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Moduli of Smoothness Related to
Fractional Riesz-Derivatives
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Abstract. New moduli of smoothness ω〈β〉(f, δ)p, 0 < β < 1, related to the Riesz
derivative of order β are introduced. Their properties are studied in Lp-spaces of
2π-periodic functions for 0 < p ≤ +∞. The modulus ω〈β〉(f, δ)p is shown to be
equivalent to the polynomial K-functional associated with the corresponding Riesz
derivative. As a consequence direct Jackson-type and inverse Bernstein-type esti-
mates are proved, the quality of approximation by methods generated by Riesz kernels
is described in terms of the these moduli.
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1. Introduction

For a 2π-periodic function f(x) in the space Lp, 0 < p ≤ +∞, equipped with
the standard (quasi-) norm ‖ · ‖p and for 0 < β < 1 we introduce a modulus of
smoothness by

ω〈β〉(f, δ)p = sup
0≤h≤ δ

∥∥∥∥∥
+∞∑

ν=−∞
ν 6=0

f(x+ νh)− f(x)

| ν |β+1

∥∥∥∥∥
p

, δ ≥ 0. (1)

Since ∥∥∥∥∥ ∑
ν 6= 0

f(x+ νh)− f(x)

| ν |β+1

∥∥∥∥∥
p̃

p

≤
∑
ν 6=0

‖ f(x+ νh)− f(x) ‖p̃p
| ν |p̃(β+1)

≤ 2
( ∑

ν 6= 0

| ν |−p̃(β+1)
)
‖ f ‖p̃p,
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where p̃ = min(1, p), modulus (1) is well-defined for p > 1
β+1

in the sense that

ω〈β〉(f, δ)p ≤ c ‖ f ‖p < +∞

for f ∈ Lp and δ ≥ 0. Here the positive constant c is independent of f and δ.
In this paper we prove that for p > 1

β+1
modulus (1) is equivalent (up to

constants independent of f and δ ) to the polynomial K-functional given by

K
(P)
〈β〉 (f, δ)p = inf

T∈T 1
δ

{
‖ f − T ‖p + δβ ‖T 〈β〉 ‖p

}
, f ∈ Lp, δ > 0, (2)

where (·)〈β〉 is the Riesz derivative of fractional order β, that is, the linear
operator defined on the space of all real-valued trigonometric polynomials T by

(·)〈β〉 : eiνx −→ | ν |β eiνx, ν ∈ Z,

and where (c is the complex conjugate of c)

Tσ =
{
T (x) =

∑
k∈Z

ck e
ikx : c−k = ck, | k | ≤ σ

}
, σ ≥ 0,

is the space of all real-valued trigonometric polynomials of order σ. Combining
this result with the properties of functional (2) established in [8] and [10] (see
Section 2 for exact formulations) we immediately deduce fundamental proper-
ties of modulus (1), in particular, a quasi-homogeneity property, Jackson- and
Bernstein-type estimates. Moreover, the equivalence of (1) and (2) enables us
to describe the error of approximation for methods generated by Riesz kernels
(see (16) and (17)) by means of smoothness properties of functions expressed
in terms of modulus (1). In particular, it applies to approximation in Lp-spaces
with values p < 1. This follows from Theorem 2.3, (19), proved in [10]. The
main results in this respect are established in Theorem 4.1.

Our approach to study modulus (1) is based on a general result concerning
the equivalence of the modulus

ωθ(f, δ)p = sup
0≤h≤ δ

∥∥∥ +∞∑
ν=−∞

θ∧(ν) f(x+ νh)
∥∥∥
p
, δ ≥ 0, (3)

generated by an arbitrary 2π-periodic function θ with θ∧(ν), ν ∈ Z, as its
Fourier coefficients and the generalized polynomial K-functional

K
(P)
ψ (f, δ)p = inf

T∈T 1
δ

{ ‖ f − T ‖p + δs ‖D(ψ)T ‖p } , f ∈ Lp, δ > 0, (4)

generated by an appropriate homogeneous function ψ of order s > 0 which has
been proved in [12] (see Section 2, Theorem 2.1, for exact formulations). In (4)
the operator D(ψ) (ψ-derivative) is a linear operator given on T by

D(ψ) : eiνx −→ ψ(ν) eiνx, ν ∈ Z.
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Obviously, the functional (2) corresponds to (4) with ψ(ξ) = |ξ|β and modu-
lus (1) is a special case of (3) with θ replaced by

θ〈β〉(ξ) =
∑
ν 6= 0

| ν |−β−1 ( eiνξ − 1), (5)

In order to apply the general theory we have to show that the generators
ψ(ξ) = |ξ|β and θ〈β〉(ξ) satisfy the assumptions of Theorem 2.1. This is done in
Theorem 3.6 and can be considered as the main contribution in this paper. In
contrast to many other constructions as, for instance, to the classical modulus
of smoothness of order k ∈ N generated by θ(ξ) = −(1−eiξ)k, the generator θ〈β〉
of modulus (1) is given by its Fourier series (5) and can not be represented ex-
plicitely. For this reason the verification of conditions with respect to θ and ψ
providing the above mentioned equivalence is a technically complicated prob-
lem. Here it will be solved applying Fourier-analytical methods to homogeneous
tempered distributions.

