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Abstract. The paper deals with the Neumann problem for the Poisson equation
Au = f in the domain D = K x R, where K is a cone in R™. The first part of
the paper is concerned with the singularities of the Green function near the edge of
the domain. Using the decomposition of the Green function given in the first part,
the author obtains the asymptotics of the solution of the boundary value problem for
a right-hand side f belonging to a weighted L, Sobolev space. Precise formulas for
all coeflicients in the asymptotics are given.
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1. Introduction

The paper is concerned with the Neumann problem for the Poisson equation

0
Au=f inD, 0 on O0D\M (1)
on
in the domain
D={zx=(2,2"): 2’ e K, 2" e R"""}.
Here, K = {2/ € R™ : % € 2} is a cone in R™, 2 < m < n, and Q denotes
a subdomain of the unit sphere with smooth (of class C*°) boundary 02. The
edge {z = (2/,2") e R" : 2’ =0, 2” € R" ™} of D is denoted by M. We define

the space Hp as the closure of the set C5°(D) with respect to the norm

ot = ([ \vu@)mx)é.
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Suppose that the mapping Hp > v — [, f(z)v(z)dz defines a linear and
continuous functional on Hp. Then there exists a uniquely determined solution
u € Hp of the problem

—/Vu-Vvd:E:/f(m)v(x)da: for all v € Hp.
D D

This function is called the variational solution of the problem (1). The goal
of this paper is to describe the behavior of this solution near the edge M if
fe VPIVEZ(D), where [ > 2 and 0 < 8+ % < I. Here, V! ;(D) is defined as the
weighted Sobolev space (closure of the set C3°(D\M)) with the norm

HuHsz,B(D = /D Z |x/|p(5—l+|a\) ‘8§u(x)‘p dr

| <l

The asymptotics of solutions of elliptic boundary value problems near edges was
studied in many papers, see e.g. [2,3,7,10,12]. Mostly, the authors considered
only the Dirichlet problem (for second and higher order elliptic equations) or
assumed that the corresponding model problem arising after freezing of the
coefficients is uniquely solvable in Vli 5(D) for some 3. This assumption is very
restrictive and excludes e.g. the Neumann problem. Boundary value problems
including the Neumann problem were handled e.g. in [1,13]. But up to now,
formulas for the coefficients in the asymptotics are published only under the
above mentioned existence and uniqueness condition in the space Vpl’ 5(D). For
example, one can find formulas for the coefficient of the leading term of the
asymptotics in [7,10,12]. In [14], the author obtained precise formulas for
the coefficients of all singular terms in the asymptotics of the solutions of the
Dirichlet problem for the Poisson equation in the domain D. The goal of the
present paper is to obtain an analogous result for the Neumann problem.

The paper consists of two parts. In the first part (Section 2), we study
the asymptotics of the Green function G(z,y) for the problem (1) near the
edge M. In the case of a cone (m = n), the asymptotics of Green’s function is
even known for general elliptic boundary value problems (cf. [9] and [12, Sec-
tion 3.7]). The asymptotics of the Green function of the Dirichlet problem for
the Poisson equation near the edge M of the domain D is described in [14].
In the last paper, the author employed well-known point-wise estimates of the
Green function together with the asymptotics of solutions of the Dirichlet prob-
lem in the cone K. For the Neumann problem, such point-wise estimates were
obtained by Solonnikov [15] (see also the monograph [11]). As in the case of
the Dirichlet problem, the bounds for the Green function and its derivatives
depend on the eigenvalues of the Beltrami operator —§ on Q. Let {A;}32,
be the nondecreasing sequence of eigenvalues of —d on 2 with the Neumann
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boundary condition on 092 counted with their multiplicities, and let {¢, 20
be an orthonormal (in Ly(£2)) sequence of eigenfunctions corresponding to the
eigenvalues A;. In particular, ¢y = (mes Q)_%. Furthermore, we define

/\ 2—m \/

This means that )\;t are the solutions of the quadratic equation A\(m—2+X\) = A,

<A <A =2—-m<0=)] <Al <o

For an arbitrary point © = (z1,...,x,) € R™, let ' = (x1,...,2,) and 2" =
(a1 - -+, Tpn). Analogously, we set o = (ay,...,qy) and o = (amit,-- -, 0n)
for an arbitrary multi-index o = (ay,...,q,). Then the following estimate

holds for all multi-indices o and 7 (cf. [15] and [11, Theorems 6.6.2 and 6.6.5)):

2’|
|2 + |2 —y]

( |y/| )min(O,)\T—'y’—e)
X _— .
Y[+ |z =yl

Here, € is an arbitrarily small positive number. For the description of the
singularities of G(z,y) near the edge M, we need the following functions

+
F(A +5°) YN 5(w,)
m tyn—2
( ?) (’y/’2 4 ‘x// _ y//’2))\]+ 5

) min(0,\ —|a/|—¢)
|0000G (2, y)| < capy |z — 1ol ( )

(2)

(o, y) = forj>1 (3)

and ,
CO(J}// y) _ F(T) 1 ‘
VT T T mes R -y BT

(4)

Furthermore, let o be an arbitrary real number such that

0>0, o#\ forallj (5)
and let
U—)\;r ‘
mjp:[ 5 } for j=1,2,...,

where [s] denotes the integral part of s. It is proved in Section 2 (see Theo-
rems 2.4 and 2.5) that G(x,y) admits the decomposition

