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Regularity of Solutions to the
G-Laplace Equation Involving Measures

Jun Zheng, Binhua Feng and Zhihua Zhang

Abstract. We establish regularity of solutions to the equation −∆Gu = µ, provided
that µ(Br(x0)) ≤ Crβ for any ball Br(x0) ⊂ Ω with r ≤ 1, where β > 0 and G
satisfies certain structural conditions.
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1. Introduction

Let Ω be an open bounded domain of Rn(n ≥ 2), and µ a nonnegative Radon
measure in Ω. We consider the equation

−∆Gu := −div

(
g(|∇u|)
|∇u|

∇u
)

= µ in D′(Ω), (1)

where G(t) =
∫ t

0
g(s)ds, g(t) is a nonnegative C1 function in [0,+∞), satisfying

g(0) = 0 and the following structural condition

0 < δ ≤ tg′(t)

g(t)
≤ g0, ∀ t > 0, δ, g0 are positive constants. (2)

The operator ∆G includes not only the case of the p-Laplacian 4p (δ = g0 =
p− 1 > 0), but also the interesting case of a variable exponent p = p(t) > 0:

−∆Gu = −div (|∇u|p(|∇u|)−2∇u),
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corresponding to set g(t)= tp(t)−1, for which (2) holds if δ ≤ t(ln t)p′(t)+p(t)−1
≤ g0 for all t > 0.

Other examples of functions satisfying (2) are given by g(t) = tα ln(βt+θ),
with α, β, θ > 0, or by discontinuous power transitions as g(t)=C1t

α, if 0≤ t< t0,
and g(t) = C2t

β + C3, if t ≥ t0, where α, β, t0 are positive numbers, C1,2,3 are
real numbers such that g(t) is a C1 function.

In this paper we consider the regularity of solutions for the G-Laplace opera-
tor involving measures, which continues the work by Challal and Lyaghfouri [2].
In [2], the authors proved that any local bounded solution of (1) is locally Hölder
continuous for β ∈ [n − 1, n). We would like to extend the regularity result to
the general case β > 0. More precisely, we prove that any bounded solution
of (1) is locally C1,α-continuous for β > n, Log-Lipschitz-continuous for β = n,
and Hölder continuous for β < n and g0 <

β+1
n−1

, respectively. We should also
note a result in [7] (see also [8]) for the p-Laplace type operator which states
that solutions are in C0,α

loc (Ω) for any α ∈ (0, 1) when β = n − p + α(p − 1)
and 1 < p ≤ n. The proofs of the main results are based on estimates for
G-harmonic functions.

Throughout this paper we always assume (1.2) holds. The main result is

Theorem 1.1. Suppose g(t)
t

is non-decreasing in t > 0. Let u satisfy (1) with
β > 0. The following regularity results hold:

1. If β > n, then u ∈ C1,α
loc (Ω) for some α ∈ (0, 1).

2. If β = n, then u is Log-Lipshitz continuous, thus u ∈ C0,α
loc (Ω) for any

α∈(0, 1).

3. If β ∈ [n− 1, n), then u ∈ C0,α
loc (Ω) for some α ∈ (0, 1).

4. If β ∈ (0, n− 1) and g0 <
β+1
n−1

, then u ∈ C0,α
loc (Ω) for some α ∈ (0, 1).

2. Some auxiliary results

In this section we state some properties of function G and its derivative g that
are used throughout the paper. We also state some real analytic properties
for functions with finite

∫
Ω
G(|∇u|)dx, and some properties for G-harmonic

functions which will be applied to establish C1,α-estimates for solutions.

Lemma 2.1 ([11, Lemma 2.1]). Function g satisfies the following properties:

(g1) min{sδ, sg0}g(t) ≤ g(st) ≤ max{sδ, sg0}g(t).

(g2) G is convex and C2.

(g3) tg(t)
1+g0
≤ G(t) ≤ tg(t), for all t ≥ 0.

Lemma 2.2 ([11, Remark 2.1]). Function G satisfies the following properties:

(G1) min{sδ+1, sg0+1} G(t)
1+g0
≤ G(st) ≤ (1 + g0) max{sδ+1, sg0+1}G(t).

(G2) G(a+ b) ≤ 2g0(1 + g0)(G(a) +G(b)), for all a, b > 0.
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As g is increasing we can define its inverse function g−1. Then g−1 satisfies
a similar condition to (2).

Proposition 2.3 ([11, Lemma 2.2]). Function g−1 satisfies the following prop-
erty:

1

g0

≤ t(g−1)′(t)

g−1(t)
≤ 1

δ
, for all t > 0.

Set G̃ such that G̃′(t) = g−1(t). For more properties of G̃, we refer the
reader to [1, 3, 4, 9, 11,13], etc.

