
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 34 (2015), 127–146
DOI: 10.4171/ZAA/1532

A Smooth Solution of a Singular
Fractional Differential Equation

Kaido Lätt, Arvet Pedas and Gennadi Vainikko

Abstract. In this article we examine the existence of a unique smooth solution to a
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1. Introduction

Throughout the article we use the notations N = {1, 2, . . . }, N0 = {0, 1, 2, . . . },
R = (−∞,∞), C = R + iR, λ = Reλ + iImλ for λ ∈ C, Dk = ( d

dt
)k, k ∈ N,

D0 = I, where I is the identity operator and i =
√
−1 is the imaginary unit.

For the space of m times continuously differentiable functions u on [0, T ]
we use the abbreviated notation Cm = Cm[0, T ], m ∈ N0, C0 = C;

‖u‖Cm = max
0≤k≤m

max
0≤t≤T

|u(k)(t)|.

For Banach spaces X and Y , the notation L(X, Y ) stands for the space of
linear bounded operators from X to Y , and L(X) = L(X,X). By ρL(X)(V ) we
denote the resolvent set of operator V ∈ L(X), and by σL(X)(V ) = C\ρL(X)(V )
its spectrum. In the case X = Cm we use the following abbreviated notations:

σm(V ) = σL(Cm)(V ), ρm(V ) = ρL(Cm)(V ) for V ∈ L(Cm), m ∈ N0.
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kaido.latt@ut.ee; arvet.pedas@ut.ee; gennadi.vainikko@ut.ee



128 K. Lätt et al.

The multiplication operator Mα for α ∈ R is defined by

(Mαu)(t) = tαu(t), 0 < t ≤ T, u ∈ C.

In article [24], the singular system of ordinary differential equations

tu′(t) = A(t)u(t) + f(t), 0 < t ≤ T <∞, (1)

with given matrix function A = (ap,q)
n
p,q=1 ∈ Cm

n×n, m ≥ 0, n ∈ N and vector
function f = (f1, . . . , fn)T ∈ Cm

n was considered. It was shown how the unique
solvability of this problem in Cm

n depends on the set of eigenvalues of the matrix
A(0). The central idea of [24] was the reduction of (1) to a system of cordial
Volterra integral equations. Note that singular systems (1) can also be presented
in the equivalent form

(tu(t))′ = B(t)u(t) + f(t), B(t) = A(t) + I, 0 < t ≤ T.

On the other hand, singular fractional differential equations of the form

(MαD
α
0 u)(t) =

l∑
k=1

ak(t)(MαkD
αk
0 u)(t) + f(t), 0 < t ≤ T, (2)

and

(Dα
0Mαu)(t) =

l∑
k=1

bk(t)(D
αk
0 Mαku)(t) + f(t), 0 < t ≤ T, (3)

are not equivalent and thus need independent treatments. In the present article
we concentrate on (3) which in some aspects is simpler than (2).

In (3) the fractional differentiation operators Dα
0 (α > 0) and Dαk

0 (αk ≥ 0)
are defined as the inverses of the Riemann-Liouville integral operator Jν on JνC,
i.e.

Dν
0 := (Jν)−1, ν ≥ 0.

The Riemann-Liouville fractional integral operator Jν is given by

(Jνu)(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s)ds, u ∈ C, t > 0, ν > 0; J0 = I.

Here Γ is the Euler Gamma function. For ν = m ∈ N, the operator Dm
0 is the

restriction of Dm to the subspace

Cm
0 := {u ∈ Cm | u(k)(0) = 0, k = 0, . . . ,m− 1}. (4)
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It is known (see e.g. [5]): if α > 0, β > 0, then(
JαJβu

)
(t) =

(
Jα+βu

)
(t) =

1

Γ(α + β)

∫ t

0

(t− s)α+β−1u(s)ds

with 0 < t ≤ T , u ∈ C. Consequently, also Dα
0D

β
0 = Dα+β

0 for α > 0, β > 0.
This property is important in theoretical considerations and it does not hold
for Riemann-Liouville and Caputo fractional differentiation operators which are
more popular in applications. Fortunately, as we soon explain, under natural
conditions (see (5) below), u ∈ Cm remains to be a solution of (3) if we replace
Dα

0 , Dαk
0 with either Riemann-Liouville or Caputo fractional differentiation op-

erators.
The main goal of the present article is to extend the results of [24] to

fractional differential equations (3). We study the unique solvability of (3) for
α, αk ∈ R,

m < α ≤ m+ 1, α > αk ≥ 0, bk, f ∈ Cm, k = 1, 2, . . . , l, m ∈ N0. (5)

Note that for a unique solution u ∈ Cm of (3), no initial or boundary conditions
are permitted: imposing them one determines, as a rule, a solution of lesser
regularity. Linear fractional differential equations without singularities, but
with initial conditions, have been intensively discussed e.g. in [6,14], monographs
[5, 12,18], see also references therein.

The Riemann-Liouville fractional differentiation operator Dα
R−L of order

α > 0, m < α ≤ m+ 1, m ∈ N0, is determined by the formula

Dα
R−Lu = Dm+1Jm+1−αu provided that Jm+1−αu ∈ Cm+1.

The following claim is elementary (see [25]).

Proposition 1.1. For m < α ≤ m + 1, m ∈ N0, a function u ∈ Cm is Dα
R−L-

differentiable if and only if u is Dα
0 -differentiable. Besides Dα

R−Lu = Dα
0 u.

For u ∈ Ck, k < m, the situation is more complicated [25].

Introduce the Taylor projection

(Πmu)(t) =
m∑
k=0

u(k)(0)

k!
tk, 0 ≤ t ≤ T, u ∈ Cm, m ∈ N0.