ST +2) (—Ap)bei(a”y)
=22 4kk|FA++k+ ) |5 6(ws) + Po + R,

0<>\+ <o k=0
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where -

_ . kCO (IJH, )
Pg(x,y)zz ( Ax) ( y) Tk (6)

o 4k k! (k -1+ %)(k)

is a quasipolynomial (polynomial in &’ with coefficients depending on z” and y),

S(k) = (s Sﬁ)l for k < s+ 1, and the remainder R, (x,y) satisfies the estimate

min(0,\; —€
8aa'yR < 2—n—|a|—|v] |'IJ| | /| O —hl=e) 7
| (z,y)| < carylz—y| — | (7)

|z —y] =y

for 2|2'| < | — y|. The decomposition of the Green function of the Neu-
mann problem is very similar to the case of the Dirichlet problem (see [14]).
Of course, we have other eigenvalues A, and eigenfunctions ¢; when consid-
ering the Neumann problem, but the principal new is the appearance of the
quasipolynomial P, in the asymptotics. Although we have the same formulas
for the coefficients ¢; in the cases m = 2 and m > 2, the proof of the formula (4)
in the case m = 2 differs from the proof for m > 2. The reason is that we have
different formulas for the constant ¢y in the asymptotics of solutions of the Neu-
mann problem in the cone K for the cases m = 2 and m > 2 (cf. formulas (20)
and (21) in Lemma 2.2). For the Dirichlet problem, it was shortly discussed in
[14] how the asymptotic of G(z,y) can be obtained by integration with respect
to the time t from the asymptotics of the Green function of the heat equation
in a cone (cf. [4,5]). Since the condition II of [4, Section 1.2] is not satisfied for
the Neumann problem if m = 2, this method is applicable for the problem (1)
only if m # 2. In the present paper, we use only the estimate (2) for the Green
function and the asymptotics of solutions of elliptic problems in a cone K.

In the second part of the paper (Section 3), we apply the result of Section 2
in order to describe the asymptotics of the solution u € Hp of the problem (1)
with the right-hand side f € HpN VPl,EQ(D). The main result (see Theorem 3.8)
is the following. If the number 0 =1 — (§ — - satisfies the inequalities (5), then
the solution v admits the decomposition

u(r) = X(r) + Q(z) + v(x), (8)
where
S 2 ERN (@)
Z Z4kk| )\+—|—]€—1—|— ) o qu(wa:)a (9)
0<>\+<a k=0

(3]

(=Aun)*(Eho)(x)
00 - L o

and the remainder v is a V;f 5(D)-function. The functions h; are elements of the
+ bl

o—\]!
Besov space B, 7 (R") and & is the extension operator (40). In the case
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m = 2 and p = 2, such a decomposition of the solution into a “quasipolyno-
mial” @, a sum X of singular functions and a remainder v € Vj 4(D) was ob-
tained by Costabel and Dauge in [1, Proposition 2.6] for a more general bound-
ary value problem. The present paper contains not only a precise description of
the singular terms but also precise formulas for the coefficients in (9) and (10).
It is shown in Section 3 that

(") = /D &)@, ) f(y) dy (11)

for j =0,1,..., where ¢; is defined by (3) and (4).
Note that the “quasipolynomial” () is a function of the space W;/B(D) if
B> ==, where W 5(D) is the closure of Cg°(D) with respect to the norm

D=

lullws o = /Z|x’|pﬁyagu(x)\pdx

D |al<i

Thus, it makes sense to consider this term as a part of the regular remainder
@ +v in the decomposition (8). The singular part in this decomposition consists
of the term X.

2. The Green function of the Neumann problem for the
Poisson equation

Let G(x,y) be the Green function of the problem (1). This means that

A, G(z,y) =6(x —y) forzeD, yeD, (12)
0G(z,y)
aT:O fOl'IealD\M, yED (13)

If  is an arbitrary function with bounded derivatives of order < [ in D, ( =1
in a neighborhood of the point ¥, then the function z — (1 — C(a:)) G(z,y)
belongs to the space Hop.

2.1. Equivalent norms in Hp. It follows from Hardy’s inequality that

[ @) ds < el
D
for all u € Cg°(D) if m > 3. For the case m > 3, this means in particular that

Hp = V44(D) and that the Hp- and V;o(D)-norms are equivalent. In the case
m = 2, the norm

lull = (/D (Il Ju(@)* + [Vu(z)[?) dx)%
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is equivalent to the Hp-norm. Obviously, the weight |x|~> can be replaced here
by |z — z¢| 72, where z( is an arbitrary point on the edge M.

2.2. Some properties of the Green function. First note that G(x,y) is
positively homogeneous of degree 2 — n, i.e.

G(ax,ay) = a® " G(z,y) forallz,y €D, a > 0.
Obviously, it follows from (12), (13) that
NG 2" ="y, 0)=0(2" —y)d(a" —y") for z,y € D,

aG(x/’ xl/ _ y//’ y/’ O)

o =0 for x € OD\M, y € D.

This means that G(z,y) depends only on ',y and z” — 3”. And what is
more, the Green function depends only on 2/, y" and |2” — 3|, since the Laplace
operator is invariant with respect to rotation and the outer normal vector n,
on 0D\ M depends only on z’. Thus, the Green function has the representation

G(l‘/,m//,yl,y//) — g(x/’yl’ ’xl/ _ y//‘).

