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A Fourth-Order Dispersive Flow
into Kähler Manifolds

Hiroyuki Chihara and Eiji Onodera

Abstract. We discuss a short-time existence theorem of solutions to the initial value problem
for a fourth-order dispersive flow for curves parametrized by the real line into a compact
Kähler manifold. Our equations geometrically generalize a physical model describing the
motion of a vortex filament or the continuum limit of the Heisenberg spin chain system. Our
results are proved by using so-called the energy method. We introduce a bounded gauge
transform on the pullback bundle, and make use of local smoothing effect of the dispersive
flow a little.
Keywords. Dispersive flow, geometric analysis, gauge transform, energy method, smoothing
effect
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1. Introduction

Let (N, J, g) be a compact Kähler manifold of real dimension 2n with a complex
structure J and a Kähler metric g. In the present paper we study the initial value
problem for a mapping R× R 3 (t, x) 7→ u(t, x)∈N of the form

ut = aJ(u)∇3
xux + {1 + bgu(ux, ux)}J(u)∇xux

+ cgu(∇xux, ux)J(u)ux
in R× R, (1)

u(0, x) = u0(x) in R, (2)

where ut = du( ∂
∂t

), ux = du( ∂
∂x

), du is the differential of the mapping u, ∇ is the
induced connection for the Levi-Civita connection∇N of (N, J, g), a ∈ R \ {0} and
b, c ∈ R are constants, and u0 : R → N is a given initial curve on N . u(t, ·) is a
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curve on N for any fixed t ∈ R, and u describes the motion of a curve subject to the
equation (1). If a, b, c = 0, then (1) is reduced to the one-dimensional Schrödinger
map equation of the form

ut = J(u)∇xux,

and its stationary solutions are geodesics onN , see, e.g., [2,4,6,11,16] and references
therein for the physical background and the mathematical study of the Schrödinger
map equation.

Here we present local expression of the covariant derivative∇x. Let y1, . . . , y2n

be local coordinates of N . We denote by Γαβγ , α, β, γ = 1, . . . , 2n, the Christoffel
symbol of (N, J, g). For a smooth curve u : R → N , Γ(u−1TN) is the set of all
smooth sections of the pullback bundle u−1TN . If we express V ∈Γ(u−1TN) as

V (x) =
2n∑
α=1

V α(x)

(
∂

∂yα

)
u

,

then,∇xV is given by

∇xV (x) =
2n∑
α=1

{
∂V α

∂x
(x) +

2n∑
β,γ=1

Γαβγ
(
u(x)

)
V β(x)

∂uγ

∂x
(x)

}(
∂

∂yα

)
u

.

Here we recall the physical background of (1). The equation generalizes a model
system arising in classical mechanics of the form

~ut = ~u×
{
a~uxxxx + ~uxx + b〈~ux, ~ux〉~uxx + c〈~uxx, ~ux〉~ux

}
, (3)

where R × R 3 (t, x) 7→ ~u(t, x) ∈ S2, S2 is the two-dimensional unit sphere in R3,

and ~ξ × ~η and 〈~ξ, ~η〉 are the vector and the inner products of ~ξ ∈ R3 and ~η ∈ R3

respectively. The equation (3) describes the motion of a vortex filament or the con-
tinuum limit of the Heisenberg spin chain system. In [24], Porsezian, Daniel and
Lakshmanan formulated the continuum limit of the Heisenberg spin chain system
as (3) with 3a + c = 2b and a 6= 0, and showed that if c = 0 which is equivalent
to b = 3a

2
, then (3) is completely integrable. In [7], Fukumoto studied the motion of

vortex filament and obtained (3) with with 3a + c = 2b and a 6= 0. More precisely,
in [7], x describes the length of a curve ~γ(t, x), and ~u(t, x) = ~γx(t, x).

It seems to be natural and fundamental to study the initial value problem (1), (2).
In particular, it is important to know the relationship between the geometric settings
and the existence theorems of time-local and time-global solutions. The main diffi-
culty of solving (1), (2) is the loss of derivative of order one occurring in (1) even
in the case N = S2. If (N, J, g) is a compact almost Hermitian manifold, then the
situation becomes more difficult. Indeed, the loss of derivative of order three may
happen since∇NJ does not necessarily vanish.

The known results on (1), (2) are limited. In particular, all the preceding results
are concerned only with the case of N = S2. By the stereographic projection of
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S2 \ {(0, 0, 1)} onto C, the equation (3) becomes a complex-valued fourth-order
semilinear dispersive partial differential equation. The time-local existence for this
equation was established, see Huo and Jia [13–15], and Segata [25, 26]. The idea of
proof of these results are based on making use of so-called the local smoothing effect
of exp(

√
−1t ∂

4

∂x4
) via Bourgain’s Fourier restriction norm method, see [1] for this.

The stereographic projection requires somewhat restriction on the range of the maps.
For this reason, these results are not necessarily concerned with the study of maps to
S2. On the other hand, Guo, Zeng and Su ([10]) studied time-local existence of weak
solutions for the model equation (3) with a 6= 0, c = 0 and b = 3a

2
for x ∈ R/Z. In

this case no smoothing effect can be expected since the source of the maps R/Z is
compact and singularities of solutions come back periodically. Fortunately, however,
the integrability condition works well to overcome the loss of derivative of order one.

The purpose of the present paper is to establish the short-time existence theorem
for the initial value problem (1), (2) from the point of view of geometric analysis
[8, 9, 12, 20] and higher order linear dispersive partial differential equations [18, 27].
The present paper is a continuation of our geometric analysis of dispersive flows
[4,5,21–23]. The point of view of geometric analysis sometimes offers deep insights
into the structure of dispersive systems, and leads one to discoveries. For example,
Koiso [16] proved that some curvature condition on the target manifold guarantees
the time-global existence for the Schrödinger flow for closed curves. Onodera [21]
also established time-global existence theorem for a third-order dispersive flow for
closed curves under some curvature condition on the target manifold. Moreover,
Chihara [4] came to understand the relationship between the Kähler condition of
the target manifold and the structure of the Schrödinger map equation of a closed
Riemannian manifold to a compact almost Hermitian manifold.