On the other hand as in the classical case the Fourier coefficients which ap-
pear in the general construction (3) are explicitely known. Thus, the generalized
difference

∆
〈β〉
h f(x) :=

∑
ν 6=0

f(x+ νh)− f(x)

| ν |β+1

occuring in (1) can be calculated at least approximately.
Let us also have a brief look at the case β ≥ 1. The equivalence of modu-

lus (1) and functional (2) for β = 1 was shown in [1, 11] for 1 ≤ p ≤ +∞ and
in [12] for p > 1

2
using some specific adapted methods. The following simple

observation shows that modulus (1) is not appropriate for arbitrary β. It was
proved in [12] that the equivalence of modulus (3) and functional (4) holds if θ
and ψ are close to each other near the point 0 in a certain sense (see also Sec-
tion 2 for details). However, if, for example, β > 2, then the second derivative
of | · |β is equal to 0 at the point 0. On the other hand the second derivative of
θ〈β〉(·) does not have this property. For this reason the conditions of the general
equivalence theorem are not satisfied. It will be the aim of a forthcoming paper
to show that for β > 1 the first difference ∆νhf(x) = f(x+ νh)− f(x) in mod-
ulus (1) should be replaced by differences of higher order. Let us mention that
modulus (1) together with its possible extensions to β > 1 can be considered
as discrete counterparts of the moduli (r > β)

ω̃β(f, δ)p =

∥∥∥∥∥
∫
|u |≥1

∆2r
uδf(x)

|u |β+1
du

∥∥∥∥∥
p

, f ∈ Lp, δ > 0. (6)

Here ∆2r
uδ denotes the usual difference of order 2r with step uδ. The modulus (6)

has been introduced and studied in [4]. Clearly, this modulus is well-defined
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for 1 ≤ p ≤ +∞ only. For these parameters it is equivalent to the polynomial
K-functional given by (2). In this sense our construction (1) seems to be more
preferable because it is relevant also for p < 1.

The paper is organized as follows. In Section 2 we collect some general
results which are needed to study modulus (1). Section 3 deals with the behavior
of the generator θ〈β〉 near the point 0. More precisely, it will be shown that θ〈β〉(·)
is close to the function | · |β in a certain sense. This is the crucial part of the
paper. The main properties of modulus (1) and its applications to trigonometric
approximation are discussed in Section 4.

2. Auxiliary results

As already mentioned in the Introduction the proofs of our results in this paper
are mainly based on three ingredients: an equivalence theorem for general mod-
uli of smoothness (3) and polynomial K-functionals (4), the properties of poly-
nomial K-functionals related to fractional Riesz derivatives, and the theorem
on the equivalence of the approximation error of the families of linear polyno-
mial operators generated by Riesz kernels and the polynomial K-functionals (2).
These results can be found in [8, 10, 12]. For the convenience of the reader we
give here the corresponding concepts and formulations.

2.1. Equivalence of moduli and polynomial K-functionals. Let v and w

be continuous functions defined on R. Let 0 < q ≤ +∞ and let η be an infinitely

differentiable function with compact support (test function). In the following

we shall write v(·)
(q, η)
≺ w(·), if F

(
ηv
w

)
belongs to Lq(R). Here F stands for the

Fourier transform. The notation v(·)
(q, η)
� w(·) indicates equivalence. It means

that v(·)
(q, η)
≺ w(·) and w(·)

(q, η)
≺ v(·) simultaneously. Following [12] a couple of

test functions Λ∗ = (η, ζ) is called a plane periodic resolution of unity if there

exist 0 < ρ < 1 such that the supports of η and ζ are contained in [−2ρ, 2ρ] and

[ρ, 2π − ρ], respectively, η(ξ) = 1 for | ξ | ≤ ρ, ζ(ξ) = 1 for 2ρ ≤ ξ ≤ 2(π − ρ)

and η∗(ξ) + ζ∗(ξ) = 1 on R, where g∗ denotes the 2π-periodization of g given by

g∗(ξ) =
+∞∑
j=−∞

g(ξ + 2πj) (7)
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Let s > 0. By Hs we denote the class of functions ψ satisfying the following
properties:

1) ψ is a complex-valued function defined on R and it holds ψ(−ξ) = ψ(ξ)
for ξ ∈ R.

2) ψ is continuous on R.