If § < 1 and one of the inequalities |2/| < |z —y| or |2/|* < 82(|y/|* + |2 — " |*)
is satisfied, then

ale =y <P +" =y <cle—yf (14)

with certain positive constants c1, cy depending on §. Consequently, it follows
from (2) that

/min(0,AF —|o’|—¢) [,/ |min(0,AF —|v'|—¢
x’ ( 1 | ‘ )‘y‘ (>1 "7‘ )

C,
Oy < oLy
|a$ 8yG(fL',y)| — <|y/|2 + |.T” . y//|2)(n—2+|a|+|'\/|+min(0,)\1~'—\a’|—a)+%min(O,AT—h’\—e))

for |2'| < 0]z —y|, § < 1. An analogous estimate holds for |y| < |z — y|, while
200G, )| < sl — g1 for min(la'], ) = 8z — yl.

In the following, we use the notation
T =L
2’| /|

Lemma 2.1. Let G(z,y) be the Green function of the problem (1). Then

’

r=2l, p=], w.=

Lwawwww%m%zamMM—wwmm (15)

with a certain function G; on Ry x Ry x Ry, where Ry is the interval (0,00).
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Proof. Suppose that f € H}, and u € Hp is a solution of the problem
/ Vu-Vodr = (f,v) forallve Hp. (16)
D
Let H; be the completion of C§°(Ry x R"™™) with respect to the norm

lglle, = (/ / Y(IVergl? + 10,917 + Ay 2 gl?) dr da:”)

Note that the norm in H, is equivalent to

HgHz(/ /Tm_l(|qug]2+\&~g|2+(7“2—|—|x”\2)1|g|2> drdx”)
n=m J0

We put v(z) = g(r,2") ¢;j(w;), where g € H;. Then [, |Vo|*dz = |glf3,
Inserting v(z) = g(r,2") ¢;(w,) into (16), we obtain

1
2

NI

/ (Vm//u . Vx//g + (aru) arg + A] 7"72u g) ¢j<wx) dr = <f7 U)-
D

We define Uj(r,z") = [, u(z) ¢;(w,) dw, and
(Fj,g) = (f,v) forall g € H;, where v(z) = g(r,a") ¢;(w,).

Obviously, the mapping g — (F}, g) defines a linear and continuous functional
on H;, and Uj; is the uniquely determined solution of the problem

/ / ’[“m_l (vxnt . Vx//g + (arU]) &9 + Aj T_QU]' g> da" dr = <Fj’g>
O n—m

for all g € H;. Let G;(r,p,|z" — y"|) be the Green function of this problem.

Then
/ / Gyl p |2 =y Fi(p,y") dy” dp
a /DG (r,p, 12" = y"]) &j(wy) f(y) dy.

On the other hand, it follows from the definition of U; that

Uitraa") = [ ) o) dos = [ [ Glarmios(en) £ desdy.

Comparing the last two equalities, we obtain (15). O]
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2.3. The first terms in the asymptotics of Green’s matrix. We assume
that the integer number [ > 2 and the real numbers p € (1,00) and S satisfy
the inequalities

0<o@i-p-" <2 o#A foralj (17)
b

Using well-known results concerning the asymptotics of solutions of elliptic
boundary value problems in a cone, we can prove the following lemma.

Lemma 2.2. Let l,p, 3 satisfy the condition (17). Then

G(z,y) = co(a”,y) + Z cj(2",y) ™ ¢j(wy) + Ro(2', 2" y),  (18)

0<Af <o
where
cj(z",y) = _%Tlm—Z /KTA; bj(wy) ApG(x,y)dx’  forj >1,  (19)
co(2",y) = = 21) — /KTQm Ay G(x,y)dd if m > 2, (20)
co(2",y) = —— /KlogrAx/G(x,y) dx’ if m = 2, (21)

and Ry (-, 2",y) € VI 4(K) for 2" #y".
Proof. Suppose that x” # 3”. Then

: 0G(z,y)
AyG(z,y) = —ApG(z,y) forz' € K, el I 0
It follows from (2) that A,G(-,2",y) € Vlf’gz(K). If m > 2, then G(-,2",y) €
V34 (K). Consequently, we obtain the decomposition (18) with the coefficients
(19) and (20) by means of [8, Theorems 3.2 and 3.4] (in the case p = 2 see also
(6, Theorems 6.1.5 and 6.1.6]).

We consider the case m = 2. Let (; = (1(r) be a smooth cut-off function
equal to 1 for r < % and vanishing for » > 1. Furthermore, let (; = 1—(;. Then
GG (2" y) € Vi (K) and (;G(-,2",y) € Vi _(K) with arbitrary positive e.
Furthermore, it follows from the equality

Aw’(ng(a l’”, y)) - _CkAﬂc”G('a xllv y) +2vﬂc’gk ’ VZ”G('7 J’le y) +G<7 lﬂ? y) AJC’Ck

that Ay (GG(-,2",y)) € ‘/;EQ(K) for k = 1 and £ = 2. Consequently by
8, Theorem 3.2],

GG(w,y)=co(a"y)+do(a” y) logr+ Y V(@ y)ry ¢(we)+ vi(z,y) (22)

0<>\j+<a
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and
+

GG(ry) = Y ") dy(ws) + vala,y), (23)

0</\j<a

where vy (-, 2",y) € V3 4(K) for k = 1 and k = 2. Applying the coefficients
formula in [8, Theorem 3.4], we get

1 _
ay) =~ [ ™ 6(@) ArGGla,y) e for k=12, j> 1,
' K
" o ) /
oa"9) = gy | (11081 A1 Glay)
1
" —_ A , /‘
la ) =~y [ AuiGlay) do

Since Ay(1+logr) = 0 and |8% G(z,y)| < clo/P1 for |2/| > 1, 2" # v,
where the constant ¢ depends only on z” and y, integration by parts yields

/ (14 1ogr) AwGGl(x, y) do' = / Ap GG, y) da’ = 0.
K K

Consequently,
_ ! /(1+1 ) ALG(z,y)d', o — —— /AG( ) da’
CO_HIGSQ X« ogr G\ T, YY) ax, 0 — mes O X« o G(T, YY) ax .