The Caputo fractional differentiation operator Dα
Cap, for m < α ≤ m + 1,

m ∈ N0, is usually defined by

Dα
Capu = Dm+1Jm+1−α(u− Πmu)

where u ∈ Cm is such that Jm+1−α(u − Πmu) ∈ Cm+1. For u ∈ Cm+1, this is
equivalent to Dα

Capu = Jm+1−αDm+1u (cf. [14]). The following claim is elemen-
tary (see [25]).
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Proposition 1.2. A function u ∈ Cm has the Caputo fractional derivative
Dα
Capu ∈ C, m < α ≤ m+ 1, m ∈ N0, if and only if u−Πmu has the fractional

derivative Dα
0 (u− Πmu) ∈ C. Besides Dα

Capu = Dα
0 (u− Πmu).

For u ∈ Cm, α > m, m ∈ N0, it holds Mαu ∈ Cm, ΠmMαu = 0, and by
Propositions 1.1 and 1.2

Dα
R−L(Mαu) = Dα

0 (Mαu) = Dα
Cap(Mαu).

Similar relations hold for Dαk
R−L, Dαk

0 and Dαk
Cap, k = 1, . . . , l. Thus for u ∈ Cm

equation (3) with (5) is equivalent to the equation which we obtain from (3)
replacing Dα

0 , Dαk
0 either by Dα

R−L, Dαk
R−L or by Dα

Cap, D
αk
Cap, k = 1, . . . , l,

consequently our results remain to be true also in the case with Riemann-
Liouville or Caputo fractional derivatives.

Recently, the area of fractional derivatives and their applications, has seen a
remarkable growth in popularity (for the main results in this field see, for exam-
ple, [3,5,12,18,19] and the references cited in these monographs). Additionally,
various existence and uniqueness results for fractional differential equations are
given in [1, 2, 4, 21] and some recent results regarding the numerical solution of
such equations can be found in [8–10, 15–17]. However, as far as we know, no
contributions exists concerning the singular fractional differential equations of
the form (3) with (5).

The main purpose of the present paper is to derive criteria for the existence
of a smooth solution to (3). We exploit the concept of cordial Volterra integral
operators [22, 23] recalled in Section 2.1. The results of the present article will
play a fundamental role when constructing high order numerical methods for
solving equations of the form {(3),(5)}. Having said that, the question regarding
numerical methods, is beyond the scope of the present paper.

The article is broken up into four sections. In Section 2 we present some
definitions and results required for our work. Section 3 is devoted to the main
result of this article, Theorem 3.3. To prove Theorem 3.3 we also formulate an
auxiliary result, Lemma 3.2. Section 4 contains the proof of Lemma 3.2.

2. Preliminaries

2.1. Cordial Volterra integral operators. The cordial Volterra integral op-
erator Vϕ with a core ϕ ∈ L1(0, 1) is defined by

(Vϕu) (t) =

∫ t

0

1

t
ϕ
(s
t

)
u(s)ds =

∫ 1

0

ϕ(x)u(tx)dx, 0 ≤ t ≤ T, u ∈ C. (6)

Denote

ϕ̂(λ) =

∫ 1

0

xλϕ(x)dx (7)
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for such λ ∈ C where the integral converges. From the second form of (6), we
get that

Vϕwλ = ϕ̂(λ)wλ, where wλ(t) = tλ, 0 ≤ t ≤ T. (8)

By differentiating the second form of (6) we have

(Vϕu)(m)(t) =

∫ 1

0

ϕ(x)xmu(m)(tx)dx for u ∈ Cm, m ≥ 0. (9)

We also get

(aVϕu)(m)(t) =
m∑
i=0

m!

i!(m− i)!
a(m−i)(t)

∫ 1

0

ϕ(x)xiu(i)(tx)dx (10)

for a, u ∈ Cm, m ≥ 0. The following theorem is a summary of results proved in
[22] and [23].

Theorem 2.1. For ϕ ∈ L1(0, 1), a ∈ Cm, m ≥ 0, it holds that Vϕ, aVϕ ∈ L(Cm)
and

σ0(Vϕ)={ϕ̂(λ) | Reλ≥0} ∪ {0}, (11)

σm(Vϕ)={ϕ̂(λ) | Reλ≥m} ∪ {0} ∪ {ϕ̂(j) | j=0, 1, . . . ,m−1} for m≥1, (12)

σm(aVϕ)=a(0)σm(Vϕ) for m≥0.

Moreover, ‖Vϕ‖L(C) = ‖ϕ‖1 and ‖aVϕ‖L(C) ≤ ‖a‖∞‖ϕ‖1 with

‖ϕ‖1 =

∫ 1

0

|ϕ(x)|dx, ‖a‖∞ = max
0≤t≤T

|a(t)|.

If a(0) = 0, then operator aVϕ ∈ L(Cm) is compact and σm(aVϕ) = {0}.
Proposition 2.2 ([22, Remark 4.9]). For ϕ ∈ L1(0, 1), µ 6∈ σ0(Vϕ) it holds

(µI − Vϕ)−1 = µ−1I + Vψ

where ψ ∈ L1(0, 1) is uniquely determined by µ and ϕ.

Proposition 2.3 ([22, Remark 4.8]). For ϕ ∈ L1(0, 1), µ ∈ σ0(Vϕ), µ 6= ϕ̂(0),
the set (µI − Vϕ)C is dense in C. For µ = ϕ̂(0), the functions f ∈ (µI − Vϕ)C
satisfy f(0) = 0, hence the set (ϕ̂(0)I − Vϕ)C is not dense in C.

Proposition 2.4 ([22, Theorem 4.10]). For ϕ ∈ L1(0, 1), µ 6= 0, the operator
µI −Vϕ : C → C has the right hand inverse if and only if µ− ϕ̂(iξ) 6= 0 for any
ξ ∈ R; further, µI − Vϕ : C → C has the (two side) inverse if and only if, in
addition, arg[µ− ϕ̂(iξ)]∞ξ=−∞ = 0.

For α > 0 and u ∈ C it holds that

(Jαu)(t) =
tα

Γ(α)

∫ t

0

1

t

(
1− s

t

)α−1

u(s)ds, 0 < t ≤ T,

hence M−αJ
α is for any α > 0 a cordial Volterra integral operator with the core

ϕ(x) = 1
Γ(α)

(1− x)α−1 in L1(0, 1).
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2.2. Fredholm type operators. Let us recall the definition and some results
from the theory of Fredholm operators of index 0 in a Banach space X.