Recall that

‖u‖LG(Ω) := inf

{
k > 0;

∫
Ω

G

(
|u(x)|
k

)
dx ≤ 1

}
is a norm on the Orlicz space LG(Ω) which is the linear hull of the Orlicz class

KG(Ω) :=

{
u measurable;

∫
Ω

G(|u|)dx <∞
}
.

Notice that this set is convex, since G is also convex (g2). The Orlicz-Sobolev
space W 1,G(Ω) is defined as

W 1,G(Ω) := {u ∈ LG(Ω);∇u ∈ LG(Ω)},

which is the usual subspace of W 1,1(Ω) associated with the norm ‖u‖W 1,G(Ω) :=

‖u‖LG(Ω) + ‖∇u‖LG(Ω). LG(Ω) and W 1,G(Ω) are reflexive, Moreover, LG̃(Ω) is

the dual space of LG(Ω) (see [11]).

Lemma 2.4 ([11, Lemma 2.3]). There exists a constant C = C(δ, g0) such that

‖u‖LG(Ω) ≤ C max

{(∫
Ω

G(|u|)dx

) 1
1+δ

,

(∫
Ω

G(|u|)dx

) 1
1+g0

}
.

The following result is Hölder’s inequality.

Lemma 2.5 ([1, 8.11 ]). For any u ∈ LG(Ω) and any v ∈ LG̃(Ω), there holds∣∣∣∣ ∫
Ω

uvdx

∣∣∣∣ ≤ 2‖u‖LG(Ω)‖v‖LG̃(Ω).

Let (h)r := 1
|Br(x0)|

∫
Br(x0)

hdx denote the average value of function h on

Br(x0). Throughout this paper, without special states, by BR and Br we denote
the balls contained in Rn or Ω with the same center.

The following two lemmas will pave the way to the C1,α-estimates.
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Lemma 2.6 ([9, Lemma 5.1]). Let h be a G-harmonic function in BR, i.e.,
∆Gh = 0 in BR. Then for some positive constant 0 < σ < 1, there holds∫

Br

G(|∇h− (∇h)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇h− (∇h)R|)dx,

where C = C(n, δ, g0) > 0 is a positive constant.

Lemma 2.7 ([10, Lemma 2.7]). Let φ(s) be a non-negative and non-decreasing
function. Suppose that

φ(r) ≤ C1

[( r
R

)α
+ ϑ
]
φ(R) + C2R

β,

for all r ≤ R ≤ R0, with C1, α, β positive constants and C2, ϑ non-negative con-
stants. Then, for any τ < min{α, β}, there exists a constant ϑ0 = ϑ0(C1, α, β, τ)
such that if ϑ < C1, ϑ0, then for all r ≤ R ≤ R0 we have

φ(r) ≤ C3

( r
R

)τ
[φ(R) + C2R

τ ],

where C3 = C3(C1, τ −min{α, β}) is a positive constant. In turn,

φ(r) ≤ C4r
τ ,

where C4 = C4(C2, C3, R0, φ, τ) is a positive constant.

3. Proofs of the main results

We first prove the following comparison theorem.

Lemma 3.1 (Comparison with G-harmonic functions). Let u ∈ W 1,G(BR) and
h ∈ W 1,G(BR) satisfying ∆Gh = 0 in BR in the distributional sense. Then there
exists a positive constant C = C(n, δ, g0) such that for each 0 < r ≤ R, there
holds∫
Br

G(|∇u−(∇h)r|)dx≤C
( r
R

)n+σ
∫
BR

G(|∇u−(∇h)R|)dx+C

∫
BR

G(|∇u−∇h|)dx,

where 0 < σ < 1 is the exponent in Lemma 2.6.

Proof. For each r ∈ (0, R], by (G2) and the nondecreasing monotonicity of G,
we get ∫

Br

G(|∇u− (∇u)r|)dx ≤ C

∫
Br

G(|∇u− (∇h)r|)dx

+ C

∫
Br

G(|(∇u)r − (∇h)r|)dx,
(3)
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where C is a positive constant depending on g0. Analogously, there holds∫
Br

G(|∇u− (∇h)r|)dx ≤ C

∫
Br

G(|∇u−∇h|)dx

+ C

∫
Br

G(|∇h− (∇h)r|)dx,
(4)

where C is a positive constant depending on g0.
Convexity of G implies that

1

|Br|

∫
Br

G(|(∇u)r − (∇h)r|)dx = G(|(∇u)r − (∇h)r|)

≤ G

(
1

|Br|

∫
Br

|∇u−∇h|dx
)

≤ 1

|Br|

∫
Br

G(|∇u−∇h|)dx.

