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Abstract. This paper proves a regularity criterion for the density-dependent Hall-
magnetohydrodynamics with positive density.
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1. Introduction

In this paper, we consider the density-dependent incompressible Hall-magneto-
hydrodynamics system:

1
Iy (pu) + div (pu @ u) + V (W+§]b\2) —Au=">-Vb, (1.1)
Ob+u-Vb—b-Vu+ curl <M> — Ab, (1.2)
p
Op + div (pu) = 0, (1.3)
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divu = divb =0, (1.4)
(107u7b) |t:0 = (vau()abO)) .
lim p=p, lim (u,b) = (0,0). (1.6)

Here p is the density of the fluid, u is the fluid velocity field, 7 is the pressure
and b is the magnetic field. p is a positive constant.

The applications of the Hall-MHD system cover a very wide range of phys-
ical objects, for example, magnetic reconnection in space plasmas, star forma-
tion, neutron stars, and geo-dynamo. The baroclinic creation of vorticity by
density stratification and interaction of the vorticity and magnetic field play
an important role, for example, in a series of processes of a supernova explo-
sion followed by scattering supernova remnants. For the compressible model
corresponding to (1.1)—(1.6), we refer to [2].

When p = 1, the density-dependent Hall-MHD system reduces to the stan-
dard Hall-MHD system, which has received many studies [2-8,10,12]. [2] gave a
derivation of Hall-MHD system from a two-fluid Euler-Maxwell system. In [3],
Chae-Degond-Liu proved the local existence of smooth solutions. Chae-Lee [4]
and Fan-Ozawa [12] proved some regularity criteria.

When the Hall effect term curl (%:Xb) is neglected, the density-dependent
Hall-MHD system reduces to the well-known density-dependent MHD system.
Abidi-Hmidi [1] and Wu [13] proved the local existence of strong solutions.
Fan-Li-Nakamura-Tan [11] proved some regularity criteria.

The aim of this paper is to prove a regularity criterion of the system
(1.1)-(1.6). We will prove

Theorem 1.1. Let 0 < & < p, py < C, Vpy € H* and uo,by € H? with
divug = divby = 0 in R®. Let (p,u,b) be a local strong solution to the problem

(1.1)~(L.6). If
we LX0,T; L), Vu € LN0,T;L%) and Vbe La-3(0,T;L7)  (1.7)

with 3 < q < 00, holds true, then the solution (p,u,b) can be extended beyond
T > 0.

Remark 1.2. When b = 0, we are unable to prove the following regularity
criterion

Vu € LY0,T; L™), (1.8)
while it is easy to prove the following regularity criterion
u € L*(0,T; L™). (1.9)

However, (1.9) is not enough for the Hall-MHD system, because we must bound
the gradient of the density due to the Hall effect. Thus we need assume both
(1.8) and (1.9).
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2. Proof of Theorem 1.1

By similar calculations as that in [9] (also see [13]), we can prove the local
existence of strong solutions to the problem (1.1)—(1.6) and thus we omit the
details here. We only need to establish a priori estimates.

First, thanks to the maximum principle, we have

0<%§p§0<oo. (2.1)

Multiplying (1.1) by u and integrating over the whole space, thanks to (1.3)
and (1.4), after integration by parts, we find that

1d
—— | plulPdz + / |Vul*dz = / (b-V)b - udx. (2.2)
th R3 R3 R3

Similarly, by using energy method, we infer that

1d

5T \b|2d:v+/ ]Vb|2dx:/ (b-V)u - bdz. (2.3)
R3 R3

Summing up (2.2) and (2.3) and using [s (b- V)b - udz + [5s (b- V)u - bdzx = 0,
we get
1d