Here we introduce some function spaces of mappings. For k = 0, 1, 2, 3, . . . ,
we denote by Hk+1(R;TN) the set of all continuous mappings of R to N whose
derivatives up to k + 1 are all square integrable:

‖ux‖2
Hk =

k∑
l=0

∫
R
gu(x)

(
∇l
xux,∇l

xux
)
dx <∞.

The standard k-th order Sobolev space of Rd-valued functions ~z on R is denoted by
Hk(R;Rd), and its norm is defined by

‖U‖2
Hk(R;Rd) =

k∑
l=0

∫
R

∣∣∣∣∂lU∂xl
∣∣∣∣2 dx,

where |U | =
√
〈U,U〉, and 〈U, V 〉 is the standard inner product for U, V ∈ Rd.

Set Hk(R) = Hk(R;C) and L2(R) = H0(R;C) for short. Let I be an interval in
R, and let X be an appropriate function space. We denote by C(I;X) the set of
all X-valued continuous functions on I , and by L∞(I;X) the set of all X-valued
essentially bounded functions on I .
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The main results of the present paper are the following.

Theorem 1.1. Let k be an integer greater than or equal to six. For any initial
mapping u0 ∈ Hk+1(R;TN), there exists a positive number T depending only
on ‖u0x‖H4(R;TN) such that the initial value problem (1), (2) has a unique solution
u ∈ C

(
[−T, T ];Hk+1(R;TN)

)
.

Here we remark about the order of the smoothness of solutions required in The-
orem 1.1. The condition k > 6 is determined by the Sobolev embedding H1(R) ⊂
C(R) ∩ L∞(R). In our construction of solutions, we need k > 4 for the bounded-
ness of the both hand sides of the equation (1). Our proof of uniqueness of solutions
requires k > 6 for the boundedness of the second derivative of (1).

We shall prove Theorem 1.1 by using so-called the parabolic regularization and
the uniform energy estimates of solutions to the regularized problems. In the lat-
ter part we introduce a gauge transform on the pullback bundle to overcome loss of
derivative of order one. In other words, we slightly make use of local smoothing
effect of dispersive equations via the gauge transform. In terms of pseudodifferential
calculus, this consists of the identity and a pseudodifferential operator of order −1,
The commutator between the lower order term of the gauge transform and the prin-
cipal part of the equation becomes a second-order elliptic operator absorbing the loss
of one derivative. This idea was actually applied to solving a third-order dispersive
flow in [5] and [23].

The plan of the present paper is as follows. In Section 2 we pick up a one-
dimensional fourth-order linear dispersive partial differential equation, and illustrate
the local smoothing effect and the gauge transform. Section 3 is concerned with
solving regularized problem. Section 4 is devoted to the construction of a time-local
solution. Finally, we shall prove the uniqueness of solution and recover the continuity
in time of solution in Section 5.

2. An auxiliary linear problem

The purpose of this section is to illustrate our idea of proof of Theorem 1.1. Consider
the initial value problem of the form

ut =
√
−1auxxxx +

√
−1{β(t, x)ux}x + γ(t, x)ux in R× R, (4)

u(0, x) = u0(x) in R, (5)

where u(t, x) is a complex-valued unknown function of (t, x) ∈ R×R, a ∈ R \ {0}
is a constant, β(t, x) ∈ C

(
R; B∞(R)

)
is real-valued, γ(t, x) ∈ C

(
R; B∞(R)

)
is

complex-valued, B∞(R) is the set of all bounded smooth functions on R whose
derivatives of any order are all bounded, and u0(x) is an initial data. We shall prove
the following.
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Proposition 2.1. Suppose that there exists a function φ(x) ∈ B∞(R) such that

|Im γ(t, x)| 6 φ(x), (t, x) ∈ R2,

∫
R
φ(x)dx <∞.

Then, the initial value problem (4), (5) is L2-well-posed, that is, for any u0 ∈ L2(R),
(4), (5) has a unique solution u ∈ C

(
R;L2(R)

)
.

Roughly speaking, Proposition 2.1 says that if Im γ(t, x) is integrable in x ∈ R
uniformly for t ∈ R, one can solve the initial value problem (4), (5). In other words,
Im γ(t, x) is seemingly an obstruction to the L2-well-posedness, but can be resolved
by the local smoothing effect of exp(

√
−1at ∂

4

∂x4
) described as∥∥∥∥∥(1 + x2)−

δ
4

(
− ∂2

∂x2

) 3
4

exp

(√
−1at

∂4

∂x4

)
u0

∥∥∥∥∥
L2(R2)

6 C‖u0‖L2(R), (6)

where δ > 1 is a constant. This shows that solutions to the initial value problem for
ut =

√
−1auxxxx gains extra smoothness of order 3

2
in x, see [3] for instance. We do

not need to make full use of (6) for proving Proposition 2.1. We have only to use the
gain of smoothness of order one for this. This means that Proposition 2.1 is never
sharp, and that the condition given there is too strong. In fact, Mizuhara [18] and
Tarama [27] studied the necessary and sufficient conditions for L2-well-posedness of
the initial value problem for more general higher-order linear dispersive partial dif-
ferential equations in one space dimension. Under the condition in Proposition 2.1,
one can eliminate Im γ(t, x) in (4) exactly by using a gauge transform. However,
we shall actually make the local smoothing effect visible by using another gauge
transform with φ(x). This will be convenient for applying our idea to (1) since the
corresponding problematic terms in (1) are very complicated.