3) ψ is infinitely differentiable on R \ {0}.
4) ψ is homogeneous of order s, i.e. it holds ψ(tξ) = tsψ(ξ) for t > 0 and

ξ ∈ Rd \ {0}.
5) ψ(ξ) 6= 0 for ξ ∈ Rd \ {0}.

We put

H =
⋃
s> 0

Hs. (8)

Recall that K
(P)
ψ (f, δ)p, δ > 0, 0 < p ≤ +∞, has the meaning of (4).

By G we denote the class of functions θ satisfying the properties:

1) θ is a complex-valued function defined on R and it holds θ(−ξ) = θ(ξ) for
ξ ∈ R.

2) θ is continuous on R and 2π-periodic.

3) {θ∧(ν)}ν∈Z ∈ l1.

4) θ(0) = 0.

5) θ∧(0) = −1.

Here

θ∧(ν) =
1

2π

∫ 2π

0

θ(ξ)e−iνξ dξ, ν ∈ Z,

stands for the ν-th Fourier coefficent. An important characteristic of the func-
tion θ ∈ G is the set

Pθ =
{
p ∈ (0,+∞] : { θ∧(k)}k∈Z ∈ lp

}
=
{
p ∈ (0,+∞] : σp(θ) < +∞

}
, (9)

where

σp(θ) =
∥∥ { θ∧(k) }k∈Z

∥∥
lp
. (10)

Clearly, we have

Pβ ≡ Pθ〈β〉 =

(
1

β + 1
,+∞

]
(11)

because of (5).
For shortness we shall write A . B if the relation A ≤ cB holds, where c

is a positive constant independent of f (function) and n or δ (variables approx-
imation methods, K-functionals and moduli may depend on). The symbol �
indicates equivalence. It means that A . B and B . A simultaneously.

Recall that ωθ(f, δ)p has the meaning of (3).
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Theorem 2.1 ([12]). Let θ ∈ G, p ∈ Pθ and let ψ ∈ H. If there exists a plane
periodic resolution of unity Λ∗ = (η, ζ) such that

ψ(·)
(p̃, η)
� θ(·) and 1

(p̃, ζ)
≺ θ(·),

where p̃ = min(1, p), then

ωθ(f, δ)p � K
(P)
ψ (f, δ)p, f ∈ Lp, δ ≥ 0. (12)

2.2. Polynomial K-functional related to Riesz derivatives. Applying
the general results obtained in [8] for generalized polynomial K-functional (4)
to the case ψ(·) = | · |β we immediately obtain the following properties of
functionals (2). As usual,

En(f)p = inf
T ∈Tn

‖ f − T ‖p,

denotes the best approximation of f in Lp by trigonometric polynomials of order
n ∈ N0.

Theorem 2.2 ([8]). Let β > 0, 0 < p ≤ +∞, and let p̃ = min(1, p).

(i) (Jackson type estimate) There exists a constant c1 > 0 such that

En(f)p ≤ c1K
(P)
〈β〉 (f, (n+ 1)−1)p (13)

for all f ∈ Lp and n ∈ N0.

(ii) (Bernstein type estimate) There exists a constant c2 > 0 such that

K
(P)
〈β〉 (f, δ)p ≤ c2 min(δβ, 1)

 ∑
0≤ ν < 1

δ

(ν + 1)βp̃−1Eν(f)p̃p

 1
p̃

. (14)

for all f ∈ Lp and δ > 0.

(iii) There exists a constant c2 > 0 such that

K
(P)
〈β〉 (f, tδ)p ≤ c3 (t+ 1)β+ 1

p̃
−1K

(P)
〈β〉 (f, δ)p, (15)

for all f ∈ Lp and δ, t > 0.

2.3. Approximation methods generated by Riesz kernels. Next we recall
(see e.g. [10]) the Riesz family of linear polynomial operators in Lp-spaces of
2π-periodic functions. Let 0 < p ≤ +∞, 0 ≤ α < ∞, 0 < β < ∞, and let
n ∈ N0. We put

R(α,β)
n;λ (f ;x) = (2n+1)−d ·

2n∑
k=0

f(tkn+λ)·R(α,β)
n (x−tkn−λ), λ ∈ R, x ∈ R, (16)
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where

R
(α,β)
0 (h) = 1, R(α,β)

n (h) =
∑
| k |≤n

(
1− | k |

β

nβ

)α
· eikh, n ∈ N,

are the Riesz kernels, and tkn = 2πk
2n+1

, k ∈ Z. The corresponding Riesz means
which are given by

R(α,β)
n (f ;x) = (2π)−1

∫ 2π

0

f(x+ h) ·R(α,β)
n (h) dh, n ∈ N0, (17)

are classical objects of both harmonic analysis and approximation theory. They
have been intensively studied by many mathematicians (see, e.g. [2, 5, 13–15]).
In particular, the means (17) converge in Lp for all 1 ≤ p ≤ +∞ independently
on β, provided that α > 0 ([5]). For further results and more details we refer
to [16].