3 [ (ol )z [ (9 + (VB o
th ]R3 R3

This proves
1, )| oe 0,7:22) + [ (4, D) | 20,731y < C-

Multiplying (1.2) by [b[P72b (2 < p < oo) and integrating over R? | using (1.4)
and (2.1) and denoting ¢ := |b|, after integration by parts, we obtam

pdt/|b\pd:v+ /|by

1
— / (b-V)u - [b]P~2bdz + / M%-curlﬂb?”b)da:
R3 R3

< HVuHLoo/ <b2d:1:+C'/ IVb|?|b|P~
R3 R3

512dx

= |Vl / GdutC | |Vb| - [b] - [b]5 | Vblde
R3 R3
1
2 2 2 1 p—2 2
<[Vl | Fda+ClITbENOIL o, [ o920
2 2 2(1-3) ¢ 1 P22
< [l | o+ CITbE 6l 100l e+ [ pr-2vda

<22 | |98 Pt |Vl - | eV ol 1 [ oo,
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which gives

||b||Loo(07T;Lp) <(C with 2< p < o0, (24)
||b : VbHLQ(O,T;LQ) < C as P = 4. (25)

Multiplying (1.1) by d;u and doing integration on R?, using (1.3), (1.4), (2.1)
and (2.5), after integration by parts, we get

1d

5% - |Vu|2dq,’—|— /RS ,0|(9tu|2dl'

= / (b- V)b - Oudr — / pu - Vu - Qudz
R3 R3

< [lb- Vbl louullsz + /A0l /Bl e P
1
<5 [ plowldo + Cllo- VoI + Cllulf | Vull

which implies

]| o 0,711y < C, (2.6)

10wu]| 20,722y < C. 2.7)
On the other hand, since (u, ) is a solution of the Stokes system:

1
—Au+V (W+§]b\2) =f:=b-Vb— pdu — pu-Vu, (2.8)
thanks to the H2-theory of the Stokes system, we have
IV*ullr2 < Cllfllze < ClIb- Vbl 12 + Clly/posull 2 + Cllull L=Vl 2,

which yields

[ull 20,2y < C. (2.9)

Taking V to (1.3), then multiplying it by [Vp|™2Vp (2 < m < o0), after
integration, we find that
d
& | werae < cpvulos [ voras,
dt R3 R3
which leads to
||VpHL°°(07T;Lm) S C (2 S m < OO) (2].0)

Multiplying (1.2) by —Ab and integrating over the whole space, after integration
by parts, we get

1d
~ 4 b2 AbPd
2t Jo IV +/Rg’ ["d
1
:/ (u-Vb—b-Vu)Abder/ ~ (curl b  b)eur] Abdz (2.11)
R3 R3 P

= [1 —+ [2.
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Using (2.6) and (2.4), we bound I as follows:

Iy < ([ullzs [ VOl s + [1Dl] o [[Vurll o) [ Ab]| 2
< C(IVbl[ s + [[Vulls) | AD]| 2
1
< 212152 + CVb|E: + CllAullfz + C[Vul.

Using (2.1), (2.4) and (2.10), I3 can be estimated as:

1

< OlIVOllLal[ VO]l 20, | Ab]]22 + CIVpl| 2Bl 12 ([ V0| s [ Ab]| 2

&L»Qp (curlb x b)0;curl bdx
p

1-3 143
< C[[Vbl|La[[VO]| 12 “ | AD][ 12 * + ClIVD| s || Ab]| 2
1 22,
< 214 + ClIVBIE VD72 + ClIVBIL.

Inserting the above estimates into (2.11) and using the Gronwall inequality, due
to condition (1.7), we have

||bHLoo(0’T;H1) + ||bHL2(O,T;H2) < C. (2.12)

Applying the operator d; to (1.1), we see that

pdiu + pu - Vou — Adyu + Vo, <7r + %|b|2)
=divoy(b®b) — Oep(Oyu + u - Vu) — poyu - Vu.