Definition 2.5. For a Banach space X, an operator A ∈ L(X) is called Fred-
holm (or, Noether) if its null-space N (A) := {u ∈ X | Au = 0} is finite
dimensional, and its range R(A) = AX is closed and of a finite codimension
in X; the integer dimN (A) − codimR(A) is called index of A. By Φκ(X) we
denote the class of Fredholm operators of index κ ∈ Z.

Here, codimR(A) = dim(X/R(A)) and X/R(A) is the factor space of X
over R(A).

Proposition 2.6 (See e.g. [20, Theorem 1.3.2]). For A ∈ L(X) the following
conditions are equivalent:

1. A ∈ Φ0(X);

2. A admits a representation A = B + K where B ∈ L(X) possesses the
inverse B−1 ∈ L(X) and K ∈ L(X) is compact.

Corollary 2.7. Let µI − A ∈ Φ0(X) for a µ ∈ C. If N (µI − A) = {0} then
µ ∈ ρX(A).

Corollary 2.8. Suppose that µI − A 6∈ Φ0(X) for a µ ∈ C. Then µ ∈ σX(A).

Corollary 2.9. The set Φ0(X) is open in L(X).

The following proposition is a simple consequence of Definition 2.5.

Proposition 2.10. Let X be representable in a direct sum X = X0⊕X1, where
X0 and X1 are subspaces of X and X0 is finite dimensional. Let A ∈ L(X) be
such that AX0 ⊂ X0, AX1 ⊂ X1. Then A ∈ Φκ(X) if and only if A1 ∈ Φκ(X1)
where A1 = A|X1 ∈ L(X1) is the restriction of A onto X1.

3. Formulation of the main result

As stated before, the main goal of this article is to study the unique solvability
of singular fractional differential equations (3) with conditions (5).

We start off by considering the simplified version of equation (3) with con-
stant coefficients:

(Dα
0Mαu)(t) =

l∑
k=1

bk(0)(Dαk
0 Mαku)(t) + f(t), 0 < t ≤ T. (13)

Here α, αk ∈ R and

m < α ≤ m+ 1, α > αk ≥ 0, k = 1, 2, . . . , l, f ∈ Cm, m ∈ N0. (14)
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By the change of variables v = Dα
0Mαu in (13), we get due to u = (Dα

0Mα)−1v =
M−αJ

αv that equation (13) is equivalent to

v =
l∑

k=1

bk(0)[Dαk
0 Mαk ][M−αJ

α]v + f. (15)

Note that for any v ∈ C and k = 1, 2, . . . , l, function M−αJ
αv belongs to

the domain of operator Dαk
0 Mαk , or to the range of (Dαk

0 Mαk)
−1 = M−αkJ

αk ,
i.e. there exists a w ∈ C such that

M−αJ
αv = M−αkJ

αkw. (16)

Namely, we claim that the last equality holds for w = Vϕα,αkv, where Vϕα,αk is
a cordial Volterra integral operator with the core

ϕα,αk(x) =
1

Γ(α− αk)
(1− x)α−αk−1xαk , ϕα,αk ∈ L1(0, 1). (17)

In other words, we claim that there holds the equality of cordial Volterra integral
operators:

M−αJ
α = [M−αkJ

αk ]Vϕα,αk . (18)

The three cordial Volterra integral operatorsM−αJ
α, M−αkJ

αk and Vϕα,αk in (18)
are well-defined and bounded in C, hence (18) holds if

M−αJ
αwn = [M−αkJ

αk ]Vϕα,αkwn, ∀n ∈ N0, (19)

where wn(t) = tn. For n ∈ N0, it holds

M−αJ
αwn =

Γ(n+ 1)

Γ(α + n+ 1)
wn, M−αkJ

αkwn =
Γ(n+ 1)

Γ(αk + n+ 1)
wn,

Vϕα,αkwn =
Γ(αk + n+ 1)

Γ(α + n+ 1)
wn

and we see that (16), (18) and (19) hold.
Equation (15) can be rewritten as

v =
l∑

k=1

bk(0)Vϕα,αkv + f.

By (7), we get ϕ̂α,αk(λ) = Γ(αk+λ+1)
Γ(α+λ+1)

, Reλ ≥ 0, k = 1, 2, . . . , l. According

to (11) and (12), remembering (8), we obtain that the spectrum of operator∑l
k=1 bk(0)Vϕα,αk has the form

σ0

(
l∑

k=1

bk(0)Vϕα,αk

)
=

{
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
| Reλ ≥ 0

}
∪ {0} (20)
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and

σm

(
l∑

k=1

bk(0)Vϕα,αk

)
=

{
l∑

k=1

bk(0)
Γ(αk + q + 1)

Γ(α + q + 1)
| q = 0, 1, . . . ,m− 1

}

∪

{
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
| Reλ ≥ m

}
∪ {0},

m ≥ 1.

(21)

The following result is a consequence of (20) and (21).

Lemma 3.1. Let α, αk ∈ R, and conditions (14) hold. Equation (15) has a

unique solution v ∈ C for any f ∈ C, i.e. 1 6∈ σ0

(∑l
k=1 bk(0)Vϕα,αk

)
, if and

only if
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
6= 1, ∀λ ∈ C with Reλ ≥ 0.

Equation (15) has a unique solution v ∈ Cm for any f ∈ Cm, m ≥ 1, i.e.

1 6∈ σm
(∑l

k=1 bk(0)Vϕα,αk

)
, if and only if

l∑
k=1

bk(0)
Γ(αk + q + 1)

Γ(α + q + 1)
6= 1, q = 0, 1, . . . ,m− 1,

and

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
6= 1, ∀λ ∈ C with Reλ ≥ m.

Having found the solution v ∈ C (v ∈ Cm) of equation (15), the solution of
equation (13) has the form u = M−αJ

αv.

To study the unique solvability of singular fractional differential equa-
tions (3) with (5), we prove (see Section 4) the following result.