Adding the equalities (22) and (23), we obtain

G(z,y) = co(a”,y) + do(2",r) logr + Z ci(a",y) ™ ¢j(we) 4+ v1 + va.
0<Af <o
(2)

Here, the coefficients ¢; = cg.l) + ¢;” are given by (19) for j > 1. Since

j
VoG(- 2" y) € (LQ(K>)2, we conclude that the coefficient

1
mes

do(z",y) = — / Ay G(z,y)dd
K

in (22) is zero. This means in particular that the coefficient co(z”,y) is given
by the formula (21). The proof is complete. ]

Next, we derive explicit formulas for the coefficients ¢; in (18).

Lemma 2.3. The coefficients c; in (18) are given by the formulas (3) and (4).
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Proof. 1) We show that the functions ¢; have the form

//|

o) =+ () o) (24)

for j =0,1,.... For j > 1, the proof is the same as for the Dirichlet problem
(see [14, Lemma 2.3]). We consider the case j = 0. By Lemma 2.2, we have

" y) / f(r) ApG(z,y) da’ —/ f(r y)—AING(J:,y)) da’

where f(r) = (mesQ)~" logr if m = 2 and f(r) = ((2 — m) mes Q)_l r2=m if
m > 2. Using the equality [, G(z,y) dw, = Go(r, p, =" —y"|) (see Lemma 2.1),
we obtain the representation co(z”,y) = g(p, |” — y”|). Furthermore, it follows
from the obvious equality co(z”,y) = G(0,2",y) and from the homogeneity of
the function G(x,y) that the function g is positively homogeneous of degree
2 — n. Consequently,

"_ //|

N
co(z”,y) = g(p, |2" = y")) = p? 9(1, T)'

This proves (24) for j = 0.
2) Next, we show that

|Cj($”,y)’ S Clilfll o y//’27n7)\;r fOl" p= ’y/’ < ‘iL'” - y//" (25)

For j = 0, this follows directly from the equality co(z”,y) = G(0,2",y) and
from the estimate (2). Suppose that j > 1. If |¢/| < |2” — ¢"|, then
2

% 4 |ZC” _y//|2 < 2|:c—y|2 < 47”2 —i—6]x" _y//|2.

We define Ky = {2/ € K : 2r < |2" —¢"|} and Ky = K\K;. By (19),
ci(2" y) = —/ Vi(x') Apr Gz, y) da’ +/ Vi(2') ApG(z,y) dx
K1 K2

where ] )
- m
Vila) = =g b, 05 =X+ g

By (2), we have
|Aqu(x,y)| <cl" —y"|™" fora' € Ky, p <z’ —
and

//’

Ay G(z,y)| <cr™ for 2’ € Ky, p< |z’ —y
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Here we used the fact that r? < 2|z — y|*> < 287% if p < |2 —y"| < 2r. Thus,

el < e (o =y [ e [ ),
K1 K2

Since 0 < Aj +m =2 — A\] <n, we get (25).
3) Analogously to the Dirichlet problem (cf. [14, Lemma 2.3]), we obtain

/ cj(2" y)da" =V;(y') for j > 1. (26)

In the same way, the equality

2—m

i " IO
= — f 2 2
/nm cola’sy) d (m — 2) mes Q orm = (27)

holds. Suppose that m =2 and i =1 or i = 2. Using (21), we get

1
0,.cola”,y) dz" = logr 9y, ApG (2, y)dr’ dz”
/Rn2 wco(2",y) dz mesQ/an/K 8T % (@, y)dz de

1
= meSQ/Dlograi@(x—y) — A G(z,y)) do
1 1
al— /Dlogr&ci Sz —y)de = - Qayl log p.

Consequently,

/n_m Dy.co(z”,y) da" = melsQ % for m =2 and i € {1,2}. (28)

4) Using (19)—(21) and the equality A,G(z,y) = 0 for 2" # y”, we obtain
Ayej(2”,y) =0 for 2" #y".

Hence, the function h; in (24) is a solution of the ordinary differential equation

L+ ) () + ((a+ 26+ 2)t + ) B () + 2(a + 1)bhy(t) = 0,

where a =n —m — 1 and b = )\j+ — 1+ 4. This equation has the solution

hi(t) = (1 + %)~ C+D/ “(1+ %) blds)

with arbitrary constants C; and D;. Thus,

AT 127 =y
p- QZS(W ) ? —a -
cj(z",y) = G |x”]— ?yJ"|2)b (Cj + Dj/1 57" (8% + 1)b 1 ds).
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By (25), the constant D; must be zero, and (26) implies

[(0; +25™)

C_] = - n—m
272 I'(o;+1)

for j > 1.

Furthermore, the equalities (27) and (28) yield

)

CO = - 2 1
2rz (%) (mes Q)2

both for m > 2 and m = 2. This proves (3) and (4). O
Next, we prove point estimates for the remainder R,(x,y) in (18)

Theorem 2.4. Let o be an arbitrary real number satisfying the inequalities (17).
Then G(z,y) admits the decomposition

Gla,y) = cola",y)+ > (@, y)r ¢j(ws) + Rol(z,y),

0<)\;L<o'

where the coefficients c; are given by the formulas (3), (4) and R,(x,y) satisfies
the estimate (7) for 2|2'|? < |y/|> + |2" — " |*.