Multiplying the above equation by d;u and using (1.3), (1.4), (2.1), (2.6) and
(2.7), after integration by parts, we derive

Ld

2dt Jgs

< C/ |b]|0b||V Opu|d + ‘/ pu - V](Opu + u - Vu)Opu|dx
R3 R3

p[@mﬁdm%—/ |V Oul|*dx
R3

+ OVl oyl
< Ololl 10121V B 2 + el ol VO (213)
+ Clallzs IVl el + Cllullio | ull Bl
+ Ol Vullus [V 0l 2 + C o3
< IV 0l + CIBIE = 10bl3: + ol
+ Ol Bl 2 + Cll Al
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Applying the operator d; to (1.2), then multiplying it by 9;b, and using (1.3),
(1.4), (2.1), (24), (2.6), (2.7), (2.10) and (2.12), we have

1d
—— b%d b2d
2dt/Rg|at| x+/R$|V8t| v

1
= O¢(u x b) - curl Oybdzr — —0(curlb x b) - Opcurl bdx
R3 R3 P

1
+ / —0yp(curlb x b) - Oyeurl bdw
R3 P
< C(10wull2lIbll oo + [fullze [|0:bl] 22) VO]l 2 (2.14)
+ OVl La||OD]| | 2, [[VOD]| 12
+ Cllullzs [Vl 2 leurl b]| Lo [|6] 12 [ VO] 2
1
< Vbl + Cllowl7: + Cllblz< 0]z
2q_
+CIVOl £ [19:bl 72 + Ol Ab] 7.

Combining (2.13) and (2.14) and using (2.9), (2.12), and the Gronwall inequal-
ity, we have

HatU”Loo(QT;LQ) + ”8tuHL2(O,T;H1) S C. (215)

and

10:b]] Loo (0,1;12) + 1|0eb]| L2(0,1,11) < C.

It follows from (2.4), (2.8), (2.9), (2.12) and (2.15) that
[Aul|r20,7:28) < C. (2.16)

Applying A to (1.3), then multiplying it by Ap and integrating on R?, using
(1.4), (2.10) and (2.16), we get

d
E/RS |AplPdz < C||Vul| g /RS |Ap|2dz + C|| Aul| 3|V ol 2o || Ap]| 2
< O Vullz=||Apl132 + Cl|Aul s || Ap|| 2,

which gives

IVpllLeor.my < C. (2.17)
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Taking A to (1.2), then multiplying it by Ab, using (2.1), (2.4), (2.10) and
(2.17), after integration by parts, we obtain

1d
—— Ab|%d Ab|%d
2dt/Rg| | x+/]R3 |V | o

b 1o
= / AT A curl bz + A(u x b) - Acurl bdz
R3 p R3

1
= / —(Ab x curl b+ 2 Z 0;b x Q;curl b) Acurl bdx
R3 P :

1 1
+ / A= - (b x curld) - Acurlbdz + 2 Z 0;— - 0;(b x curlb) - Acurl bdx
R3 P ~ Jrs P

-l-/ A(u x b) - Acurl bdz
R3
< Ol[VOllal[Ab]| 2q, [VAbI[ 2 + CllAp| 2 [[b 22~ [[ VO] o [V AD]| 2

+ ClIVplIZallbll 2o | VBl e [ VAl 12 + ClVpl| a2 || 12 | Ab| ]|V A 2
+ CIVpll s VO Lo [V AB| 2
+ C([Aul g2 llbll = + llull o< [|Abll 2 + | Vull o[ VO] 2) [V AD| 2

1 =%
< SIVAb[L: + ClIVBIL [Ab]17: + Cllullzallblhe + CllAbIL + ClIABIZ,

which leads to
||bHL°°(O,T;H2) —|— ||bHL2(O,T;H3) S C (218)
Here we used the Gagliardo-Nirenberg inequalities:
(B2 < ClIbllzol|Ab]I L2, VO[T < ClIAb] L2 [[VAD] 2

It follows from (2.8), (2.15) and (2.18) that

HUHL("’(QT;HQ) + HU”LQ(QT;W?&) <C.

This completes the proof. n
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