Therefore ∫
Br

G(|(∇u)r − (∇h)r|)dx ≤
∫
Br

G(|∇u−∇h|)dx. (5)

From (3) to (5), it follows∫
Br

G(|∇u− (∇u)r|)dx ≤ C

∫
Br

G(|∇u−∇h|)dx

+ C

∫
Br

G(|∇h− (∇h)r|)dx.
(6)

Since in the above sequel only properties of G have been used, interplaying the
roles of u and h in (6) and arguing in the larger ball BR, then we arrive at∫

BR

G(|∇h− (∇h)R|)dx ≤ C

∫
BR

G(|∇u−∇h|)dx

+ C

∫
BR

G(|∇u− (∇u)R|)dx.
(7)

Now, in view of Lemma 2.6 and (6), we have further estimate∫
Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇h− (∇h)R|)dx

+ C

∫
BR

G(|∇u−∇h|)dx.
(8)
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Combining (7) and (8), we conclude∫
Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇u− (∇u)R|)dx

+ C

(
1 +

( r
R

)n+σ
)∫

BR

G(|∇u−∇h|)dx,

which finally implies∫
Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇u− (∇u)R|)dx

+ C

∫
BR

G(|∇u−∇h|)dx.

Lemma 3.2. Suppose g(t)
t

is non-decreasing in t > 0, then there exists a positive
constant C depending only on g0 such that(

g(|ξ|)
|ξ|

ξ − g(|η|)
|η|

η

)
(ξ − η) ≥ CG(|ξ − η|) for all ξ, η ∈ Rn.

Proof. Since g(t)
t

is non-decreasing in t > 0, we deduce that (see proof of [6,
Lemma 3.1])(
g(|ξ|)
|ξ|

ξ− g(|η|)
|η|

η

)
(ξ−η) ≥ 1

3

(
g(|ξ|)
|ξ|

+
g(|η|)
|η|

)
|ξ−η|2, for all ξ, η ∈ Rn\{0}.

It suffices to show that
(
g(|ξ|)
|ξ| + g(|η|)

|η|

)
|ξ−η|2 ≥ CG(|ξ−η|) for all ξ, η ∈ Rn\{0}.

Without loss of generality, assume |ξ| > |η|. We get by the non-decreasing

monotonicity of g(t)
t

that

g(|ξ − η|)
|ξ − η|

≤ g(|ξ|+ |η|)
|ξ|+ |η|

≤ g(2|ξ|)
|ξ|

≤ 2g0g(|ξ|)
|ξ|

≤ 2g0
(
g(|ξ|)
|ξ|

+
g(|η|)
|η|

)
.

It follows

G(|ξ − η|) ≤ |ξ − η|g(|ξ − η|) ≤ 2g0
(
g(|ξ|)
|ξ|

+
g(|η|)
|η|

)
|ξ − η|2.

We have now gathered all the tools and ingredients we need to establish
local Hölder continuity of the gradient of solutions of (1).

Proof of Theorem 1.1. Since only the local property will be considered, we may
assume ‖u‖L∞(BR(x0)) ≤ M on the ball BR(x0)(⊂ Ω), which we will work on.

We prove the three results in Theorem 1.1 respectively.
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1. C1,α
loc -regularity for β > n. Let h be the G-harmonic function in BR that

agrees with u on the boundary, i.e.,

div

(
g(|∇h|)
|∇h|

∇h
)

= 0 in BR and h− u ∈ W 1,G
0 (BR).

By Lemma 3.1, it follows∫
Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇u− (∇u)R|)dx

+ C

∫
BR

G(|∇u−∇h|)dx.
(9)

On the other hand, since u is a solution of (1), then we have∫
BR

(
g(|∇u|)
|∇u|

∇u− g(|∇h|)
|∇h|

∇h
)
∇(u− h)dx =

∫
BR

(u− h)dµ.

Using Lemma 3.2, we deduce that
∫
BR
G(|∇u − ∇h|)dx ≤ C

∫
BR

(u − h)dµ ≤
Cµ(BR) ≤ CRβ. Therefore (9) becomes∫

Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇u− (∇u)R|)dx+ CRβ.

In view of Lemma 2.7 we conclude that there is a constant τ = min{σ, β − n}
such that ∫

Br

G(|∇u− (∇u)r|)dx ≤ Crn+τ . (10)

Now we are expected to show that there is a constant κ ∈ (0, 1) such that∫
Br

|∇u− (∇u)r|dx ≤ Crn+κ, (11)

which and Campanato’s embedding theorem (see [12] for instance) will give the
desired Hölder continuity of the gradient of u.

Indeed, convexity of G and (10) implies that

G

(
1

|Br|

∫
Br

|∇u− (∇u)r|dx
)
≤ 1

|Br|

∫
Br

G(|∇u− (∇u)r|)dx ≤ Crτ . (12)

Let κ be a positive constant lying in (0, τ
g0

). If r−n−κ
∫
Br
|∇u − (∇u)r|dx ≤ 1,

then
∫
Br
|∇u− (∇u)r|dx ≤ rn+κ. Therefore, (11) holds.
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If r−n−κ
∫
Br
|∇u − (∇u)r|dx > 1, we define G (t) = G(t) − G(1)t, t ≥ 1.