Lemma 3.2. Under conditions bk ∈ Cm, m ≥ 0, k = 1, 2, . . . , l, it holds that

σm

(
l∑

k=1

bk(0)Vϕα,αk

)
= σm

(
l∑

k=1

bkVϕα,αk

)
,

with ϕα,αk from (17).
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Similarly as for equation (13), equation (3) can be rewritten as

v =
l∑

k=1

bkVϕα,αkv + f, (22)

where v = Dα
0Mαu is the unknown and Vϕα,αk is a cordial integral operator

with core ϕα,αk from (17). We can now formulate the main result of the present
article.

Theorem 3.3. Let α, αk ∈ R, and (5) hold. For any f ∈ C, equation (22) has a

unique solution v ∈ C and equation (3) has a unique solution u = M−αJ
αv ∈ C

if and only if 1 6∈ σ0

(∑l
k=1 bk(0)Vϕα,αk

)
, i.e.

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
6= 1, ∀λ ∈ C with Reλ ≥ 0.

For any f ∈ Cm, m ≥ 1, equation (22) has a unique solution v ∈ Cm

and equation (3) has a unique solution u = M−αJ
αv ∈ Cm if and only if

1 6∈ σm
(∑l

k=1 bk(0)Vϕα,αk

)
, i.e.

l∑
k=1

bk(0)
Γ(αk + q + 1)

Γ(α + q + 1)
6= 1, q = 0, 1, . . . ,m− 1,

and

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
6= 1, ∀λ ∈ C with Reλ ≥ m.

Proof. The claims of Theorem 3.3 regarding the solution v of (22) are direct
consequences of Lemma 3.2 and (20), (21). Furthermore, M−αJ

α is a cordial
Volterra integral operator and thus according to Theorem 2.1, v ∈ Cm, m ∈ N0,
implies u = M−αJ

αv ∈ Cm; recall that M−αJ
αv belongs to the domain of

Dαk
0 Mαk and u = M−αJ

αv really satisfies (3). Theorem 3.3 is proved.

Example 3.4. Consider the equation

Dα
0Mαu = bu+ f, m < α ≤ m+ 1, b, f ∈ Cm, m ∈ N0. (23)

By Theorem 3.3, equation (23) has a unique solution u ∈ C for any f ∈ C if
and only if 1 6∈ σ0

(
b(0)Vϕα,0

)
, i.e.

b(0) 6= Γ(λ+ α + 1)

Γ(λ+ 1)
, ∀λ ∈ C with Reλ ≥ 0;
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for real b(0) and α ∈ (0, 1] (m = 0), this condition, or the condition 1 6∈
σ0

(
b(0)Vϕα,0

)
, takes the form b(0) < Γ(α+1), since σ0

(
Vϕα,0

)
∩R =

[
0, 1

Γ(α+1)

]
.

For b(0) = Γ(α + 1), according to Proposition 2.4, operator I − bVϕα,0 is non-

Fredholm; for b(0) > Γ(α+1) it holds I− bVϕα,0 ∈ Φ1(C) (is Fredholm operator

of index 1).
Equation (23) has a unique solution u ∈ Cm for any f ∈ Cm, m ≥ 1, if and

only if 1 6∈ σm
(
b(0)Vϕα,0

)
, i.e.

b(0) 6= Γ(q + α + 1)

q!
, q = 0, 1, . . . ,m− 1,

and

b(0) 6= Γ(λ+ α + 1)

Γ(λ+ 1)
, ∀λ ∈ C with Reλ ≥ m.

Example 3.5. As stated before, equations tu′(t) = a(t)u(t) + f(t), 0 < t ≤ T
and (tu(t))′ = b(t)u(t)+f(t), where b(t) = a(t)+1 and 0 < t ≤ T , are equivalent.
Thus, according to [24], if Re b(0) < 1, then equation (tu(t))′ = b(t)u(t) + f(t)
has for any f ∈ C a unique solution in C (if b ∈ C is such that a finite limit

limt→0
b(t)−b(0)

tβ
exists for a β > 0, then condition Re b(0) < 1 is also necessary

for the unique solution of (tu(t))′ = b(t)u(t)+f(t) in C for all f ∈ C). Equation
Dα

0 (tαu(t)) = b(t)u(t)+f(t),0 < t ≤ T , 0 < α < 1 (equation (23) for 0 < α < 1)

has for any f ∈ C a unique solution in C if and only if b(0) 6= Γ(λ+α+1)
Γ(λ+1)

for any

λ ∈ C with Reλ ≥ 0. As α→ 1, the last condition takes the form Re b(0) < 1.

4. Proof of Lemma 3.2

To prove Lemma 3.2, we show that for bk ∈ Cm, k = 1, 2, . . . , l and m ≥ 0 the
following relations hold:

ρm

(
l∑

k=1

bk(0)Vϕα,αk

)
⊂ ρm

(
l∑

k=1

bkVϕα,αk

)
, (24)

σm

(
l∑

k=1

bk(0)Vϕα,αk

)
⊂ σm

(
l∑

k=1

bkVϕα,αk

)
. (25)

The proof of (24) and (25) is presented in six parts. In part a) we show that (24)
holds for m = 0 under stricter conditions ϕα,αk ∈ C1[0, 1], and bk ∈ C1 for
k = 1, 2, . . . , l. Part b) is dedicated to extending the results from part a)
to m = 0, ϕα,αk ∈ L1(0, 1) and bk ∈ C, k = 1, 2, . . . , l. With part c) the
inclusion (24) is proved for m ≥ 1. Part d) shows that (25) holds for m = 0 and
prepares the proof for m ≥ 1, the last two parts e) and f) complete the proof
of (25) for m ≥ 1.
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4.1. Part a). Let m = 0, ϕα,αk ∈ C1[0, 1], and bk ∈ C1 for k = 1, 2, . . . , l.

We show that µ ∈ ρ0

(∑l
k=1 bk(0)Vϕα,αk

)
, µ ∈ σ0

(∑l
k=1 bkVϕα,αk

)
leads to a

contradiction, i.e. relation (24) holds for m = 0.