Proof of Proposition 2.1. We shall give only the outline of the energy estimates.
Here we make use of elementary pseudodifferential calculus, see [17] and [28] for
instance. Let r > 0 be a sufficiently large constant. Pick up ϕ(ξ) ∈ C∞(R) such that

ϕ(ξ) = 1 (|ξ| > r + 1), ϕ(ξ) = 0 (|ξ| 6 r).

Here we introduce a pseudodifferential operator Λ = I + Λ̃ of order zero, where I is
the identity operator, and

Λ̃v(x) =
1

2π

∫∫
R2

e
√
−1(x−y)ξλ̃(x, ξ)v(y)dydξ,

λ̃(x, ξ) = Φ(x)
ϕ(ξ)

4aξ
, Φ(x) =

∫ x

0

φ(y)dy.

Denote the set of bounded linear operator of L2(R) to L2(R) by L
(
L2(R)

)
. It is

easy to see that Λ is in L
(
L2(R)

)
, and invertible since Λ = I + O(r−1) provided
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that r is sufficiently large. Indeed the Neumann series I +
∑∞

l=1(−Λ̃)l gives the
inverse operator of Λ. Hence Λ is an automorphism on L2(R).

Set v(t, x) = Λu(t, x), i.e., u = Λ−1v. Apply Λ to (4). Set Dx = −
√
−1 ∂

∂x

for short. Here we denote by L the set of all L2-bounded operators on R. In what
follows, different positive constants are denoted by the same letter C, and different
operators in C(R; L ) are denoted by the same notation P (t). Then we have

Λut = vt,

Λ
√
−1auxxxx =

√
−1a(I + Λ̃)D4

x(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v
=
√
−1aD4

x(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v
+
√
−1aΛ̃D4

x(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v
=
√
−1aD4

xv −
√
−1aD4

xΛ̃(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v
+
√
−1aΛ̃D4

x(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v
=
√
−1aD4

xv +
√
−1a

[
Λ̃, D4

x

]
(I − Λ̃ + Λ̃2 − Λ̃3 + · · · )v

=
√
−1aD4

xv +
√
−1a

[
Λ̃, D4

x

]
v −
√
−1a

[
Λ̃, D4

x

]
Λ̃v + P (t)v,

Λ
√
−1{β(t, x)ux}x =

√
−1{β(t, x)vx}x + P (t)v,

Λγ(t, x)ux = γ(t, x)vx + P (t)v.

Since
√
−1a

[
Λ̃, D4

x

]
= φ(x) ∂2

∂x2
+ 3

2
φ′(x) ∂

∂x
+ P (t), we have

Λ
√
−1auxxxx=

√
−1aD4

xv + φ(x)vxx +
3

2
φ′(x)vx −

√
−1

φ(x)Φ(x)

4a
vx + P (t)v

=
√
−1aD4

xv + {φ(x)vx}x +
1

2
φ′(x)vx −

√
−1

φ(x)Φ(x)

4a
vx + P (t)v.

Combining the above, we obtain

vt =
√
−1avxxxx + {φ(x)vx}x +

√
−1{β(t, x)vx}x

+

{
Re γ(t, x) +

φ′(x)

2

}
vx +

√
−1

{
Im γ(t, x)− φ(x)Φ(x)

4a

}
vx + P (t)v.

Using this, we deduce

d

dt

∫
R
|v|2dx = −2

∫
R
φ(x)|vx|2dx+

√
−1

∫
R
γ1(t, x)(vxv − vvx)dx+

+ 2 Re

∫
R
{P (t)v}vdx,

γ1(t, x) = Im γ(t, x)− φ(x)Φ(x)

4a
.
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Since γ1(t, x) = O
(
φ(x)

)
, the Schwarz inequality implies that

∣∣∣∣∫
R
γ1(t, x)(vxv − vvx)dx

∣∣∣∣ 6 C

{∫
R
φ(x)|vx|2dx

} 1
2
{∫

R
φ(x)|v|2dx

} 1
2

6 C

{∫
R
φ(x)|vx|2dx

} 1
2
{∫

R
|v|2dx

} 1
2

6
∫
R
φ(x)|vx|2dx+ C

∫
R
|v|2dx.

Hence for any T > 0 there exists a constant CT > 0 depending on T > 0 such that

d

dt

∫
R
|v|2dx+

∫
R
φ(x)|vx|2dx 6 CT

∫
R
|v|2dx

for t ∈ [0, T ]. This implies that for t ∈ [0, T ],∫
R
|v(t, x)|2dx+

∫ t

0

eCT (t−s)
(∫

R
φ(x)|vx(t, x)|2dx

)
ds 6 eCT t

∫
R
|v(0, x)|2dx.

The same inequality holds for the negative direction of t. Using these energy esti-
mates, we can prove Proposition 2.1. We omit the details.

3. Parabolic regularization

In this section we shall solve the initial value problem for a regularized equation of
the form

ut =
(
−ε+ aJ(u)

)
∇3
xux

+ {1 + bgu(ux, ux)}J(u)∇xux

+ cgu(∇xux, ux)J(u)ux

in (0,∞)× R, (7)

u(0, x) = u0(x) in R, (8)

where ε is a positive parameter. We shall use a sequence {uε}ε∈(0,1] of the solutions
to (7), (8) to construct a solution to (1), (2) in the next section. The results of this
section are the following.