Proof. Analogously to (18), we obtain

TGl y) =y + 30 G g gsw) + B (),

0<)\;'_<¢7

where RS V(2" y) € V! 5(K). For the coefficients, we have the formula

1

@"y) g n _
o ) AT +m—2

1 61) BB G " )
K
if 7 > 1. This means in particular that c§aﬂ’7)(x”,y) = a;i’agcj(x", y) for j > 1,
where ¢; is given by (3). Analogously,
c(()a””)(x”, y) = 8:?//,/8;00(:10”,@/) = ;ﬂ'@;G(O,x”,y)-
Consequently, ag,i/a;Ra(-,x",y) = RS,“N’V)(-,Q:”,y) € V;fﬂ(K). Let ¢ = 4 (r) be

a smooth cut-off function which is equal to 1 for r» < % and to zero for r > %.
Furthermore, let

) =0 (). (29

’y/’2 + |x// _ y//’2
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Then the normal derivative of (9%, 9] R,)(-,2",y) is equal to zero on 9K \{0}
and

Az’<§(xv y) ?’l’/a;Ra(xv y)) = f(xv y),

where

Fl@,y) = CApO% O Ry + 2V C - V0% 0] Ry + 0% 0) Ry AyrC
- —C Azl/ax// a;G + QV:E/C ‘ Vx/ax// a;/Ro' _|— ax// GJRU AI/C

By [8, Theorem 3.1], the function (95“,///8; R, satisfies the estimate
€80 R )t iy < 1”2

with a constant ¢ independent of z” and y. We estimate the VZ;Q—norm of f.
The estimate (2) implies

min(0AT —|a/|—¢ min(0,A] —|v'|—¢)
/ " & |’CC/| (0 Al | ‘ ) _|yl| ( 1
o} (e Y - -
105 (€ Aar 050 0)G) | < ( d ) d ’

where d = /|y/|> + |2” — y"|?. Since 0 =1 — 8 — <2, this implies

) min(O,)\{Lf|'y’|f€)

|02 (¢ Aar 0 0G0 ) [y < eI (%

The same estimate holds for the Vl 2—norms of the terms V(¢ - V08 /,8 R,
and 02, agR Ay ¢. Thus,

, min(O,)\f—|’y’|—a)
o " 2—n—|a'|—|y|—o Y|
60205 o )y 1 < e (1) .

If |o/| <1 —"2, then
P

1117202 (¢050 8] Ro) (2", y) | ey < 116050 0} Ro (o, )yt xcy

with a constant ¢ independent of ” and y (see e.g. [11, Lemma 1.2.3]). This
leads to the estimate

o—|o/| 71\ min(0Af —|y'|—¢)
o ayY < d2 n—|al—|v| |l’ | |y |
0207 Ry (z,y)| < ¢ - >

for 2|2'|* < |¢/'|* + |z” — y”|?. Since d can be estimated by means of (14), we
get (7). The theorem is proved. O
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2.4. Terms of higher order in the asymptotics of Green’s function.
Now let o be an arbitrary positive number such that o # )\j for all j. We
define

mjg

= > Z Ak k;l”a + k) 7y) 6 (wy) (30)

0<)\+ <o k=0

(Gy(x,y) = 0if 0 < AT), where ¢;(2”,y) is defined by (3), o; = )\;-Ir + mT_2, and

s =5(s—=1)--(s—k+1) fork=1,2,..., 50 =1
Furthermore, let P, be the quasipolynomial (6).

Theorem 2.5. Let o satisfy the condition (5). Then G(x,y) admits the decom-
position

G(z,y) = Gol2,y) + Po(2,y) + Ro(2,y), (31)
where R, satisfies the estimate (7) for 2|2'[* < |y/|* + |2" — y"|%.

Proof. Obviously, G, (z,y) = G,ic(z,y) for sufficiently small positive €. Con-

sequently, we may assume without loss of generality that )\j is not integer
for j =0,1,..., /\;r <o.

Let [ be an arbitrary integer, [ > 2, p an arbitrary real number, p € (1, 00),
and f =1 — o0 — 2. We prove by induction in mg = [Z] that G(z,y) admits the
decomposition (31), where R, (z,y) satisfies (7) and

0] Ro (-, y) € VI 4(K) forall a,y; 2" e R"™, yeD, 2" £y".

For mg = 0, this was shown in the proof of Theorem 2.4. Suppose now that
=N >1,ie 2N < 0 < 2N + 2, and the assertion is proved for o < 2N.
We set 0’ = 0 — 2. Then m;, = m;, — 1 and, by the induction hypothesis, we

have
G(ZL’,y) :PU/(x,y)+ng(x,y)+RU/(w,y), (32)

where R, satisfies the estimate (7) with ¢’ instead of o and
g”angf’('a y) eV, pra(K)  forall a,; " €eRV™ yeD, z" +y.