Families of linear polynomial operaters as defined in (16) can be used as
universal constructive approximation method for all 0 < p ≤ +∞, in particular,
they turn out to be relevant if 0 < p < 1. For more information we refer to [6].
To this end we put

‖ g(·, ·) ‖p =

(
1

2π

∫ 2π

0

∫ 2π

0

|g(x, λ)|p dx dλ
) 1

p

for a 2π-periodic function g of two variables x ∈ R and λ ∈ R. The following
convergence result has been proved in [10]:
Let α > 0 and let β 6∈ E, where E = {2k, k ∈ N0}. Then it holds

‖ f −R(α,β)
n;λ (f) ‖p → 0 (n→∞)

for all f ∈ Lp if, and only if, 1
1+min(α, β)

< p ≤ +∞. Let us also mention that

according to the general convergence theory described in [6] approximation by
the Riesz family (16) and approximation by Riesz means (17) are equivalent in
the sence that

‖ f −R(α,β)
n;λ (f) ‖p � ‖ f −R(α,β)

n (f) ‖p, f ∈ Lp,∈ N0. (18)

if 1 ≤ p ≤ +∞.
The quality of approximation for methods generated by Riesz kernels has

been characterized in terms of polynomial K-functionals in [10] applying the
general equivalence results obtained in [7]. Taking into account (18) this result
can be stated as follows.

Theorem 2.3 ([10]). Let α > 0, β 6∈ E. If p ∈
(

1
min(α,β)+1

,+∞
]

then

‖ f −R(α,β)
n;λ (f) ‖p � K

(P)
〈β〉 (f, (n+ 1)−1)p, f ∈ Lp,∈ N0. (19)

If 1 ≤ p ≤ +∞ then in (19) the family {R(α,β)
n;λ } can be replaced by the Riesz

means R(α,β)
n .
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3. Asymptotic properties of the generating function

In this section we show that the generating function θ〈β〉 of modulus (1) given
by (5) and the function ψ(·) = | · |β associated with the polynomial K-
functional (2) satisfy the assumptions of Theorem 2.1 for a certain range of
parameters β and p. This is the crucial part of the paper because it allows
to apply the general theory presented in the preceding section to describe the
interrelation of approximation by Riesz families and means and smoothness
properties of functions characterized by moduli of smoothness related to frac-
tional Riesz derivatives. The result is based on a series of lemmas. Henceforth,

∆̃hg(x) = g

(
x+

h

2

)
− g

(
x− h

2

)
stands for the symmetric difference of g. By Cm, m ∈ N, we denote the space
of 2π-periodic m times continuously differentiable functions.

Lemma 3.1. Let g be an infinitely differentiable function defined on R \ {0}.
Let n ≥ m be a natural number and let 0 < h < n−1. Then there exist real
numbers c > 0 and γj, j = n, . . . ,m, γm 6= 0, such that∣∣∣ g(2m)(x)−

n∑
j=m

γj ∆̃2j
h g(x)

∣∣∣ ≤ c max
| t | ≤nh

∣∣ g(2n+1)(x+ t)
∣∣ (20)

for all x, |x | ≥ 1.

Proof. Let j ∈ {m, . . . , n} and let |x | ≥ 1. Then it holds

∆̃2j
h g(x) =

∫
Ωj

g(2j)(x+ Λj) dλ(j), (21)

where

Ωj ≡ Ωj(h) =

[
−h

2
,
h

2

]2j

, Λj = λ1 + · · ·+ λ2j, dλ(j) = dλ1 · · · dλ2j.

Applying Taylor’s formula

η(x+ τ) =
k∑
ν=0

η(ν)(x)

ν!
τ ν +

1

k!

∫ τ

0

(τ − t)k η(k+1)(x+ t) dt

to η=g(2j), τ=Λj and k=2(n− j) and taking into account that
∫

Ωj
Λr
j dλ(j) =0

for odd numbers r we obtain

∆̃2j
h g(x) =

2n∑
ν=2j

g(ν)(x)

(ν − 2j)!

∫
Ωj

Λν−2j
j dλ(j) + Gj(x)

=
n∑
s=j

g(2s)(x)

(2(s− j))!

∫
Ωj

Λ
2(s−j)
j dλ(j) + Gj(x),

(22)
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from (21). Here,

Gj(x) =
1

(2(n− j))!

∫
Ωj

∫ Λj

0

(Λj − t)2(n−j) g(2n+1)(x+ t) dt dλ(j). (23)

Clearly,

|Gj(x) | ≤ max
j=m,...,n

h2j|Λj |2(n−j)+1

(2(n− j) + 1)!
max
| t | ≤ |Λj |

| g(2n+1)(x+ t) |

≤ h2m(nh)2(n−m)+1 max
| t | ≤nh

| g(2n+1)(x+ t) |, j = m, . . . , n.

