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Abstract. This paper proves a regularity criterion for the density-dependent Hall-
magnetohydrodynamics with positive density.
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1. Introduction

In this paper, we consider the density-dependent incompressible Hall-magneto-
hydrodynamics system:

∂t(ρu) + div (ρu⊗ u) +∇
(
π +

1

2
|b|2
)
−∆u = b · ∇b, (1.1)

∂tb+ u · ∇b− b · ∇u+ curl

(
curl b× b

ρ

)
= ∆b, (1.2)

∂tρ+ div (ρu) = 0, (1.3)
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div u = div b = 0, (1.4)

(ρ, u, b) |t=0 = (ρ0, u0, b0), (1.5)

lim
|x|→∞

ρ = ρ̃, lim
|x|→∞

(u, b) = (0, 0). (1.6)

Here ρ is the density of the fluid, u is the fluid velocity field, π is the pressure
and b is the magnetic field. ρ̃ is a positive constant.

The applications of the Hall-MHD system cover a very wide range of phys-
ical objects, for example, magnetic reconnection in space plasmas, star forma-
tion, neutron stars, and geo-dynamo. The baroclinic creation of vorticity by
density stratification and interaction of the vorticity and magnetic field play
an important role, for example, in a series of processes of a supernova explo-
sion followed by scattering supernova remnants. For the compressible model
corresponding to (1.1)–(1.6), we refer to [2].

When ρ = 1, the density-dependent Hall-MHD system reduces to the stan-
dard Hall-MHD system, which has received many studies [2–8,10,12]. [2] gave a
derivation of Hall-MHD system from a two-fluid Euler-Maxwell system. In [3],
Chae-Degond-Liu proved the local existence of smooth solutions. Chae-Lee [4]
and Fan-Ozawa [12] proved some regularity criteria.

When the Hall effect term curl
(
curl b×b

ρ

)
is neglected, the density-dependent

Hall-MHD system reduces to the well-known density-dependent MHD system.
Abidi-Hmidi [1] and Wu [13] proved the local existence of strong solutions.
Fan-Li-Nakamura-Tan [11] proved some regularity criteria.

The aim of this paper is to prove a regularity criterion of the system
(1.1)–(1.6). We will prove

Theorem 1.1. Let 0 < 1
C
≤ ρ̃, ρ0 ≤ C, ∇ρ0 ∈ H1 and u0, b0 ∈ H2 with

div u0 = div b0 = 0 in R3 . Let (ρ, u, b) be a local strong solution to the problem
(1.1)–(1.6). If

u ∈ L2(0, T ;L∞), ∇u ∈ L1(0, T ;L∞) and ∇b ∈ L
2q
q−3 (0, T ;Lq) (1.7)

with 3 < q ≤ ∞, holds true, then the solution (ρ, u, b) can be extended beyond
T > 0.

Remark 1.2. When b = 0, we are unable to prove the following regularity
criterion

∇u ∈ L1(0, T ;L∞), (1.8)

while it is easy to prove the following regularity criterion

u ∈ L2(0, T ;L∞). (1.9)

However, (1.9) is not enough for the Hall-MHD system, because we must bound
the gradient of the density due to the Hall effect. Thus we need assume both
(1.8) and (1.9).
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2. Proof of Theorem 1.1

By similar calculations as that in [9] (also see [13]), we can prove the local
existence of strong solutions to the problem (1.1)–(1.6) and thus we omit the
details here. We only need to establish a priori estimates.

First, thanks to the maximum principle, we have

0 <
1

C
≤ ρ ≤ C <∞. (2.1)

Multiplying (1.1) by u and integrating over the whole space, thanks to (1.3)
and (1.4), after integration by parts, we find that

1

2

d

dt

∫
R3

ρ|u|2dx+

∫
R3

|∇u|2dx =

∫
R3

(b · ∇)b · udx. (2.2)

Similarly, by using energy method, we infer that

1

2

d

dt

∫
R3

|b|2dx+

∫
R3

|∇b|2dx =

∫
R3

(b · ∇)u · bdx. (2.3)

Summing up (2.2) and (2.3) and using
∫
R3 (b · ∇)b · udx+

∫
R3 (b · ∇)u · bdx = 0,

we get
1

2

d

dt

∫
R3

(ρ|u|2 + |b|2)dx+

∫
R3

(|∇u|2 + |∇b|2)dx = 0.