Note that, 0 ∈ σ0

(∑l
k=1 bk(0)Vϕα,αk

)
(see (20)), thus µ 6= 0. Accord-

ing to Theorem 2.1,
∑l

k=1[bk − bk(0)]Vϕα,αk : C → C is compact, thus (see

Proposition 2.6) µI −
∑l

k=1 bkVϕα,αk ∈ Φ0(C). Now, based upon Corollary 2.7,

µ ∈ σ0

(∑l
k=1 bkVϕα,αk

)
is the eigenvalue of operator

∑l
k=1 bkVϕα,αk . Let u0 ∈ C,

‖u0‖∞=1, be the corresponding eigenfunction:
(
µI−

∑l
k=1 bkVϕα,αk

)
u0 =0 or

u0 =

(
µI −

l∑
k=1

bk(0)Vϕα,αk

)−1( l∑
k=1

[bk − bk(0)]Vϕα,αk

)
u0.

Since (µI −
∑l

k=1 bk(0)Vϕα,αk )−1 = µ−1I + Vψ with a ψ ∈ L1(0, 1) (see Proposi-
tion 2.2), it holds

u0 = (µ−1I + Vψ)

(
l∑

k=1

[bk − bk(0)]Vϕα,αk

)
u0. (26)

We assumed that bk ∈ C1 for k = 1, 2, . . . , l, consequently

|bk(t)− bk(0)| ≤ ck t, k = 1, 2, . . . , l, 0 ≤ t ≤ T, (27)

with some constants ck > 0, k = 1, 2, . . . , l. Using (26) and (27), we now
evaluate |u0(t)| step-by-step. The first step is∣∣∣∣∣
((

l∑
k=1

[bk−bk(0)]Vϕα,αk

)
u0

)
(t)

∣∣∣∣∣≤
l∑

k=1

|bk(t)−bk(0)|
∫ t

0

t−1|ϕα,αk(t−1s)| |u0(s)|ds

≤ t

l∑
k=1

ck‖ϕα,αk‖1

≤ ct
l∑

k=1

‖ϕα,αk‖1,

∣∣∣∣∣
(
Vψ

(
l∑

k=1

[bk−bk(0)]Vϕα,αk

)
u0

)
(t)

∣∣∣∣∣≤ c t‖ψ‖1

l∑
k=1

‖ϕα,αk‖1,

|u0(t)|≤ c t(|µ−1|+ ‖ψ‖1)
l∑

k=1

‖ϕα,αk‖1,
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with a constant c > 0 independent of t ∈ [0, T ]. Let us assume that after the
n-th step we have the estimate |u0(t)| ≤ c̃nt

n with 0 ≤ t ≤ T and constant c̃n.
Then∣∣∣∣∣
((

l∑
k=1

[bk−bk(0)]Vϕα,αk

)
u0

)
(t)

∣∣∣∣∣≤
l∑

k=1

|bk(t)−bk(0)|
∫ t

0

t−1|ϕα,αk(t−1s)| c̃nsnds

≤ c c̃n t
n+1

l∑
k=1

‖ϕ[n]
α,αk
‖1,

∣∣∣∣∣
(
Vψ

(
l∑

k=1

[bk−bk(0)]Vϕα,αk

)
u0

)
(t)

∣∣∣∣∣≤ c c̃n t
n+1‖ψ‖1

l∑
k=1

‖ϕ[n]
α,αk
‖1,

|u0(t)|≤ c c̃n t
n+1(|µ−1|+ ‖ψ‖1)

l∑
k=1

‖ϕ[n]
α,αk
‖1,

0 ≤ t ≤ T, where

ϕ[n]
α,αk

(x) = ϕα,αk(x)xn. (28)

Therefore, |u0(t)| ≤ c̃n+1t
n+1 for 0 ≤ t ≤ T with constant c̃n+1 = c c̃n(|µ−1| +

‖ψ‖1)
∑l

k=1 ‖ϕ
[n]
α,αk‖1. As easily verified ‖ϕ[n]

α,αk‖1 ≤ 1
n
‖ϕ[1]

α,αk‖∞, thus

c̃n+1 ≤
c (|µ−1|+ ‖ψ‖1)

∑l
k=1 ‖ϕ

[1]
α,αk‖∞

n
c̃n

≤
c2 (|µ−1|+ ‖ψ‖1)2

(∑l
k=1 ‖ϕ

[1]
α,αk‖∞

)2

n(n− 1)
c̃n−1

...

≤
cn (|µ−1|+ ‖ψ‖1)n

(∑l
k=1 ‖ϕ

[1]
α,αk‖∞

)n
n!

c̃1.

Hence, for n ∈ N0, 0 ≤ t ≤ T we get

|u0(t)| ≤
cn (|µ−1|+ ‖ψ‖1)n

(∑l
k=1 ‖ϕ

[1]
α,αk‖∞

)n
T n+1

n!
c̃1,

from which it follows that u0(t) ≡ 0. This contradicts the fact that u0 ∈ C is
an eigenfunction with ‖u0‖∞ = 1.
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4.2. Part b). Let m = 0, ϕα,αk ∈ L1(0, 1) and bk ∈ C, k = 1, 2, . . . , l. We
begin the discussion as in part a) and then interpret relation (26) as follows:
the eigenvalue problem

λu = (µ−1I + Vψ)

(
l∑

k=1

[bk − bk(0)]Vϕα,αk

)
u

with compact operator (µ−1I + Vψ)
(∑l

k=1[bk − bk(0)]Vϕα,αk

)
has an eigensolu-

tion (λ0, u0), λ0 = 1, u0 ∈ C, ‖u0‖∞ = 1.