Lemma 3.1. Let k be an integer not smaller than four. For any initial mapping
u0 ∈ Hk+1(R;TN), there exists a positive number Tε depending only on ε > 0
and ‖u0x‖H4(R;TN) such that the initial value problem (7), (8) has a unique solution
uε ∈ C

(
[0, Tε];H

k+1(R;TN)
)
.
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The equation (7) corresponds to quasilinear parabolic partial differential equa-
tions. It is possible to solve (7)-(8) directly by using the fundamental solution of the
differential operator

∂

∂t
−
(
−ε+ aJ(u)

)(
∇N
du( ∂

∂x
)

)3 ∂

∂x

and so-called the Leray-Schauder fixed point theorem. We embed (7) in an appro-
priate Euclidean space Rd by the Nash isometric embedding w : N → Rd (see e.g.,
[8, 9]), and deal with it as a system of quasilinear partial differential equations. In
particular, we need to take care of the range of solutions to the embedded equation.
Unfortunately, however, the above mentioned approach to (7) seems to be very com-
plicated. For this reason, we consider more regularized initial value problem of the
form

ut = δ∇5
xux +

(
−ε+ aJ(u)

)
∇3
xux

+ {1 + bgu(ux, ux)}J(u)∇xux

+ cgu(∇xux, ux)J(u)ux

in (0,∞)× R, (9)

u(0, x) = u0(x) in R, (10)

and we shall prove Lemma 3.1 elementally. Here δ is a positive parameter. Let
{uε,δ}δ>0 be a sequence of solutions to (9), (10) for any fixed ε > 0. We will get a
sequence of solutions {uε}ε>0 to (7), (8) by the standard compactness arguments as
δ ↓ 0. We first prove the following.

Lemma 3.2. Let k be an integer not smaller than four. For any initial mapping
u0 ∈ Hk+1(R;TN), there exists a positive number Tε,δ depending only on ε > 0,
δ > 0 and ‖u0x‖H4(R;TN) such that the initial value problem (9), (10) has a unique
solution uε,δ ∈ C

(
[0, Tε,δ];H

k+1(R;TN)
)
.

To prove Lemma 3.2, we embed (9), (10) in an appropriate Euclidean space Rd.
Let w ∈ C∞(N ;Rd) be the Nash isometric embedding, and let wr(N) be a tubular
neighborhood of w(N) with sufficiently small r > 0 defined by

wr(N) = {v0 + v1 ∈ Rd | v0 ∈ w(N), v1 ∈ Tv0w(N)⊥, |v1| < r},

where Tv0w(N)⊥ is the orthogonal complement of Tv0w(N) in Tv0Rd ' Rd. The
mapping

Π : wr(N) 3 v0 + v1 7→ v0 ∈ w(N)

is the natural projection. Set ρ(v) = v − Π(v) for v ∈ wr(N).
Let u be a solution to (9), (10). Set v = w(u) for short. Then we have

vt = dw(ut)

= dw
(
δ∇5

xux +
(
−ε+ aJ(u)

)
∇3
xux + · · ·

)
= δvxxxxxx + F (v, vx, vxx, vxxx, vxxxx, vxxxxx),

(11)
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where F ∈ C∞(R6d;Rd) is an appropriate function. Set

F̃ (v) = F (v, vx, vxx, vxxx, vxxxx, vxxxxx)

for short. The initial value problem for (11) with v(0, x) = w
(
u0(x)

)
is equivalent

to an integral equation of the form

v(t) = exp

(
tδ
∂6

∂x6

)
w(u0) +

∫ t

0

exp

(
(t− s)δ ∂

6

∂x6

)
F̃
(
v(s)

)
ds. (12)

We shall solve (12) without considering the range of v, that is, we shall deal with

v(t) = exp

(
tδ
∂6

∂x6

)
w(u0) +

∫ t

0

exp

(
(t− s)δ ∂

6

∂x6

)
F̃
(

Π
(
v(s)

))
ds. (13)

If a solution v to (13) satisfies Π(v) = v, that is, ρ(v) = 0, then v solves (12) and
u = w−1(v) is a solution to (9), (10). Note that for any α > 0, there exists a constant
Cδ,α > 0 depending only on δ and α such that∥∥∥∥exp

(
tδ
∂6

∂x6

)
f

∥∥∥∥
H6−α(R)

6
Cδ,α

t(6−α)/6
‖f‖L2(R), t > 0.

Combining this and the contraction mapping theorem, we can prove the following.

Lemma 3.3. Let k be an integer not smaller than four. For any initial mapping
u0 ∈ Hk+1(R;TN), there exists a positive number Tε,δ depending only on ε > 0,
δ > 0 and ‖u0x‖H4(R;TN) such that the integral equation (13) has a unique solution
v satisfying

v ∈ C
(
[0, Tε,δ]× R;wr(N)

)
, vx ∈ C

(
[0, Tε,δ];H

k(R;Rd)
)
. (14)

We omit the detail of the proof of Lemma 3.3. Here we will complete the proof
of Lemma 3.2.

Proof of Lemma 3.2. Let v be a unique solution to (13) in Lemma 3.3. We have only
to show that ρ(v) = v − Π(v) = 0. Since Π ∈ B∞(Rd;Rd), the smoothness of v
given in (14) implies that

ρ(v) ∈ B
(
[0, Tε,δ]× R;Rd

)
, (15)

ρ(v)x = vx −
∂Π

∂v
(v)vx ∈ C

(
[0, Tε,δ];H

4(R;Rd)
)
, (16)

ρ(v)xx, ρ(v)xxx ∈ C
(
[0, Tε,δ];H

4(R;Rd)
)
, (17)

where B denotes the set of all bounded continuous function. We shall evaluate
|ρ(v)|2 = 〈ρ(v), ρ(v)〉. Fix arbitrary η ∈ (0, 1]. A simple computation gives

d

dt

1

2

∫
R
e−ηx

2|ρ(v)|2dx =

∫
R
e−ηx

2〈ρ(v)t, ρ(v)〉dx. (18)
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Since Π(v)t = ∂Π
∂v

(v)vt ∈ TΠ(v)w(N), ρ(v) ∈ TΠ(v)w(N)⊥, we have

〈Π(v)t, ρ(v)〉 = 0, 〈ρ(v)t, ρ(v)〉 =
〈{
ρ(v)t + Π(v)t

}
, ρ(v)

〉
= 〈vt, ρ(v)〉.