This proves
‖(u, b)‖L∞(0,T ;L2) + ‖(u, b)‖L2(0,T ;H1) ≤ C.

Multiplying (1.2) by |b|p−2b (2 < p < ∞) and integrating over R3 , using (1.4)
and (2.1) and denoting φ := |b| p2 , after integration by parts, we obtain

1

p

d

dt

∫
R3

|b|pdx+
1

2

∫
R3

|b|p−2|∇b|2dx+4
p−2

p2

∫
R3

|∇|b|
p
2 |2dx

=

∫
R3

(b ·∇)u · |b|p−2bdx+

∫
R3

b× curl b

ρ
· curl (|b|p−2b)dx

≤ ‖∇u‖L∞
∫
R3

φ2dx+C

∫
R3

|∇b|2|b|p−1dx

= ‖∇u‖L∞
∫
R3

φ2dx+C

∫
R3

|∇b| · |b|
p
2 · |b|

p
2
−1|∇b|dx

≤ ‖∇u‖L∞
∫
R3

φ2dx+C‖∇b‖2Lq‖φ‖2
L

2q
q−2

+
1

4

∫
R3

|b|p−2|∇b|2dx

≤ ‖∇u‖L∞
∫
R3

φ2dx+C‖∇b‖2Lq‖φ‖
2(1− 3

q )
L2 ‖∇φ‖

6
q

L2 +
1

4

∫
R3

|b|p−2|∇b|2dx

≤ 2
p−2

p2

∫
R3

|∇|b|
p
2 |2dx+‖∇u‖L∞

∫
R3

φ2dx+C‖∇b‖
2q
q−3

Lq ‖φ‖2L2 +
1

4

∫
R3

|b|p−2|∇b|2dx,
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which gives

‖b‖L∞(0,T ;Lp) ≤ C with 2 < p <∞, (2.4)

‖b · ∇b‖L2(0,T ;L2) ≤ C as p = 4. (2.5)

Multiplying (1.1) by ∂tu and doing integration on R3 , using (1.3), (1.4), (2.1)
and (2.5), after integration by parts, we get

1

2

d

dt

∫
R3

|∇u|2dx+

∫
R3

ρ|∂tu|2dx

=

∫
R3

(b · ∇)b · ∂tudx−
∫
R3

ρu · ∇u · ∂tudx

≤ ‖b · ∇b‖L2‖∂tu‖L2 + ‖√ρ∂tu‖L2‖√ρ‖L∞‖u‖L∞‖∇u‖L2

≤ 1

2

∫
ρ|∂tu|2dx+ C‖b · ∇b‖2L2 + C‖u‖2L∞‖∇u‖2L2 ,

which implies

‖u‖L∞(0,T ;H1) ≤ C, (2.6)

‖∂tu‖L2(0,T ;L2) ≤ C. (2.7)

On the other hand, since (u, π) is a solution of the Stokes system:

−∆u+∇
(
π +

1

2
|b|2
)

= f := b · ∇b− ρ∂tu− ρu · ∇u, (2.8)

thanks to the Ḣ2-theory of the Stokes system, we have

‖∇2u‖L2 ≤ C‖f‖L2 ≤ C‖b · ∇b‖L2 + C‖√ρ∂tu‖L2 + C‖u‖L∞‖∇u‖L2 ,

which yields
‖u‖L2(0,T ;H2) ≤ C. (2.9)

Taking ∇ to (1.3), then multiplying it by |∇ρ|m−2∇ρ (2 ≤ m < ∞), after
integration, we find that

d

dt

∫
R3

|∇ρ|mdx ≤ C‖∇u‖L∞
∫
R3

|∇ρ|mdx,

which leads to
‖∇ρ‖L∞(0,T ;Lm) ≤ C (2 ≤ m <∞). (2.10)

Multiplying (1.2) by −∆b and integrating over the whole space, after integration
by parts, we get

1

2

d

dt

∫
R3

|∇b|2 +

∫
R3

|∆b|2dx

=

∫
R3

(u · ∇b− b · ∇u)∆bdx+

∫
R3

1

ρ
(curl b× b)curl ∆bdx

=: I1 + I2.