Since G(z,vy), Py (z,y) and G,/ (x,y) are positively homogenous of degree 2 —n
and depend only on 2, y/|x” — |, the same is true for the remainder R,. The
equality A, G(z,y) = 0 for 2" # y” implies

Ax/RU/(;C7 y) = —Am (POI<LU, y) =+ GU/ (SC, y)) — Ax//RU/ (9[:, y)
for 2" # 1. Using formulas A2k =2k (2k+m—2)r*=2 and A, ¢, (w,) =
Ak(oj+ k) Af +2k- 2¢i(w,), we get
—A, (Po’('ra y) + G0’<x7 y)) = AxIEI(LE’ y)?
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where
o RGBT gy er)
ANNU(N =1+ 2) oo 4’””m]a (@5 +10) (m,.0)
Therefore,
ApRor(2,y) = ApX'(2,y) — A Ry (2,y) - for 2" # 4, (33)

Let 1 be a smooth function on Ry = (0,00), 1(r) =1 for r < 3, ¥(r) = 0 for
r > %. Furthermore, let the function y be defined as

2r

Then by (33), Ay (R(,/ — XZ’) = Ay (1 — X) Y — Ay Ry for 2 # 4. Here, by
the induction hypotheses and by the definition of >,

%0 (Ryr — XX ) (-, 2" y) € V;zl,,@+2(K)7 07 (Ax/(l—X)E') (2" y)e V;f’gz(K)

Ty Ty

for arbitrary 2" € R"2, y € D, 2" # 4", and for all multi-indices «, . Further-
more, 95, 0) Ay Ry (-, 2", ) € VPIWEQ(K ). Applying [8, Theorem 3.2], we obtain

;‘,/83 (Ryr(x,y) — XZ z,y)) Z d]a'y ;3/ r ol ¢J(wx) +Ua'y<x y), (34)

o <A;—<U

where v, (-, 2", y) € V! 3(K). The coefficients d; - are given by the formula
(cf. [8, Theorem 3.4])

Baola 1) = [ Vi) 08,080 (o) = xE'(o.9))
K

where Vj(z') = —51% ¢;(w,). Obviously, d;,, = = 0gu0)djpo. In the same
J
way as in the proof of Lemma 2.3, one can show that the functions d; = d; o0

have the same properties as the functions (19), i.e. A,d;(z",y) = 0 for 2" # y",
" 2—n— /\Jr |SL’” B y”| " " /
di(z",y) = p h; Y 9j(wy), 4@, y)dx" = Vi(y),

and |d;(z",y)| < cla” — """ A for || < |2” —4”|. Thus, analogously to
Lemma 2.3, the formula

n— it
F(Aj+72) |y|/\ ¢J(Wy)

d'('x”7 y) = - n—m
! 2 T TN, +2) (Jy|2 + a7 — /|25 7
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holds for o’ < A} < 0. Furthermore, it follows from (34) that

Ryi(z,y) = Z dj(z",y T]gbj(wm)—l—R(x v),

o </\;r<cr

where R, (z,y) = voo(z,y)—(1—x) ¥'(z,y) and 896,,8 Vool 2", y) = vay(-, 2", y)

€ V! 4(K). This together with (32) yields (31). The estimate (7) for R, holds
in the same way as in the proof of Theorem 2.4 (see also the proof of [14,
Theorem 2.2]). O

One can easily show by means of (2) and (14) that the estimate (7) for R,
is valid if one of the inequalities |2'| < §|lx — y| or |2'|? < 82(|y|* + |2" — y"|*)
with an arbitrary positive § < 1 is satisfied.

3. Asymptotics of solutions of the Neumann problem
Now, we consider the variational solution u € Hp of the problem (1) with the
right-hand side f € H}; N V;?(D). Here and in the sequel, we assume that
1 < p< oo, lisan integer, [ > 2, and that the number

a:l—ﬁ—@
p

satisfies the condition (5). Using the asymptotics of the Green function G(z,y),
we are able to describe the singularities of the solution

u(z) = /D Gl ) f(y) dy

of the problem (1). Let ¢ be a smooth function on R, = (0,00), (r) = 1

for r < %, ¥(r) = 0 for r > %, and let the function ¢ be defined by (29).

Furthermore, let P,, G, be the same functions (6) and (30) as in Section 2.
Then by Theorem 2.5, the function u admits the decomposition

u(z) = S(x) + q(z) + v(),

where
:/C(x,y)Gg(x,y)f( dy, q(x /Cx y)Fo(z,y) fy) dy
D
and

/Cw y) Ry (z,y) f(y )dy+/ (1 =<z, ) Glz,y) fly)dy.  (35)
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Here, R, satisfies the estimate (7) on the support of the function ¢. Note that
the functions S(z), ¢(x) and v(z) satisfy the Neumann boundary condition
9u =0 on 9D\ M since ((z,y) depends only on r = |2/[,2” and y. Obviously,

mj,.o

Z Z 48 EL (N + k;(:_v)1 + Ajﬂkﬁby‘(%), (36)

O<)\+<a k=0 )(k)

and

= o B o

where
:i/C@wM—Awﬁqu%wf@ww.ﬂwmkzaLuu
D

3.1. Estimation of the remainder v. We will show that v € Vplﬁ(D) if

e ‘/;52(1)). Let Ly, 5(D) = V,)5(D). The proof of the following lemma can be
found in [14].

Lemma 3.1. Let v be defined as

/K:By y) dy,

where f € Ly atp—in(D), K(z,y) =0 for |z —y| < d|2'| (6 is a given positive
number) and
Ia |, B
K (z,)| < CM.
|z =yl
If a > —% anda—’y<m—n—%, then

[0llL,0) < llfllzp s in)
with a constant ¢ independent of f.

Using this lemma and the estimates for G(z,y) and R,(x,y) in the last
section, one can easily prove the following estimates for v.