Substituting this into (18), we get

d

dt

1

2

∫
R
e−ηx

2|ρ(v)|2dx =

∫
R
e−ηx

2〈vt, ρ(v)〉dx. (19)

Set u = w−1
(
Π(v)

)
for short. Here we remark that

vt = δvxxxxxx + F̃
(
Π(v)

)
= δρ(v)xxxxxx +

{
δΠ(v)xxxxxx + F̃

(
Π(v)

)}
= δρ(v)xxxxxx + dw

(
δ∇5

xux +
(
−ε+ aJ(u)

)
∇3
xux + · · ·

)
,

(20)

and the second term of the right hand side above belongs to TΠ(v)w(N). Substitut-
ing (20) into (19), we have

d

dt

1

2

∫
R
e−ηx

2|ρ(v)|2dx = δ

∫
R
e−ηx

2〈ρ(v)xxxxxx, ρ(v)〉dx. (21)

In view of the integration by parts, (21) becomes

d

dt

1

2

∫
R
e−ηx

2|ρ(v)|2dx = −δ
∫
R

〈
ρ(v)xxx,

{
e−ηx

2

ρ(v)
}
xxx

〉
dx. (22)

Substituting{
e−ηx

2

ρ(v)
}
xxx

=e−ηx
2

ρ(v)xxx+3
{
e−ηx

2}
x
ρ(v)xx+3

{
e−ηx

2}
xx
ρ(v)x+

{
e−ηx

2}
xxx
ρ(v),{

e−ηx
2}
x
=−2ηxe−ηx

2

,{
e−ηx

2}
xx

=
(
−2η+4η2x2

)
e−ηx

2

,{
e−ηx

2}
xxx

=
(
12η2x−8η3x3

)
e−ηx

2

into (22), we have

d

dt

1

2

∫
R
e−ηx

2|ρ(v)|2dx = −δ
∫
R
e−ηx

2|ρ(v)xxx|2dx

+ δ

∫
R

(
−12η2x+ 8η3x3

)
e−ηx

2〈
ρ(v)xxx, ρ(v)

〉
dx (23)

+ δ

∫
R

(
6η − 12η2x2

)
e−ηx

2〈
ρ(v)xxx, ρ(v)x

〉
dx (24)

+ δ

∫
R

6ηxe−ηx
2〈
ρ(v)xxx, ρ(v)xx

〉
dx. (25)
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Here we recall the smoothness of v as in (15)–(17). Combining η ∈ (0, 1], the
Schwarz inequality for the integration on R and the change of variable y = η

1
2x, we

deduce that

|(23)| 6 12δ

∫
R

(
η2|x|+ η3|x|3

)
e−ηx

2|ρ(v)xxx||ρ(v)|dx

6 Cδη
3
2

∫
R

(
η

1
2 |x|+ η

3
2 |x|3

)
e−ηx

2|ρ(v)xxx|dx

6 Cδη
3
2

∫
R

(
1 + ηx2

) 3
2 e−ηx

2|ρ(v)xxx|dx

6 Cδη
3
2

{∫
R
(1 + ηx2)3e−2ηx2dx

} 1
2

6 Cδη
5
4

{∫
R
(1 + y2)3e−2y2dy

} 1
2

= Cδη
5
4 , (26)

|(24)| 6 12δη

∫
R

(
1 + ηx2

)
e−ηx

2|ρ(v)xxx||ρ(v)x|dx

6 12δη

{
sup
y∈R

(1 + y2)e−y
2

}∫
R
|ρ(v)xxx||ρ(v)x|dx

= Cδη (27)

|(25)| 6 6δη
1
2

∫
R

(
ηx2
) 1

2 e−ηx
2|ρ(v)xxx||ρ(v)xx|dx

6 6δη
1
2

{
sup
y∈R
|y|e−y2

}∫
R
|ρ(v)xxx||ρ(v)xx|dx

= Cδη
1
2 , (28)

where C is a positive constant which is independent of η. Combining (23)–(28), we
deduce that there exists a positive constant C0 which is independent of η such that

d

dt

∫
R
e−ηx

2|ρ(v)|2dx 6 C0δη
1
2 , η ∈ (0, 1], t ∈ [0, Tε,δ].

Since ρ
(
v(0, ·)

)
= ρ

(
w(u0)

)
= 0, we have

∫
R e
−ηx2

∣∣ρ(v(t, x)
)∣∣2dx 6 C0δη

1
2 t.

Applying the Beppo-Levi theorem to this, we deduce that for any fixed t ∈ [0, Tε,δ]

0 6
∫
R

∣∣ρ(v(t, x)
)∣∣2dx = lim

η↓0

∫
R
e−ηx

2∣∣ρ(v(t, x)
)∣∣2dx = 0.

This implies that ρ
(
v(t, ·)

)
belongs to L2(R;Rd) and ρ

(
v(t, x)

)
= 0 a.e. x ∈ R for

any t ∈ [0, Tε,δ]. Thus we deduce that ρ
(
v(t, x)

)
= 0 for any (t, x) ∈ [0, Tε.δ] × R

since v ∈ C
(
[0, Tε.δ]× R;Rd

)
.
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We will conclude the present section with the proof of Lemma 3.1.

Proof of Lemma 3.1. Let {uδ}δ∈(0,1] be a sequence of solutions to (9), (10) with a
fixed parameter ε. We shall show that there exists Tε depending only on ε and
‖u0x‖H4(R;TN) such that {uδ}δ∈(0,1] is bounded in L∞

(
0, Tε;H

k+1(R;TN)
)
. If this

is true, then the standard compact arguments imply that there exists a mapping u such
that u satisfies

u ∈ C
(
[0, Tε];H

k(R;TN)
)⋂

L∞
(
0, Tε;H

k+1(R;TN)
)

and solves (7)-(8) provided that δ ↓ 0. The key of this uniform estimates is also the
smoothing property of the parabolic operator ∂

∂t
+ ε ∂4

∂x4
. By using this property, we

can also prove the uniqueness and the continuity in the time variable, but we omit the
details.