(24)

Formula (22) can be rewritten as

n∑
s=j

αjsg
(2s)(x) = ∆̃2j

h g(x) − Gj(x), j = m, . . . , n, (25)

where

αjs =
1

(2(s− j))!

∫
Ωj

Λ
2(s−j)
j dλ(j), s = j, . . . , n, j = m, . . . , n.

We consider (25) as a system of linear equations with respect to g(2s),
s = m, . . . , n, as unknown variables. Because of αmm · . . . · αnn 6= 0 this system
has a unique solution. In particular, we have

g(2m)(x) =
n∑

j=m

γj ( ∆̃2j
h g(x) − Gj(x) ), (26)

where γm = α−1
mm 6= 0. Combining (24) and (26) we find∣∣∣g(2m)(x)−
n∑

j=m

γj ∆̃2j
h g(x)

∣∣∣ =
∣∣∣ n∑
j=m

γjGj(x)
∣∣∣ ≤ c max

|t|≤nh

∣∣g(2n+1)(x+ t)
∣∣.

In order to prove the next Lemma we need some Fourier analytic tools. We
denote by S(R) the Schwartz space of rapidly decreasing infinitely differentiable
functions and by S ′(R) its topological dual the space of all tempered distribu-
tions. F stands for the Fourier transform in S ′(R). If f ∈ L1(R) ⊂ S ′(R) is a
regular distribution then Ff can be represented pointwise as

Ff(x) =
1

2π

∫ ∞
−∞

f(ξ)e−ixξ dξ, ξ ∈ R.

For details and properties let us refer, for example, to the comprehensive
book [3].
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Lemma 3.2. Let m, j ∈ N, j ≥ m, 0 < β < 1, ξ ∈ R and let 0 < h < j−1.
Then the function

η(t) ≡ ηj,ξ(t) ≡ ηj,ξ,m,h,β(t) = ∆̃2j
h

(
| · |2m−β−1

)
(t)( eiξt − 1 ) (27)

belongs to L1(R) and it holds

Fη(x) = a
((

sin
h(x− ξ)

2

)2j

|x− ξ |β−2m −
(

sin
hx

2

)2j

|x |β−2m
)
, (28)

for its Fourier transform, where the real number a ≡ a(j,m, β) is independent
of x, h and ξ.

Proof. The function η is continuous. Moreover, in view of (21) we get

| η(t) | ≤ 2h2j max| τ | ≤ jh
∣∣ ( | t+ τ |2m−β−1

)(2j) ∣∣
≤ 2

2j∏
k=1

| 2m− β − k | ( | t | − jh )−(2(j−m)+β+1)

for | t | ≥ 1. This implies,

| η(t) | = O
(
| t|−(β+1)

)
, | t | → +∞.

Thus, η belongs to L1(R) and its Fourier transform can be defined pointwise.
However, for the purpose of its calculation we consider the Fourier transform in
the framework of tempered distributions S ′(R). Clearly,

〈
F
(
∆̃2j
h

(
| · |2m−β−1

))
, ϕ
〉

= (−4)j
〈(

sin
h·
2

)2j F
(
| · |2m−β−1

)
, ϕ
〉

= (−4)j
〈
F
(
| · |2m−β−1

)
,
(

sin
h·
2

)2j

ϕ(·)
〉 (29)

for any test function ϕ ∈ S(R). It follows from [3, Subsection 2.4.3, Formula
(2.4.3) (p. 128)], that

〈
F
(
| · |2m−β−1

)
, ψ
〉

=
π
β−2m+1

2

Γ
(
β−2m+1

2

) ( ∫
|x| ≥ 1

|x|β−2mψ(x) dx

+

2(m−1)∑
k=0

1

(2k)!

2

2(k −m) + β + 1

〈
δ(2k), ψ

〉
+

∫
|x|< 1

(
ψ(x)−

2(m−1)∑
k=0

ψ(2k)(0)

(2k)!
x2k
)
|x|β−2mdx

)
(30)
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for ψ ∈ S(R). Applying (30) to the function ψ(x) = sin2j
(
hx
2

)
ϕ(x), ϕ ∈ S(R),

and taking into account that all of its derivatives up to the order 2(m− 1) are
equal to 0 we get

〈
F
(
∆̃2j
h

(
| · |2m−β−1

))
, ϕ
〉

= (−4)j
π
β−2m+1

2

Γ
(
β−2m+1

2

) ∫ +∞

−∞

(
sin

hx

2

)2j

|x|β−2mϕ(x) dx,

from (29). Hereby we used the identity

F
(
∆̃2j
h

(
| · |2m−β−1

))
(x) =

(
sin

hx

2

)2j

|x|β−2m. (31)

Now (28) immediately follows from (31).