Lemma 3.2. Let I, p, 8 satisfy the inequalities
122, 1<p<oo, 1—B——=>0, I—B—"24\ foralj (38)
p p
Then the function v satisfies the estimate

Vllz, 50y < €l fllLy5-100) (39)

with a constant ¢ independent of f.
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Proof. By (35), we have v = vy + vy, where

D)= [ ) Relo) Sy, ala) = [ (1= Clan) Glann) f0)
D

On the support of ¢, the inequality 4|2'|* < 3(|y/|* + 2" — y|?) and, therefore,

|2'| < Clz — y| with a certain positive constant C' is satisfied. Since

|x/|ﬁfl+a+s

o e )l d

|x|ﬁl|vl ‘<c

(cf. (7)), where the integration is extended over the set of all y € D such that
Clz —y| < |2'| and € is a sufficiently small positive number, Lemma 3.1 implies

HleLp,ﬁ,l(D) <c HfHLp,ﬁfl+2(D).
We consider the function vy. The function 1—¢ is zero for |y/|>+|z" —y
2|z'|% Let D, be the set of all y € D such that |y’ |*+|z"—y"”|* < 2|2|2 Then by (2),

[v2(2)] < A(x) + B(x),

A(x):/ |f<y)|_ . B(@:/yep | If(y)l_ dy.

yED, x — y|ln—2 = xr — y|n—2
i [l Han 17—l

//|2 >

where

If y € D,, |2'| < 2|y|, then |z —y| < 2|2| < 4]y/| and |y/| < 2]2'| < 4]y’|. Hence
by means of Holder’s inequality, we get

p—1
AP ([ i) [ e dy
|lz—y|<2[2’| Nl

|='|<2]y'|

el [, le—yP )Py
[z’ ]<2y’|

Thus,

_ Jao_ dx
/W‘p(ﬁ DIAP de < C/ [y [PE-HED=2 | p(y) P </ ﬁ) dy
D D lz—y|<4]y’| |z —y|

Sc/va%”u@P@.
D

If yeD,, |2/|>2]y/|, then 2! < |z—y| <3|a’|. Using Holder’s inequality, we get

c 1) (m— dy
Br< — — 11(p=1)(m—¢) P
|z’ [p(n=2) /yeDz g \f(y)| Y W<k’ |y'|me

|=’[>2]y| |2 —y"|<2|’|

p—1

<clapeomiomine [ e | .
|='1>2]y’|
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This leads to the estimate

dz
p—1)(m—e)
/ ’x/’p dl‘ < C/ |y| ‘f (/ |x/‘p(l B+m—2—e)+n— m+s) dy,

where in the last integral the integration is extended over the set of all x such
that |2/| > 2|y/| and |2” — "] < |2'|v/2. Since p(B8 —1+2—m) < —m, it follows
that

Bl NE=Dm=2) | ()P da’
/Dmdxﬁc D|y‘ |f(y)| |52 |ZL' |p(l Brm—2—c)te dy

<e / PO | F ()P dy
D

if ¢ is sufficiently small. This means that the V), ,(D)-norm of v, can be
estimated by the right-hand side of (39). The proof is complete. [

Next, we estimate the VPZ’EQ(D)-norms of AS and Ag.

Lemma 3.3. Let f € Vl 2(D), where 1, p, B satisfy the condition (38). Then
the functions (36) and (37) satisfy the estimate

HASval;f(D) + HAQHVijﬂZ(D) <c Hf”vlf;f(D)
with a constant ¢ independent of f.

Proof. The proof of the estimate for the V' 72 .5 -norm of AS proceeds analogously
to [14, Lemma 3.4] since the representatlon of S is the same as in [14]. We
consider the term Ag. Obviously

/ K(z,y) f(y) dy,

K(x,y) =0 <C(x, y) Ay Py (x,y) + 2V, (- V. Py (x,y) + Py(z,9y) A$C>

where

Using the equality Ay r? = 4k(k — 1+ ) r?*=2 we get

(=As) (2" y) o

AP, = —
T U(x’y) 4kk'<k’— 1+%)(k) re,

" 2—n—|a’|
where k=[]. From (4) it follows that [0% co(z”,y)| <c(|y'|*+|="—y"|?) 2
This together with (14) implies

‘a;l (C(x, y) Ay Py (, y))| <clr— y‘*nﬂk 2k—lal
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The same estimate holds for the terms 0%(V,( - V. P,) and 0% (P, A,(). Thus
K (2,y)] < cla—y| 722l
with k& = [§]. Applying Lemma 3.1, we obtain the estimate
=2 92 Mg 0y < N f |y 1iam)
since 242k + 8 —1=2+2[g] —o — 2 > =" This proves the lemma. O
Now it is easy to prove the following theorem.

Theorem 3.4. Suppose that uw € Hp is a solution of the problem (1) with the
right-hand side f € H%ﬂ‘/l}z(l)), where 1, p, B satisfy the condition (38). Then

u(r) = 5(x) + q(x) + v(z),

where S, q are defined by (36) and (37), respectively, and v € V). 5(D). Further-
more,

[vllve p) < ¢ Hf”vlf;ﬁ’(p)
with a constant ¢ independent of f.
Proof. By Lemma 3.2, we have u = S 4 ¢ + v, where v € V)5 (D) and

[vllve, @ = cllfllyizm

Using [11, Theorem 6.1.3], Lemma 3.3 and the equality Av = f — AS — Ag, we
conclude that v € V! 4(D) and

lellve o) < € (18012 + lellyg, @) <€ Ifllviz2y =

3.2. On the coefficients in the asymptotics. Now we consider the coeffi-
cients H;(x) of the terms S(z) and ¢(x) in Theorem 3.4. Let

Hj(x) = /nycj ") fy)dy for j=0,1,....

Analogously to [14, Lemma 3.6, we obtain the following lemma.