We abbreviate J(uδ) and guδ(·, ·) by J and g(·, ·) respectively. We will evaluate
k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx.

We apply∇l+1
x , l = 0, 1, 2, . . . , k to

uδt = δ∇5
xu

δ
x +

(
−ε+ aJ

)
∇3
xu

δ
x

+ {1 + bg(uδx, u
δ
x)}J∇xu

δ
x + cg(∇xu

δ
x, u

δ
x)Ju

δ
x in (0, Tε,δ)× R.

(29)

We compute this term by term. Let R be the Riemann curvature tensor of (N, J, g).
Note that for the left hand side of (29),

∇t

(
uδx
)

= ∇xu
δ
t , (30)

∇t

(
∇l
xu

δ
x

)
= ∇l+1

x uδt +
l−1∑
m=0

∇l−1−m
x

{
R(uδt , u

δ
x)∇m

x u
δ
x

}
, l = 1, 2, 3, . . . (31)

l−1∑
m=0

∇l−1−m
x

{
R(uδt , u

δ
x)∇m

x u
δ
x

}
= δ

l−1∑
m=0

∇l−1−m
x

{
R
(
∇5
xu

δ
x, u

δ
x

)
∇m
x u

δ
x

}
− ε

l−1∑
m=0

∇l−1−m
x

{
R
(
∇3
xu

δ
x, u

δ
x

)
∇m
x u

δ
x

}
+ a

l−1∑
m=0

∇l−1−m
x

{
R
(
J(uδ)∇3

xu
δ
x, u

δ
x

)
∇m
x u

δ
x

}
+

l−1∑
m=0

∇l−1−m
x

{(
1 + bg(uδx, u

δ
x)
)
R
(
J(uδ)∇xu

δ
x, u

δ
x

)
∇m
x u

δ
x

}
+ c

l−1∑
m=0

∇l−1−m
x

{
g
(
∇xu

δ
x, u

δ
x

)
R
(
J(uδ)uδx, u

δ
x

)
∇m
x u

δ
x

}
.
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Hence,

l−1∑
m=0

∇l−1−m
x

{
R(uδt , u

δ
x)∇m

x u
δ
x

}
= δ∇x

{
R
(
∇l+3
x uδx, u

δ
x

)
uδx

}
+ δO

(
g
(
∇l+3
x uδx,∇l+3

x uδx
) 1

2

)
+O

(
2∑

α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2

)

+O

(
l∑

m=0

g
(
∇m
x u

δ
x,∇m

x u
δ
x

) 1
2

)
.

(32)

Here we used the Sobolev embedding. On the other hand, we have

∇l+1
x uδt = δ∇6

x

(
∇l
xu

δ
x

)
+
(
−ε+ aJ(uδ)

)
∇4
x

(
∇l
xu

δ
x

)
+ J(uδ)∇2

x

(
∇l
xu

δ
x

)
+ b

l+1∑
µ+ν=0

(l+1)!

µ!ν!(l+1−µ−ν)!
g
(
∇µ
xu

δ
x,∇ν

xu
δ
x

)
J(uδ)∇l+2−µ−ν

x uδx

+ c
l+1∑

µ+ν=0

(l+1)!

µ!ν!(l+1−µ−ν)!
g
(
∇µ+1
x uδx,∇ν

xu
δ
x

)
J(uδ)∇l+1−µ−ν

x uδx

= δ∇6
x

(
∇l
xu

δ
x

)
+
(
−ε+ aJ(uδ)

)
∇4
x

(
∇l
xu

δ
x

)
+ J(uδ)∇2

x

(
∇l
xu

δ
x

)
+ bQ1 + cQ2. (33)

We modify Q1 and Q2 a little for the sake of convenience for our energy estimates:

Q1 =
l+1∑

µ+ν=0

(l + 1)!

µ!ν!(l + 1− µ− ν)!
g
(
∇µ
xu

δ
x,∇ν

xu
δ
x

)
J(uδ)∇l+2−µ−ν

x uδx

= g(uδx, u
δ
x)J(uδ)∇2

x

(
∇l
xu

δ
x

)
+ 2g

(
∇x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)∇xu

δ
x

+ 2(l + 1)g
(
∇xu

δ
x, u

δ
x

)
J(uδ)∇x

(
∇l
xu

δ
)

+
l+1∑

µ+ν=2
µ,ν6l

(l + 1)!

µ!ν!(l + 1− µ− ν)!
g
(
∇µ
xu

δ
x,∇ν

xu
δ
x

)
J(uδ)∇l+2−µ−ν

x uδx

= ∇x

{
g(uδx, u

δ
x)J(uδ)∇x

(
∇l
xu

δ
x

)}
+ 2g

(
∇x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)∇xu

δ
x

+ 2lg
(
∇xu

δ
x, u

δ
x

)
J(uδ)∇x

(
∇l
xu

δ
)

+
l+1∑

µ+ν=2
µ,ν6l

(l + 1)!

µ!ν!(l + 1− µ− ν)!
g
(
∇µ
xu

δ
x,∇ν

xu
δ
x

)
J(uδ)∇l+2−µ−ν

x uδx (34)
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and

Q2 =
l+1∑

µ+ν=0

(l + 1)!

µ!ν!(l + 1− µ− ν)!
g
(
∇µ+1
x uδx,∇ν

xu
δ
x

)
J(uδ)∇l+1−µ−ν

x uδx

= g
(
∇xu

δ
x, u

δ
x

)
J(uδ)∇x

(
∇l
xu

δ
x

)
+ g
(
∇2
x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)uδx

+ (l + 1)g
(
∇x

(
∇l
xu

δ
x

)
,∇xu

δ
x

)
J(uδ)uδx

+ (l + 1)g
(
∇x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)∇xu

δ
x

+ g
(
∇xu

δ
x,∇x

(
∇l
xu

δ
x

))
J(uδ)uδx

+
∑

µ+ν+ρ=l+1
µ6l−1, ν,ρ6l

(l + 1)!