Lemma 3.3. Let n ≥ m be natural numbers, 0 < h < n−1 and let 0 < β < 1.
Then the function

X (ξ) =
∑
ν 6=0

X ∧(ν) ( eiνξ − 1 ), (32)

where

X ∧(ν) =
(
| · |2m−β−1

)(2m)
(ν)−

n∑
j=m

γj ∆̃2j
h

(
| · |2m−β−1

)
(ν), ν 6= 0, (33)

and where the numbers γj, j = m, . . . , n, have the same meaning as in Lem-
ma 3.1, belongs to the space C2(n−m)+1.

Proof. Applying Lemma 3.1 to the function g(x) = |x|2m−β−1 we obtain

|X ∧(ν)| ≤ c max
|t|≤nh

∣∣∣(|ν + t|2m−β−1
)(2n+1)

∣∣∣ ≤ c1(|ν| − nh)−(2(n−m+1)+β)

for ν 6= 0. In particular, we have

| X ∧(ν) | = O
(
| ν |−(2(n−m+1)+β)

)
, | ν | → +∞.

This implies∣∣∣ ∑
ν 6=0

X ∧(ν) (iν)2(n−m)+1eiνξ
∣∣∣ ≤ c

∑
ν 6=0

| ν |2(n−m)+1

| ν |2(n−m+1)+β
= c

∑
ν 6=0

1

| ν |β+1
<∞

and yields absolute and uniform convergence of the series on the left-hand side.
Hence, the function represented by the series on the right-hand side of (32) is
2(n−m) + 1-times differentiable and the derivative X (2(n−m)+1) is a continuous
and periodic function on R.
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Lemma 3.4. Let m, j ∈ N, j ≥ m, 0 < β < 1 and let h ∈ R. Then the function
Ωj ≡ Ωj,m,h,β given by

Ωj(ξ) =
∑
k 6=0

(
sin2j h(ξ − 2πk)

2
| ξ − 2πk|β−2m − sin2j 2πkh

2
| 2πk|β−2m

)
(34)

is infinitely differentiable on (−2π, 2π).

Proof. We observe that

∣∣ω(s)
k (ξ)

∣∣ :=
∥∥∥ s∑
ν=0

(
sin2j h(ξ − 2πk)

2

)(s−ν)(
| ξ − 2πk|β−2m

)(ν)∥∥∥
≤ c

s∑
ν=0

| ξ − 2πk|β−2m−ν ,

(35)

for s ∈ N and ξ ∈ (−2π, 2π), where the positive constant c is independent of ξ.
Let 0 < ρ < 1. In view of (35) we obtain

∑
k 6=0

∣∣ω(s)
k (ξ)

∣∣ ≤ c
s∑

ν=0

+∞∑
k=0

(k + ρ)β−2m−ν ≤ c1

(
ρ2m−β−s +

+∞∑
k=1

k2m−β
)
< +∞

for each ξ ∈ (−2π(1− ρ), 2π(1− ρ)). Hence, the function Ωj(ξ) represented by
the series on the right-hand side of (34) is s-times differentable on the interval
(−2π(1− ρ), 2π(1− ρ)) for each 0 < ρ < 1 and s ∈ N. Thus, the function Ωj is
infinitely differentiable on (−2π, 2π).

Lemma 3.5. Let ψ be an even function belonging to C 3 on (−ρ, ρ), ρ > 0,
satisfying ψ(0) = 0. Let also 0 < β < 1.

(i) It holds

ψ(·)
(p,η1)
≺ | · |β

for all test functions η1 with supp η1 ⊂ (−ρ, ρ).

(ii) There exists a number ρ′, 0 < ρ′ < ρ such that

1
(p,η2)
≺ 1 + | · |−β ψ(·)

for all test functions η2 with supp η2 ⊂ (−ρ′, ρ′).

Proof. Step 1. We prove (i). Clearly,

ψ(ξ) =
ψ′′(0)

2
ξ2 + ζ(ξ), ξ ∈ (−ρ, ρ); ζ(j)(0) = 0, j = 0, 1, 2, 3. (36)
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In view of (36) we get for ξ → 0

| ξ |−βζ(ξ) = o(| ξ |3−β); (37)(
ξ |−βζ(ξ)

)′
= | ξ |−βζ ′(ξ) − β | ξ |−(β+1)ζ(ξ) sgnξ

= | ξ |−βo(ξ2) + | ξ |−(β+1)o(ξ3)

= o(| ξ |2−β);

(38)

(
| ξ |−βζ(ξ)

)′′
= | ξ |−βζ ′′(ξ)− 2β | ξ |−(β+1)ζ ′(| ξ |) + β(β+1)| ξ |−(β+2)ζ(ξ)

= | ξ |−βo(ξ) + | ξ |−(β+1)o(ξ2) + | ξ |−(β+2)o(ξ3)

= o(| ξ |1−β).