(2.11)
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Using (2.6) and (2.4), we bound I1 as follows:

I1 ≤ (‖u‖L6‖∇b‖L3 + ‖b‖L6‖∇u‖L3)‖∆b‖L2

≤ C(‖∇b‖L3 + ‖∇u‖L3)‖∆b‖L2

≤ 1

4
‖∆b‖2L2 + C‖∇b‖2L2 + C‖∆u‖2L2 + C‖∇u‖2L2 .

Using (2.1), (2.4) and (2.10), I2 can be estimated as:

I2 = −
∑
i

∫
R3

1

ρ
(curl b× ∂ib)∂icurl bdx+

∑
i

∫
R3

∂iρ

ρ2
(curl b× b)∂icurl bdx

≤ C‖∇b‖Lq‖∇b‖
L

2q
q−2
‖∆b‖L2 + C‖∇ρ‖L12‖b‖L12‖∇b‖L3‖∆b‖L2

≤ C‖∇b‖Lq‖∇b‖
1− 3

q

L2 ‖∆b‖
1+ 3

q

L2 + C‖∇b‖L3‖∆b‖L2

≤ 1

4
‖∆b‖2L2 + C‖∇b‖

2q
q−3

Lq ‖∇b‖2L2 + C‖∇b‖2L2 .

Inserting the above estimates into (2.11) and using the Gronwall inequality, due
to condition (1.7), we have

‖b‖L∞(0,T ;H1) + ‖b‖L2(0,T ;H2) ≤ C. (2.12)

Applying the operator ∂t to (1.1), we see that

ρ∂2t u+ ρu · ∇∂tu−∆∂tu+∇∂t
(
π +

1

2
|b|2
)

= div ∂t(b⊗ b)− ∂tρ(∂tu+ u · ∇u)− ρ∂tu · ∇u.

Multiplying the above equation by ∂tu and using (1.3), (1.4), (2.1), (2.6) and
(2.7), after integration by parts, we derive

1

2

d

dt

∫
R3

ρ|∂tu|2dx+

∫
R3

|∇∂tu|2dx

≤ C

∫
R3

|b||∂tb||∇∂tu|dx+

∣∣∣∣∫
R3

ρu · ∇[(∂tu+ u · ∇u)∂tu]dx

∣∣∣∣
+ C‖∇u‖L2‖∂tu‖2L4

≤ C‖b‖L∞‖∂tb‖L2‖∇∂tu‖L2 + C‖ut‖L3‖u‖L6‖∇∂tu‖L2

+ C‖u‖L6‖∇u‖2L6‖∂tu‖L2 + C‖u‖2L6‖∆u‖‖∂tu‖L6

+ C‖u‖2L6‖∇u‖L6‖∇∂tu‖L2 + C‖∂tu‖2L4

≤ 1

2
‖∇∂tu‖2L2 + C‖b‖2L∞‖∂tb‖2L2 + C‖∂tu‖2L2

+ C‖∆u‖2L2‖∂tu‖L2 + C‖∆u‖2L2 .

(2.13)
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Applying the operator ∂t to (1.2), then multiplying it by ∂tb, and using (1.3),
(1.4), (2.1), (2.4), (2.6), (2.7), (2.10) and (2.12), we have

1

2

d

dt

∫
R3

|∂tb|2dx+

∫
R3

|∇∂tb|2dx

=

∫
R3

∂t(u× b) · curl ∂tbdx−
∫
R3

1

ρ
∂t(curl b× b) · ∂tcurl bdx

+

∫
R3

1

ρ2
∂tρ(curl b× b) · ∂tcurl bdx

≤ C
(
‖∂tu‖L2‖b‖L∞ + ‖u‖L6‖∂tb‖L3

)
‖∇∂tb‖L2

+ C‖∇b‖Lq‖∂tb‖
L

2q
q−2
‖∇∂tb‖L2

+ C‖u‖L6‖∇ρ‖L12‖curl b‖L6‖b‖L12‖∇∂tb‖L2

≤ 1

4
‖∇∂tb‖2L2 + C‖∂tb‖2L2 + C‖b‖2L∞‖∂tu‖2L2

+ C‖∇b‖
2q
q−3

Lq ‖∂tb‖2L2 + C‖∆b‖2L2 .