µ!ν!ρ!
g
(
∇µ+1
x uδx,∇ν

xu
δ
x

)
J(uδ)∇ρ

xu
δ
x

= ∇x

{
g
(
∇x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)uδx

}
+ g
(
∇xu

δ
x, u

δ
x

)
J(uδ)∇x

(
∇l
xu

δ
x

)
+ (l + 1)g

(
∇x

(
∇l
xu

δ
x

)
,∇xu

δ
x

)
J(uδ)uδx

+ lg
(
∇x

(
∇l
xu

δ
x

)
, uδx

)
J(uδ)∇xu

δ
x

+
∑

µ+ν+ρ=l+1
µ6l−1, ν,ρ6l

(l + 1)!

µ!ν!ρ!
g
(
∇µ+1
x uδx,∇ν

xu
δ
x

)
J(uδ)∇ρ

xu
δ
x. (35)

Combining (30)–(35), we have

∇t

(
∇l
xu

δ
x

)
= δ∇6

x

(
∇l
xu

δ
x

)
+
(
−ε+ J(uδ)

)
∇4
x

(
∇l
xu

δ
x

)
+ δ∇x

{
R
(
∇l+3
x uδx, u

δ
x

)
uδx

}
+ δO

(
g
(
∇l+3
x uδx,∇l+3

x uδx
) 1

2

)
+O

(
2∑

α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2

)

+O

(
l∑

m=0

g
(
∇m
x u

δ
x,∇m

x u
δ
x

) 1
2

)
. (36)

Now we compute

d

dt

1

2

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx =

k∑
l=0

∫
R
g
(
∇t∇l

xu
δ
x,∇l

xu
δ
x

)
dx.

Substitute (36) into this. Using the integration by parts and the property of J , we
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have

d

dt

1

2

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx

=−δ
k∑
l=0

∫
R
g
(
∇3
x

(
∇l
xu

δ
x

)
,∇3

x

(
∇l
xu

δ
x

))
dx− ε

k∑
l=0

∫
R
g
(
∇2
x

(
∇l
xu

δ
x

)
,∇2

x

(
∇l
xu

δ
x

))
dx

−δ
k∑
l=0

∫
R
g
(
R
(
∇l+3
x uδx, u

δ
x

)
uδx,∇x

(
∇l
xu

δ
x

))
dx

+δ
k∑
l=0

∫
R
O
(
g
(
∇l+3
x uδx,∇l+3

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2

)
dx

+
k∑
l=0

∫
R
O
( 2∑
α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2

)
dx

+
k∑
l=0

∫
R
O
(
g
(
∇l
xu

δ
x,∇l

xu
δ
x

))
dx

=−δ
k∑
l=0

∫
R
g
(
∇3
x

(
∇l
xu

δ
x

)
,∇3

x

(
∇l
xu

δ
x

))
dx− ε

k∑
l=0

∫
R
g
(
∇2
x

(
∇l
xu

δ
x

)
,∇2

x

(
∇l
xu

δ
x

))
dx

+δ
k∑
l=0

∫
R
O
( 1∑
β=0

g
(
∇l+3
x uδx,∇l+3

x uδx
) 1

2 g
(
∇l+β
x uδx,∇l+β

x uδx
) 1

2

)
dx

+
k∑
l=0

∫
R
O
( 2∑
α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2

)
dx

+
k∑
l=0

∫
R
O
(
g
(
∇l
xu

δ
x,∇l

xu
δ
x

))
dx. (37)

Integration by parts, the Schwarz inequality and an elementary inequality
2ab 6 a2 + b2 for a, b > 0 give

k∑
l=0

∫
R
g
(
∇l+1
x uδx,∇l+1

x uδx
)
dx

= −
k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l

xu
δ
x

)
dx

6
k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2dx

6
ε

2

k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
)
dx+

1

2ε

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx,
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k∑
l=0

∫
R
O
(
g
(
∇l+2
x uδx,∇l+2

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2

)
dx

6 C

k∑
l=0

∫
R

(
g
(
∇l+2
x uδx,∇l+2

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2dx

6
ε

2

k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
)
dx+

C2

2ε

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx.

Using this and an elementary inequality 2ab 6 a2 + b2 for a, b > 0 again, we obtain∣∣∣∣∣δ
k∑
l=0

∫
R
O
( 1∑
β=0

g
(
∇l+3
x uδx,∇l+3

x uδx
) 1

2 g
(
∇l+β
x uδx,∇l+β

x uδx
) 1

2

)
dx

∣∣∣∣∣
6
δ

2

k∑
l=0

∫
R
g
(
∇l+3
x uδx,∇l+3

x uδx
)
dx

+ Cδ

k∑
l=0

∫
R
g
(
∇l+1
x uδx,∇l+1

x uδx
)
dx+ Cδ

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx

6
δ

2

k∑
l=0

∫
R
g
(
∇l+3
x uδx,∇l+3

x uδx
)
dx+

ε

2

k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
)
dx

+

(
C2δ2

2ε
+ Cδ

) k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx, (38)∣∣∣∣∣

k∑
l=0

∫
R
O
( 2∑
α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2

)
dx

∣∣∣∣∣
6 C

k∑
l=0

∫
R

2∑
α=1

g
(
∇l+α
x uδx,∇l+α

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2dx

= C
k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2dx

+ C
k∑
l=0

∫
R
g
(
∇l+1
x uδx,∇l+1

x uδx
) 1

2 g
(
∇l
xu

δ
x,∇l

xu
δ
x

) 1
2dx

6
(ε

4
+
ε

4

) k∑
l=0

∫
R
g
(
∇l+2
x uδx,∇l+2

x uδx
)
dx

+

(
C2

ε
+
C2

2ε

) k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx. (39)
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Substitute (38), (39) into (37). We deduce that there exists a positive constant C(ε)
depending only on ε ∈ (0, 1] and ‖u0x‖H4(R;TN) such that

1

2

d

dt

k∑
l=0

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx 6 C(ε)

∫
R
g
(
∇l
xu

δ
x,∇l

xu
δ
x

)
dx, t ∈ [0, Tε,δ].