We approximate functions ϕα,αk and bk by ϕεα,αk ∈ C
1[0, 1] and bεk ∈ C1 so

that ‖ϕα,αk − ϕεα,αk‖1 ≤ ε, bεk(0) = bk(0) and ‖bk − bεk‖∞ ≤ ε for k = 1, 2, . . . , l,

where ε > 0 is a given small number. The operator µI −
∑l

k=1 bk(0)Vϕεα,αk from

C into C is still invertible and can be expressed as(
µI −

l∑
k=1

bk(0)Vϕεα,αk

)−1

= µ−1I + Vψε with a ψε ∈ L1(0, 1)

(see Proposition 2.2), ‖ψ − ψε‖1 ≤ c′ε, c′ > 0. We get∥∥∥∥(µ−1I+Vψ)

(
l∑

k=1

[bk−bk(0)]Vϕα,αk

)
−(µ−1I+Vψε)

(
l∑

k=1

[bεk−bεk(0)]Vϕεα,αk

)∥∥∥∥
L(C)

≤c′′ε.

For a sufficiently small ε > 0, the perturbed eigenvalue problem

λu = (µ−1I + Vψε)

(
l∑

k=1

[bεk − bεk(0)]Vϕεα,αk

)
u

has a solution (λε, uε), ‖uε‖∞ = 1 such that, λε → 1 as ε → 0. Using a
similar discussion as in part a) we get that uε ≡ 0. This is a contradiction
since ‖uε‖∞ = 1. Consequently, for m = 0, ϕα,αk ∈ L1(0, 1) and bk ∈ C,
k = 1, 2, . . . , l, relation (24) holds.

4.3. Part c). In this part of the proof, we will show that inclusion (24) holds

for m ≥ 1. Let µ ∈ ρm
(∑l

k=1 bk(0)Vϕα,αk

)
. We may assume that, µ 6= 0 since

according to (20) we have 0 ∈ σ0

(∑l
k=1 bk(0)Vϕα,αk

)
. Proposition 2.6 yields

µI −
∑l

k=1 bkVϕα,αk ∈ Φ0(Cm). To prove that µ ∈ ρm

(∑l
k=1 bkVϕα,αk

)
, it is

sufficient to show that the homogeneous equation µu =
∑l

k=1 bkVϕα,αku has

in Cm only the trivial solution (see Corollary 2.7). Let u0 ∈ Cm be a solution:

µu0 =

(
l∑

k=1

bkVϕα,αk

)
u0. (29)
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We first show by induction that

u
(q)
0 (0) = 0, q = 0, . . . ,m− 1. (30)

Note that, for uλ(t) = tλ, Reλ > 0,

l∑
k=1

bk(0)Vϕα,αkuλ =
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
uλ. (31)

For t = 0, (29) takes the form

µu0(0) = u0(0)
l∑

k=1

bk(0)

∫ 1

0

ϕα,αk(x)dx. (32)

If u0(0) 6= 0, then (32) can be interpreted as follows: µ is an eigenvalue of∑l
k=1 bk(0)Vϕα,αk corresponding to eigenfunction 1 (see (31)). This contradicts

the assumption µ ∈ ρm

(∑l
k=1 bk(0)Vϕα,αk

)
. Hence u0(0) = 0. We show that

the induction hypothesis u
(j)
0 (0) = 0 for j = 0, . . . , n − 1, where n ≤ m − 1,

leads to u
(n)
0 (0) = 0. Indeed, from (10) it follows that((

l∑
k=1

bkVϕα,αk

)
u0

)(n)

=
l∑

k=1

bkVϕ[n]
α,αk

u
(n)
0 +

n−1∑
q=0

n!

q!(n−q)!

l∑
k=1

b
(n−q)
k V

ϕ
[q]
α,αk

u
(q)
0 , (33)

with ϕ
[q]
α,αk , q = 0, 1, . . . , n, given by (28). Since u

(j)
0 (0) = 0 for j = 0, . . . , n− 1,

we get (see (29))

µu
(n)
0 (0) = u

(n)
0 (0)

l∑
k=1

bk(0)

∫ 1

0

xnϕα,αk(x)dx.

Now, u
(n)
0 (0) = 0, since otherwise µ would be an eigenvalue of

∑l
k=1 bk(0)Vϕα,αk

corresponding to eigenfunction tn (see (31)). This completes the proof of (30).

Next, to obtain u0 ≡ 0, it is sufficient to show that u
(m)
0 ≡ 0 (see (30)). We

know that µu
(m)
0 =

((∑l
k=1 bkVϕα,αk

)
u0

)(m)

, thus (see (33))(
µI −

l∑
k=1

bk(0)V
ϕ
[m]
α,αk

)
u

(m)
0 =

l∑
k=1

[bk − bk(0)]V
ϕ
[m]
α,αk

u
(m)
0

+
m−1∑
q=0

m!

q!(m− q)!

l∑
k=1

b
(m−q)
k V

ϕ
[q]
α,αk

u
(q)
0 .
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Since µ ∈ ρm
(∑l

k=1 bk(0)Vϕα,αk

)
for m ≥ 1, it holds µ ∈ ρ0

(∑l
k=1 bk(0)V

ϕ
[m]
α,αk

)
.

Hence, operator µI −
∑l

k=1 bk(0)V
ϕ
[m]
α,αk

: C → C is invertible, and according to

Proposition 2.2 the inverse has the form(
µI −

l∑
k=1

bk(0)V
ϕ
[m]
α,αk

)−1

= µ−1I + Vψm , with a ψm ∈ L1(0, 1).

Relations (30) imply that u
(q)
0 (t) = 1

(m−q−1)!

∫ t
0
(t − s)m−q−1u

(m)
0 (s)ds, where

0 ≤ t ≤ T and q = 0, . . . ,m− 1. In conclusion,

u
(m)
0 =(µ−1I+Vψm)

×

{
l∑

k=1

[bk−bk(0)]V
ϕ
[m]
α,αk

u
(m)
0 +

m−1∑
q=0

m!

q!(m−q)!

l∑
k=1

b
(m−q)
k V

ϕ
[q]
α,αk

Gqu
(m)
0

}
,

(34)

where (Gqv)(t) = 1
(m−q−1)!

∫ t
0
(t− s)m−q−1v(s)ds, q = 0, . . . ,m− 1. Note that,

|v(t)|≤ctp, p ≥0 ⇒ |(Gqv)(t)|≤c1t
p+m−q,

∣∣∣∣∣
(

l∑
k=1

[bk−bk(0)]V
ϕ
[m]
α,αk

v

)
(t)

∣∣∣∣∣≤c2t
p+1.