Lemma 3.5. Suppose that the conditions of Theorem 3.4 on f are satisfied.
Then the functions

Upgi(a) = (Hip(a) — (—Dpn) H()) 5 2 5 (w,)

oot
belong to the space VPI,B(D) for )\j <oandk=0,1,...,] a

5=]. Furthermore,
||Lj,k||vl e [ fllvo
pﬁ

with a constant ¢ independent of f.

.8-1(D)
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Proof. By the definition of H,; and H;, we have

U]k /Kjk x y )dya
where
A/ I A/ i +
Kj,k(m’y) = <C(I y)Am”C](y y U —Y )_A]:Z”g(l‘7y) Cj(y y U =Y )) r)‘g +2k¢j(ww)‘

Using the estimates

2—n—2xFT o/

02¢(.y)| <er Pl o )| <c(yP+R"—yP) " F I,
, and the tfact that ci|x —vy| < |z'| < co|x —y| on the support of the function
14 d the f h y| < 2] < Y h f the f i
J AT )
V. C, we obtain rA—t+lel ‘agKM(x, y)! <c W Applying Lemma 3.1,

we obtain the estimate

7= Ukl ) < e fllay s ira0):

This proves the lemma. O]

Due to the last lemma, it makes sense to replace the coefficients Hj;(z) in
the definition of the functions (36) and (37) by (—A,»)*H;(x). Then we obtain
the functions

mj.o // kH(x) +
J )\.+2k
= > > TG (),
k + _ J
0ot <o b= 04 k! )\ +k 1 )

(3]

“r N (—Ap)*Ho(z) 5
a(w) = ;;4’%! k—1+2)w

By Lemma 3.5, the differences S— S and ¢— g are functions of the space V;f, 5(D).
Consequently, we can deduce the following result directly from Theorem 3.4.

Theorem 3.6. Suppose that u € Hp is a solution of the problem (1) with the
right-hand side | € 'H%OVXBQ(D), where 1, p, B satisfy the condition (38). Then

u(z) = S(x) + q(z) +v(x),

where v € V! (D) and
[l p) < ¢ ||f||vzf;32(p)

with a constant ¢ independent of f.
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We consider the coefficients H; of the functions S and §. It is evident that
H;(x) depends only on r = |2'| and z” but not on w,. Moreover, the following
assertions hold.

Lemma 3.7. Suppose that f € 1/;;32(1)) and l,p, B satisfy the condition (38).
Then

(i) 0°H; = 0% 0% H; € Lpﬁ_lﬂjﬂa‘(p) if |/ > 1.

(ll) S/II,HJ € Lp,ﬁ—l+/\;_+|a//|(p) Zf ‘Oé”’ >0 — )\j
(iii) The trace of H; on M coincides with the function (11) and belongs to the
o—AT
Besov space B, g (R*™™) for j =0,1,....
Proof. For j > 0, the proof is the same as for [14, Lemma 3.7], since we have
the same formula (with other eigenvalues and eigenfunctions A; and ¢;) for the
functions ¢;(2”,y) as in the case of the Dirichlet problem. We consider the
function

Ho(o) = [ clep)la”0) Fw)dy
D
where co(2”,y) = G(0,2",y) is defined by (4). Obviously,

|05, y) ol y)| < ol —y P77

for every multi-index a. If a = (o/,a”) and |o/| > 1, then the function
0% (x,y) co(2”,y) vanishes outside the region 2(|y'|? + |2 — ¢"|?) < 4]|2/]* <
3(Iy'* + 2" — y"[*). Therefore, =1l |93¢(2, y) o (2", y)| < ca o —y|7 27
Consequently, it follows from Lemma 3.1 that

HTB_Z'HO" Oy Hol|L,(p) < ca Hf“Lp,,efzu(D)

with a constant ¢, independent of f. Now, let o =0 and |o| >0 =1—5—"=.

Then :
‘xllﬁ—l—l-\a”\

ph—l+la’|
=yl

0%/ C(z,y) co(x”, )| < car

Applying again Lemma 3.1, we obtain

=19 055 Foll ) < ca 111501, 00

Thus, the assertions (i) and (ii) are true for j = 0. If we consider Hy as a
function on Ry x R™™ (with the variables r and z”), then it follows from (i)
and (ii) in particular that

1"y m—1 "
PRI 9k Hy € Ly(Ry x R*™™)  for k + || > 0.

Hence by [16, Section 2.9.2, Theorem 1], the trace hy = Hpy|y—o of Hy on
the edge M exists and belongs to the Besov space BJ(M). This proves the
lemma. O
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Finally, we note that the coefficients H; of ¥ and @ can be replaced (as in
the case of the Dirichlet problem, cf. [14]) by other extensions of h;. Such a
possible extension of h; is

Em)asa’) =) [T " = ) dy (10
where 1) is a smooth function with compact support on [0, co) such that ¢(r) =1
for r < %, T is a smooth function on R"™™ with support in the unit ball |y”| < 1

satisfying the condition
/ T(y")dy" =1, / (y") T(y")dy" =0 for 1 <[a"| < [o].

As was shown in [14, Lemma 3.8], this extension has the same properties (i) and
(ii) of Lemma 3.7 as H;. From this it follows that A¥,(H; — Eh;) 7")‘]'++2k¢j (W)
o—AT

A ] Thus the following

is a function of the space Vplﬁ(D for /\;r <o, k< [ 5

theorem holds.

Theorem 3.8. Suppose that u € Hp is a solution of the problem (1) with the
right-hand side | € %;mvgj(p), where 1, p, B satisfy the condition (38). Then

u(r) = %(z) + Q(z) + v(z),

where v € V;fﬁ(D) and 2, Q) are defined by (9) and (10), respectively.
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