Since G (t) is increasing in t when t ≥ 1, then we find

G

(
r−n−κ

∫
Br

|∇u− (∇u)r|dx
)
≥ G(1)

(
r−n−κ

∫
Br

|∇u− (∇u)r|dx
)
,

which and (12) imply that

r−n
∫
Br

|∇u− (∇u)r|dx ≤ CrκG

(
r−n−κ

∫
Br

|∇u− (∇u)r|dx
)

≤ Crκ(r−κ)1+g0G

(
r−n

∫
Br

|∇u− (∇u)r|dx
)

≤ Crτ−κg0 .

This reveals that (11) holds and the proof of the first result in Theorem 1.1 is
completed.

2. Log-Lipschitz regularity for β = n. We follow the initial steps of the proof
of Theorem 1.1. Let h be the G-harmonic function in BR that agrees with u on
the boundary, i.e.,

div

(
g(|∇h|)
|∇h|

∇h
)

= 0 in BR and h− u ∈ W 1,G
0 (BR).

Arguing as before, we have∫
Br

G(|∇u− (∇u)r|)dx ≤ C
( r
R

)n+σ
∫
BR

G(|∇u− (∇u)R|)dx+ CRn.

In view of Lemma 2.7, there holds
∫
Br
G(|∇u − (∇u)r|)dx ≤ Crn. As before,

we deduce that ∫
Br

|∇u− (∇u)r|dx ≤ Crn,

which shows that the gradient of u lies in BMO space and for any fixed subdo-
main Ω′ ⊂⊂ Ω, there holds

‖u‖BMO(Ω′) ≤ C(Ω′, n, δ, g0, G(1),M).

Then proceeding as in [10, pp 19–20], we obtain Log-Lipschitz regularity for
solutions.

3. C0,α
loc -regularity for β < n. In this part, we address C0,α

loc -regularity for the
solution of (1) when β < n. Here we deal with only the case β < n − 1 and
refer the reader to [2] for a proof when β ∈ [n− 1, n).

Let h be the G-harmonic function in BR that agrees with u on the bound-
ary. Proceeding as above, and by the locally Lipschitz estimate of solutions for
G-harmonic functions (see [5]), we get
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∫
BR

2

G(|∇u|)dx ≤ C

∫
BR

2

G(|∇u−∇h|)dx+

∫
BR

2

G(|∇h|)dx


≤ CRβ + C

∫
BR

2

G(‖∇h‖L∞(BR
2

))dx

≤ CRβ + CRn

≤ CRβ,

where the last constant C depends only on ‖∇h‖L∞(BR
2

). On the other hand,

by the local boundedness of u, which is the boundary value of h, we know

that ‖h‖L∞(BR
2

) depends only on n, δ, g0, G̃(1),M . Therefore, local Lipschitz

estimate for solutions of G-Laplace equations (see [5]) give

‖∇h‖L∞(BR
2

) ≤ C(n, δ, g0, g(1), ‖h‖L∞(BR
2

), dist(∂BR
2
, BR))

= C(n, δ, g0, g(1), G̃(1),M, dist(∂BR
2
, BR)).

By Hölder’s inequality (Lemma 2.5) and Lemma 2.4, we deduce, for R < 1,∫
BR

2

|∇u|dx ≤ 2‖∇u‖LG‖1‖LG̃ ≤ C
( ∫

BR
2

G̃(1)dx
) 1

1+g0

( ∫
BR

2

G(|∇u|)dx
) 1

1+g0 ≤

CR
n+β
1+g0 = CRn−1+α, where α = n+β

1+g0
− (n − 1) > 0 due to the structural

condition g0 <
β+1
n−1

. By [12, Theorem(Morrey) 1.53 p. 30] we conclude that

u ∈ C0,α
loc (BR).

Remark 3.3. Furthermore, if β = n, we may deduce that any solution of (1)
is locally Lipschitz continuous. Indeed, let h be the G-harmonic function in BR

that agrees with u on the boundary. Arguing as proof of Theorem 1.1, and by
the locally Lipschitz estimate of solutions for G-harmonic functions (see [5]),
we get ∫

BR
2

G(|∇u|)dx ≤ C

∫
BR

2

G(|∇u−∇h|)dx+

∫
BR

2

G(|∇h|)dx


≤ CRn + C

∫
BR

2

G(‖∇h‖L∞(BR
2

))dx

≤ CRn.

Now applying Lebesgue theorem, (G1), and covering theorem, we conclude that
for any Ω′ ⊂⊂ Ω

sup
x∈Ω′
|∇u(x)| ≤ C,

where the constant C depends only on n, δ, g0, g(1), G̃(1),M and Ω′.
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