Also, operators
∑l

k=1 b
(m−q)
k V

ϕ
[q]
α,αk

and Vψm preserve the convergence order of

v(t) for t→ 0. Approximating u
(m)
0 (t), with the help of (34), step-by-step as in

part a), we obtain that u
(m)
0 ≡ 0. Therefore (24) holds for m ≥ 1.

4.4. Part d). We now turn to the proof of (25). By (20) and (21), the inclu-
sion (25) is equivalent to the following inclusions: for m = 0,{

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
| Reλ ≥ 0

}
∪ {0} ⊂ σ0

(
l∑

k=1

bkVϕα,αk

)
; (35)

for m ≥ 1,{
l∑

k=1

bk(0)
Γ(αk + q + 1)

Γ(α + q + 1)
| q = 0, 1, . . . ,m− 1

}

∪

{
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
| Reλ ≥ m

}
∪ {0} ⊂ σm

(
l∑

k=1

bkVϕα,αk

)
.

First off all, the fact 0 ∈ σm
(∑l

k=1 bkVϕα,αk

)
for m ≥ 0 follows directly from

the closedness of the spectrum σm

(∑l
k=1 bkVϕα,αk

)
: in accordance with (24)
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the spectrum σm

(∑l
k=1 bkVϕα,αk

)
contains points

∑l
k=1 bk(0)Γ(αk+λ+1)

Γ(α+λ+1)
(see (20)

and (21)) for arbitrary large λ ∈ R and
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

→ 0 as λ → ∞,

since αk < α.

Next, to establish the inclusions{
l∑

k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
| Reλ ≥ m

}
⊂ σm

(
l∑

k=1

bkVϕα,αk

)
, m ≥ 0,

it is sufficient to show that

µI−
l∑

k=1

bk(0)Vϕα,αk 6∈Φ0(Cm), ∀µ=
l∑

k=1

bk(0)
Γ(αk+λ+1)

Γ(α+λ+1)
with Reλ≥m. (36)

Indeed, relation (36) implies that also µI −
∑l

k=1 bkVϕα,αk 6∈ Φ0(Cm) and thus,

by Corollary 2.8 we get that µ ∈ σm
(∑l

k=1 bkVϕα,αk

)
for Reλ ≥ m.

Let us establish (36) for m = 0. For µ =
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

, Reλ > 0,

according to Propositions 2.3 and 2.4,
(
µI −

∑l
k=1 bk(0)Vϕα,αk

)
C = C holds

and µ is an eigenvalue of operator
∑l

k=1 bk(0)Vϕα,αk with eigenfunction tλ in C

(see (31)), so µI −
∑l

k=1 bk(0)Vϕα,αk 6∈ Φ0(Cm). For µ0 =
∑l

k=1 bk(0)Γ(αk+λ0+1)
Γ(α+λ0+1)

,

Reλ0 = 0, relation µ0I −
∑l

k=1 bk(0)Vϕα,αk ∈ Φ0(C) cannot hold since otherwise

it would also be true for a λ with Reλ > 0 that is close to λ0 (see Corollary 2.9),

but this is not the case. Thus (36), and as a consequence (35) and (25) hold for

m = 0.

4.5. Part e). In this part we prove (36) for m ≥ 1. Let Pm−1 be the space of all

polynomials with degree equal to or less than m−1. It holds Cm = Cm
0 ⊕Pm−1,

where Cm
0 is defined in (4). Our aim is to use Proposition 2.10: we show

that Cm
0 and Pm−1 fulfill the presumptions about X1 and X0 respectively and

µI −
∑l

k=1 bk(0)Vϕα,αk 6∈ Φ0(Cm
0 ) for µ =

∑l
k=1 bk(0)Γ(αk+λ+1)

Γ(α+λ+1)
with Reλ > m.

In such case, by Proposition 2.10 µI −
∑l

k=1 bk(0)Vϕα,αk belongs to Φκ(C
m),

κ > 0 for µ =
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

with Reλ > m.

We start our discussion by noting that according to (9), for any µ ∈ C and

u∈Cm
0 it holds that

((
µI−

∑l
k=1 bk(0)Vϕα,αk

)
u
)(n)

=
(
µI−

∑l
k=1 bk(0)V

ϕ
[n]
α,αk

)
u(n)

for n = 1, 2, . . . ,m. Thus
(
µI −

∑l
k=1 bk(0)Vϕα,αk

)
Cm

0 ⊂ Cm
0 . In accordance

with (31), the inclusion
(
µI −

∑l
k=1 bk(0)Vϕα,αk

)
Pm−1 ⊂ Pm−1 also holds. Fur-
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thermore, we claim that for Reλ > m we have(
µI −

l∑
k=1

bk(0)Vϕα,αk

)
Cm

0 = Cm
0 for every µ =

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
,

i.e. that equation (µI−
∑l

k=1 bk(0)Vϕα,αk )u = v has for every v ∈ Cm
0 and every

µ =
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

with Reλ > m a solution u ∈ Cm
0 . Since operator

Dm : Cm
0 → C is an isomorphism, the last statement is equivalent to the

following: equation (µI −
∑l

k=1 bk(0)Vϕmα,αk )u = v has for every v ∈ C and

every µ =
∑l

k=1 bk(0)Γ(αk+λ′+1)
Γ(α+λ′+1)

with Reλ′ > 0 (λ′ = λ −m) a solution u ∈ C
(u = u(m), v = v(m)). Now, according to Propositions 2.3 and 2.4, we get

(µI −
∑l

k=1 bk(0)V
ϕ
[m]
α,αk

)C = C and
(
µI −

∑l
k=1 bk(0)Vϕα,αk

)
Cm

0 = Cm
0 . Also,

due to (31), for uλ(t) = tλ which belongs for Reλ > m (also for λ = m) to Cm
0 ,

we have(
µI −

l∑
k=1

bk(0)Vϕα,αk

)
uλ = 0 if and only if µ =

l∑
k=1

bk(0)
Γ(αk + λ+ 1)

Γ(α + λ+ 1)
,

thus µI −
∑l

k=1 bk(0)Vϕα,αk ∈ Φκ(C
m
0 ) with κ > 0 for Reµ > m. For us it is

important that µI −
∑l

k=1 bk(0)Vϕα,αk 6∈ Φ0(Cm
0 ) for Reλ > m.