(39)

By (37)–(39) there exist limξ→0( | ξ |−βζ(ξ)
)(j)

= 0, j = 0, 1, 2, and, in particu-
lar, the function | · |−βζ(·) belongs to C2. Hence, by elementary properties of
the Fourier transform

| F( | · |−βζ(·) η1(·) )(x) | ≤ c

1 + x2
, x ∈ R,

for any test function η1, whose support is contained in (−ρ, ρ). Therefore,
F( | · |−βζ(·) η1(·) ) belongs to Lp(R) for p > 1

2
. The function | · |2−β is homo-

geneous of degree 2 − β. Therefore, F( | · |2−β η(·) ) belongs to Lp(R) if, and
only if, p > 1

3−β (see [9, Theorem 4.1]). Taking into account that 1
3−β <

1
2

for

0 < β < 1 we obtain the desired relation ψ(·)
(p,η1)
≺ | · |β because of (36).

Step 2. We prove (ii). Due to (37) the function
(

1 + | · |−βψ(·)
)−1

is
well-defined on (−ρ′, ρ′) for some 0 < ρ′ ≤ ρ. Moreover,(

1 + | ξ |−βψ(ξ)
)−1

= 1− | ξ |−βψ(ξ) + X (ξ) (40)

for 0 < | ξ | < ρ′, where

X (ξ) = (g(ξ))2( 1 + g(ξ) )−1, g(ξ) = | ξ |−βψ(ξ). (41)

We observe that
X ′ = (2 + g)(1 + g)−1gg′,

X ′′ = (1 + g)−2
(
2(g′)2(1 + g) + gg′′(2 + g)

)
− 2(1 + g)−3(2 + g)g(g′)2

and g(j)(ξ) = O(| ξ |2−j−β), ξ → 0, j = 0, 1, 2. Taking into account also (36)–(39)
we obtain

X (j)(ξ) = O(| ξ |4−j−2β), ξ → 0, j = 0, 1, 2. (42)

By (42) there exist limξ→0X (j)(ξ) = 0, j = 0, 1, 2. In particular, the function X
belongs to C2 on (−ρ′, ρ′). Hence, the Fourier transform of X η2 belongs to Lp(R)
for p > 1

2
for any test function η2, whose support is contained in (−ρ′, ρ′). More-

over, as a consequence of part (i) the Fourier transform F((1−| · |−βψ(·)) η2(·))

belongs to Lp(R) for p > 1
2

. Now, it follows 1
(p,η2)
≺ 1+| · |−β ψ(·) from (40).
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Theorem 3.6. Let 0 < β < 1. If p > 1
2

then there exists a plane plane periodic
resolution of unity Λ∗ = (η, ζ) such that

(i) θ〈β〉(·)
(p,η)
� | · |β;

(ii) θ〈β〉(·)
(p,ζ)
� 1.

Proof. Let n ≥ m be natural numbers. We use the identity

|x |−β−1 = b
(
|x |2m−β−1

)(2m)
, x 6= 0,

where b ≡ b(β,m) =
∏2m

j=1(2m− β − j)−1 6= 0, to see that

θ(ξ) =
∑
ν 6=0

| ν |−β−1( eiνξ − 1 )

= b
∑
ν 6=0

(
| · |2m−β−1

)(2m)
(ν)(eiνξ − 1)

= b
( n∑
j=m

γj
∑
ν 6=0

∆̃2j
h

(
| · |2m−β−1

)
(ν) ( eiνξ − 1 ) + X (ξ)

)
= b

( n∑
j=m

γj

+∞∑
ν=−∞

ηj,ξ(ν) + X (ξ)
)
.

(43)

Here 0 < h < n−1, the numbers γj, j = m, . . . , n, have the meaning of
Lemma 3.1 and the functions ηj,ξ and X are given by (27) and (32)–(33), re-
spectively. Applying Poisson’s summation formula to the right-hand side of (43)
and afterwards Lemma 3.2 (see (28)) we get

θ(ξ) = b
( n∑
j=m

γj

+∞∑
k=−∞

Fηj,ξ(2πk) + X (ξ)
)

= ab | ξ |β−2m

n∑
j=m

γj

(
sin

hξ

2

)2j

+ ab
n∑

j=m

γj Ωj(ξ) + bX (ξ)

= abγm|ξ|β
(

sin hξ
2

ξ

)2m(
1 + γ−1

m

n−m∑
ν=1

γm+ν

(
sin

hξ

2

)2ν)
+ ab

n∑
j=m

γj Ωj(ξ) + bX (ξ)

≡ ab γm| ξ |βP (ξ) + Q(ξ)

(44)

where the functions Ωj, j = m, . . . , n, are given by (34).

