| <
Co(1 4 €)™ lel for all ¢ € R.) Then the operator f(D) is continuous
from By to B ™.

_1 1 _1
(vii) The paraproduct is continuous from B,{ X (Bpe N L>) to Bp&, i.e.,

luoll o < Cllull 1wl 1
B B

p
P, 00 p,1 By coNL

(viii) A logarithmic interpolation inequality:

HUHBl+1
lull x < Cliul s =
B}, Bl || I

ﬁ*ﬁ\w
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Now we state the following transport equation theory that is crucial to our
purpose.

Lemma 3.4 ([1,6] (A priori estimate)). Let 1 < p,r < 400 and s > —min
{1 1—= } Assume that v be afunctzon such that 0,v belongs to L*([0,T}; By )

if s >1 —|— L orto LY([0,T7; B,ﬁ"r N L>) otherwise. Suppose also that fy € BS

pr
F e LY(]o, T] B3 ), and that f € L>=([0,T]; By ) N C([0,T];S") be the solution

of the one-dimensional transport equation

of+v-0,f =F,
{ f|t:0 = fo 21)

Then there exists a constant C' depending only on s,p,r such that the following
statements hold fort € [0,

: _ 1
(i) fr=1ors#1+,

LF @ s, < [l folls;,, /0 "F(T)"Bg,rd7+c/0 V(O ()l g, d,

or
t
1O lss, < eSO follms, + / VO F(r) | 5 dr),
where
t
ov(T, - 1 dr, s<1+1,
V(t) _ f(:e “ ( )H(Béme) P
Jo N10z0(7, )] 51T, s>1+ %.
(i) If s <1+ 3, and 0y fo, 0, f € L=([0,T] x R) and 9, F € L'([0,T]; L>),
then
£ Bs, + 102 ()]
t
< V(| foll gy, + 102 foll s +/0 “VYO(IF(7) I8y, + 10:F(7) || )d7),

here V (t Oy
where = [ l|0.0(r, )| BPme
(i) If f = v, then for all s > 0, the estimate in (i) holds with V(t) =
¢
Jo 10v(7, ) [[ L dr.
(iv) If r < oo, then f € C([0,T); B;,). If r = oo, then f € C([0,T}; ;:1) for
all ' < s.
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Lemma 3.5 ([6] (Existence and uniqueness)). Let p,7,s, fo and F be as in
the statement of Lemma 3.4. Supposelthat v E LP([O,T];B;O%O) for some
p>1,M >0 and dyv € L([0,T); Bjos N L™) if s < 1+ 5, and v €
LY[0,T); ByyY) if s > 1+ 1% ors=1+ % and r = 1. Then the transport equa-
tion (21) has a unique solution f € L>=([0,T}; B;,) (N, -, C([0,T7; B;:l)) and
the corresponding inequalities in Lemma 3.4 hold true. Moreover, if r < 00,

then f € C([0,T]; By ).

Lemma 3.6 ([7]). Assume that (v"),cx be a sequence of functions belonging to
1
C([0,T]; Bg,). Assume that v™ is the solution to

{ o™ + a0 u" = f,

n R
v }t:O = Yo,

with vy € B3, f € L*(0,T; B3,) and that, for some o € L'(0,T),

sup [|9za" (1)]]

1 < aff).
neN B22,1 ()

1 1
If in addition a™ — a*> in L'(0,T; B3,), then v — v™ in C([0,T]; B3,).

Lemma 3.7 ([1] (Osgood lemma)). Let p be a measurable function from [ty, T
to [0,al, v a locally integrable function from [to,T] to R, and p a continuous
and nondecreasing function from (0,a] to RT. Assume that, for some positive
real number c, the function p satisfies

p(t) <c+ /tv(t/),u(p(t’))dt' for a.e. t € [to, T].

to

Then we have, for a.e. t € [to, T},

“Mp(t) + M(e) < / W for M) = | %
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