In conclusion, by Proposition 2.10 we get that µI−
∑l

k=1 bk(0)Vϕα,αk belongs

to Φκ(C
m), κ > 0 for µ =

∑l
k=1 bk(0)Γ(αk+λ+1)

Γ(α+λ+1)
, with Reλ > m. Therefore, for

Reλ > m, relation (36) is established. If Reλ = m, then a similar approximation

argument as at the end of d) can be applied.

4.6. Part f). To conclude the proof of Lemma 3.2, it remains to show that
for m ≥ 1,{

l∑
k=1

bk(0)
Γ(αk + q + 1)

Γ(α + q + 1)
| q = 0, 1, . . . ,m− 1

}
⊂ σm

(
l∑

k=1

bkVϕα,αk

)
.

Denote µq =
∑l

k=1 bk(0)Γ(αk+q+1)
Γ(α+q+1)

for q = 0, 1, . . . ,m− 1. We may assume, that

µq 6∈ {
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

| Reλ ≥ m}, since otherwise it follows from previous

discussions that µq ∈ σm
(∑l

k=1 bkVϕα,αk

)
.

Let us fix a sufficiently small δ > 0 such that: 1) the ball |µ − µq| ≤ δ
does not contain µj different from µq, j = 0, 1, . . . ,m − 1 and 2) the intersec-

tion of {
∑l

k=1 bk(0)Γ(αk+λ+1)
Γ(α+λ+1)

| Reλ ≥ m} and the ball |µ − µq| ≤ δ is empty.
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Note that, under our assumptions, the sphere |µ − µq| = δ is contained in

ρm

(∑l
k=1 bk(0)Vϕα,αk

)
and as a consequence of (24) also in ρm

(∑l
k=1 bkVϕα,αk

)
.

Let V θ
ψ be an operator depending on parameter θ ∈ [0, 1] defined by

V θ
ψ := θ

l∑
k=1

bkVϕα,αk + (1− θ)
l∑

k=1

bk(0)Vϕα,αk ∈ L(Cm), 0 ≤ θ ≤ 1.

Obviously, V 0
ψ =

∑l
k=1 bk(0)Vϕα,αk and V 1

ψ =
∑l

k=1 bkVϕα,αk . The inclusion (24)

for operator V θ
ψ implies that the sphere |µ−µq| = δ is in ρm(V θ

ψ ) for 0 ≤ θ ≤ 1.

Furthermore, the Riesz projector defined for V θ
ψ by (see [7])

P θ
q :=

1

2πi

∫
|µ−µq |=δ

(µI − V θ
ψ )−1dµ ∈ L(Cm), 0 ≤ θ ≤ 1,

projects the space Cm onto an invariant subspace of operator V θ
ψ corresponding

to its spectrum part in the ball |µ − µq| ≤ δ. Since, by assumptions 1) and 2)
above, the only possible point from this spectrum part in ball |µ−µq| ≤ δ is µq,
we have that µq ∈ σm(V θ

ψ ) if and only if P θ
q 6= 0.

The operator V θ
ψ is continuously dependent on parameter θ on the sphere

|µ− µq| = δ, therefore there exists a constant cδ, such that

‖(µI − V θ
ψ )−1‖L(Cm) ≤ cδ, for |µ− µq| = δ, 0 ≤ θ ≤ 1.

Since A−1 −B−1 = A−1(B − A)B−1, there exists a constant c′δ such that

‖P θ
q − P θ′

q ‖L(Cm) ≤ c2
δδ‖V θ

ψ − V θ′

ψ ‖L(Cm) ≤ c′δ|θ − θ′|

for 0 ≤ θ ≤ θ′ ≤ 1.
Consider the gap [11,13] between subspaces Xθ = P θ

qX and Xθ′ = P θ′
q X of

X = Cm:

gap(Xθ, Xθ′) := max

{
sup

u∈Xθ,‖u‖X=1

inf
v∈Xθ′

‖u− v‖X , sup
u∈Xθ′ ,‖u‖X=1

inf
v∈Xθ
‖u− v‖X

}

≤ max

{
sup

u∈X,‖u‖X=1

‖P θ
q u− P θ′

q u‖X , sup
u∈X,‖u‖X=1

‖P θ′

q u− P θ
q u‖X

}
≤‖P θ

q − P θ′

q ‖L(X)

≤ c′δ|θ − θ′| → 0 as |θ − θ′| → 0, 0 ≤ θ ≤ θ′ ≤ 1.

It is known [11] that for a Banach space X and its closed subspaces X1, X2

the inequality gap(X1, X2) < 1 implies that dimX1 = dimX2. Thus dimXθ =
dimXθ′ for θ, θ′ ∈ [0, 1] such that c′δ|θ − θ′| < 1, hence also for all θ, θ′ ∈ [0, 1].
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As µq is an eigenvalue of operator
∑l

k=1 bk(0)Vϕα,αk , then dim(P θ
q C

m) ≥ 1.

Consequently, P θ
q 6= 0 for every θ ∈ [0, 1], in particular for θ = 1, i.e. µq ∈

σm

(∑l
k=1 bkVϕα,αk

)
.

With parts d), e) and f) we have shown that (25) holds for m ≥ 1. This
concludes the proof of Lemma 3.2.

Acknowledgement. The research was supported by Estonian Science Foun-
dation Grant 9104 and institutional research funding IUT20-57 of the Estonian
Ministry of Education and Research.

We wish to thank the referees for constructive comments and suggestions.

References

[1] Agarwal, R. P., Benchohra, M. and Hamani, S., A survey on existence results
for boundary value problems of nonlinear fractional differential equations and
inclusions. Acta Appl. Math. 109 (2010), 973 – 1033.
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