First let us prove (i). Since the function P is analytic and P (0) = 1 6= 0

there exists 0 < ρ < 1 such that ab γm| · |βP (·)
(q,η)
� | · |β for any test function η
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with support in (−ρ, ρ) and q > 0. By Lemma 3.4 the functions Ωj, j =
m, . . . , n, are infinitely differentiable on (−ρ, ρ), and in view of Lemma 3.3 the
function X belongs to C3 on this interval if n is chosen such that n ≥ m + 1.
The function Q is even and Q(0) = 0 in view of (32) and (34). Part (i) of

Lemma 3.5 yields Q(·)
(p,η)
≺ | · |β. Thus, θ(·)

(p,η)
≺ | · |β. In order to prove the

converse relation we notice that by (44)

| ξ |β (θ(ξ))−1 = ( ab γmP (ξ) )−1
(

1 + | ξ |−βQ(ξ)( ab γmP (ξ) )−1
)−1

for 0 < | ξ | < ρ. Applying part (ii) of Lemma 3.5 to the function ψ(·) =

Q(·)( ab γmP (·) )−1 we immediately obtain that | · |β
(p,η)
≺ θ(·).

Now we prove part (ii). First we notice that the function θ is infinitely
differentiable on (0, 2π). Indeed, for given s ∈ N we choose n,m ∈ N from the
condition 2(n−m) + 1 ≥ s. Then the function X belongs to Cs by Lemma 3.3.
Because of Lemma 3.4 the functions Ωj, j = m, . . . , n, are infinitely differen-
tiable on (0, 2π). Furthermore, the function | · |βP (·) is analytic on (0, 2π). By
means of (44) we conclude that θ belongs to Cs on (0, 2π) for any s > 0. Since

θ〈β〉(ξ) =
∑
ν 6=0

| ν |−β−1( eiνξ − 1 ) = −4
+∞∑
ν=1

| ν |−β−1 sin2 νξ

2
< 0

for ξ 6= 2πk, k ∈ Z, the function (θ(·))−1 is well defined and infinitely differen-

tiable on (0, 2π) as well. Hence, θ(·)
(q,ζ)
� 1 for any q > 0 and an appropriate

function ζ.

4. Main results

Now we are ready to state the main properties of our new moduli of smooth-
ness introduced in (1) as well as their interrelations with polynomial K-func-
tionals related to fractional Riesz derivatives (2) and approximation by Riesz-
means (17) and Riesz families (16), respectively.

Theorem 4.1. Let 0 < β < 1, 1
β+1

< p ≤ +∞ and p̃ = min(1, p).

(i) (Equivalence to polynomial K-functionals) It holds

ω〈β〉(f, δ)p � K
(P)
〈β〉 (f, δ)p (45)

for all f ∈ Lp and δ > 0.

(ii) (Jackson-type estimate) There exists a positve constant c1 such that

En(f)p ≤ c1ω〈β〉(f, (n+ 1)−1)p (46)

for all f ∈ Lp and n ∈ N0.
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(iii) (Bernstein-type estimate) There exists a positve constant c2 such that

ω〈β〉(f, δ)p ≤ c2 min(δβ, 1)

 ∑
0≤ ν < 1

δ

(ν + 1)βp̃−1Eν(f)p̃p

1
p̃

(47)

for f ∈ Lp and δ > 0.

(iv) There exists a positve constant c3 such that

ω〈β〉(f, tδ)p ≤ c3 (t+ 1)β+ 1
p̃
−1 ω〈β〉(f, δ)p (48)

for all f ∈ Lp and δ, t ≥ 0.

(v) (Quality of approximation by Riesz means) If, in addition, α > 0 and
p ≥ 1, then it holds∥∥ f −R(α,β)

n (f)
∥∥
p
� ω〈β〉(f, (n+ 1)−1)p (49)

for all f ∈ Lp and n ∈ N0.

(vi) (Quality of approximation by Riesz families) If, in addition, α > 0 and
p > 1

α+1
, then it holds∥∥ f −R(α,β)

n;λ (f)
∥∥
p
� ω〈β〉(f, (n+ 1)−1)p (50)

for all f ∈ Lp and n ∈ N0.

Proof. Combining Theorem 2.1 and Theorem 3.6 we immediately obtain part
(i). Parts (ii)–(iv) follow from (i) and parts (i)–(iii) of Theorem 2.2, respectively.
The combination of Theorem 2.3 and part (i) implies parts (v) and (vi).

Remark 4.2. In the non-periodic case equivalences of type (45) and (49)
have been established in [15] for moduli of smoothess of fractional order and
1 < p <∞. The corresponding extension to the multivariate case can be found
in [17].
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