(2.14)

Combining (2.13) and (2.14) and using (2.9), (2.12), and the Gronwall inequal-
ity, we have

‖∂tu‖L∞(0,T ;L2) + ‖∂tu‖L2(0,T ;H1) ≤ C. (2.15)

and

‖∂tb‖L∞(0,T ;L2) + ‖∂tb‖L2(0,T ;H1) ≤ C.

It follows from (2.4), (2.8), (2.9), (2.12) and (2.15) that

‖∆u‖L2(0,T ;L3) ≤ C. (2.16)

Applying ∆ to (1.3), then multiplying it by ∆ρ and integrating on R3 , using
(1.4), (2.10) and (2.16), we get

d

dt

∫
R3

|∆ρ|2dx ≤ C‖∇u‖L∞
∫
R3

|∆ρ|2dx+ C‖∆u‖L3‖∇ρ‖L6‖∆ρ‖L2

≤ C‖∇u‖L∞‖∆ρ‖2L2 + C‖∆u‖L3‖∆ρ‖L2 ,

which gives

‖∇ρ‖L∞(0,T ;H1) ≤ C. (2.17)
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Taking ∆ to (1.2), then multiplying it by ∆b, using (2.1), (2.4), (2.10) and
(2.17), after integration by parts, we obtain

1

2

d

dt

∫
R3

|∆b|2dx+

∫
R3

|∇∆b|2dx

=

∫
R3

∆
b× curl b

ρ
·∆curl bdx+

∫
R3

∆(u× b) ·∆curl bdx

=

∫
R3

1

ρ
(∆b× curl b+ 2

∑
i

∂ib× ∂icurl b)∆curl bdx

+

∫
R3

∆
1

ρ
· (b× curl b) ·∆curl bdx+ 2

∑
i

∫
R3

∂i
1

ρ
· ∂i(b× curl b) ·∆curl bdx

+

∫
R3

∆(u× b) ·∆curl bdx

≤ C‖∇b‖Lq‖∆b‖
L

2q
q−2
‖∇∆b‖L2 + C‖∆ρ‖L2‖b‖L∞‖∇b‖L∞‖∇∆b‖L2

+ C‖∇ρ‖2L4‖b‖L∞‖∇b‖L∞‖∇∆b‖L2 + C‖∇ρ‖L12‖b‖L12‖∆b‖L3‖∇∆b‖L2

+ C‖∇ρ‖L6‖∇b‖2L6‖∇∆b‖L2

+ C
(
‖∆u‖L2‖b‖L∞ + ‖u‖L∞‖∆b‖L2 + ‖∇u‖L6‖∇b‖L3

)
‖∇∆b‖L2

≤ 1

2
‖∇∆b‖2L2 + C‖∇b‖

2q
q−3

Lq ‖∆b‖2L2 + C‖u‖2H2‖b‖2H2 + C‖∆b‖4L2 + C‖∆b‖2L2 ,

which leads to

‖b‖L∞(0,T ;H2) + ‖b‖L2(0,T ;H3) ≤ C. (2.18)

Here we used the Gagliardo-Nirenberg inequalities:

‖b‖2L∞ ≤ C‖b‖L6‖∆b‖L2 , ‖∇b‖2L∞ ≤ C‖∆b‖L2‖∇∆b‖L2 .

It follows from (2.8), (2.15) and (2.18) that

‖u‖L∞(0,T ;H2) + ‖u‖L2(0,T ;W 2,6) ≤ C.

This completes the proof.
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