This implies that there exists Tε > 0 depending only on ε ∈ (0, 1] and ‖u0x‖H4(R;TN)

such that {uδ}δ∈(0,1] is bounded in L∞(0, Tε;H
k(R;TN)). The standard compact-

ness arguments shows the existence of solution to (7), (8). The uniqueness and the
continuity in time of solutions can be proved by the same energy method. We omit
the details.

4. Uniform energy estimates

In this section we shall obtain uniform energy estimates of {uε}ε∈(0,1], and construct a
time-local solution to (1), (2) by the standard compactness argument. More precisely
we shall show that there exists T > 0 which is independent of ε such that Tε > T and
that {uε}ε∈(0,1] is bounded in L∞

(
0, T ;Hk+1(R;TN)

)
. For this purpose, we need to

overcome the loss of one derivative and introduce a gauge transform of sections of
the pullback bundle (uε)−1TN of the form

V ε
k = ∇k

xu
ε
x +

M

4a
Φε(t, x)J(uε)∇k−1

x uεx,

Φε(t, x) =

∫ x

−∞
g
(
uεy(t, y), uεy(t, y)

)
dy,

(40)

where M is a positive constant determined later. The second term of the right hand
side of (40) corresponds to the pseudodifferential operator Λ̃ introduced in Section 2.
We will obtain the uniform bounds of

N (uε)2 =

∫
R

{
g(V ε

k , V
ε
k ) +

k−1∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

)}
dx.

In view of the Sobolev embedding with k > 4, it is easy to see that {N (uε)}ε∈(0,1] is
bounded in L∞(0, T ) if and only if {uε}ε∈(0,1] is bounded in L∞(0, T ;Hk(R;TN)).
Hence we shall show that there exists T > 0 which is independent of ε ∈ (0, 1] such
that Tε > T and that {N (uε)}ε∈(0,1] is bounded in L∞(0, T ).

Proof of existence. Let k > 4. Firstly we compute the energy estimates for ∇l
xu

ε
x

with l = 0, 1, . . . , k − 1. In the same way as the previous section we have for
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l = 0, 1, . . . , k

∇t∇l
xu

ε
x =

(
−ε+ aJ(uε)

)
∇4
x

(
∇l
xu

ε
x

)
+ J(uε)∇2

x

(
∇l
xu

ε
x

)
+∇x

{
R
((
−ε+ aJ(uε)

)
∇x

(
∇l
xu

ε
x

)
, ux

)
uεx

+ bg(uεx, u
ε
x)J(uε)∇x

(
∇l
xu

ε
x

)
+ cg

(
∇x

(
∇l
xu

ε
x

)
, uεx

)
J(uε)uεx

}
+O

(
g
(
∇x

(
∇l
xu

ε
x

)
,∇x

(
∇l
xu

ε
x

)) 1
2
g
(
∇xu

ε
x,∇xu

ε
x

) 1
2 g(uεx, u

ε
x)

1
2

)
+O

(
l∑

j=0

g
(
∇j
xu

ε
x,∇j

xu
ε
x

) 1
2

)
. (41)

Applying the integration by parts to the second term of the right hand side of the
above for l = 0, 1, . . . , k − 1, we deduce that

d

dt

k−1∑
l=0

∫
R
g
(
∇l
xu

ε
x,∇l

xu
ε
x

)
dx

6 −2ε
k−1∑
l=0

∫
R
g
(
∇l+2
x uεx,∇l+2

x uεx
)
dx+ C1N (uε)2,

(42)

where C1 is a positive constant which is independent of ε ∈ (0, 1].
Secondly we consider the energy estimates for V ε

k . For this purpose we shall
obtain the partial differential equation satisfied by Vk. The principal part of V ε

k is
∇k
xu

ε
x and satisfies (41) with l = k. We shall obtain the equation for the lower order

term of V ε
k . We begin with

∇t

(
M

4a
Φε(t, x)∇k−1

x uεx

)
=
M

4a
Φε(t, x)∇t∇k−1

x uεx +

{
M

2a

∫ x

−∞
g
(
∇tu

ε
x, u

ε
x

)
dy

}
∇k−1
x uεx.

(43)

Substitute (41) into the right hand side of (43). The first term of it becomes

M

4a
Φε(t, x)∇t∇k−1

x uεx

=
M

4a
Φε(t, x)

[(
−ε+ aJ(uε)

)
∇4
x

(
∇k−1
x uεx

)
+ J(uε)∇2

x

(
∇k−1
x uεx

)
+∇x

{
R
((
−ε+ aJ(uε)∇k

xu
ε
x, ux

))
uεx + bg(uεx, u

ε
x)J(uε)∇k

xu
ε
x

+ cg
(
∇k
xu

ε
x, u

ε
x

)
J(uε)uεx

}
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)]
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=
(
−ε+ aJ(uε)

)
∇4
x

{
M

4a
Φε(t, x)∇k−1

x uεx

}
J(uε)∇2

x

{
M

4a
Φε(t, x)∇k−1

x uεx

}
−
(
−ε+ aJ(uε)

) 4∑
j=1

4!

j!(4− j)!

{
∂j

∂xj
Φε(t, x)

}
M

4a
∇k+3−j
x uεx

− J(uε)
2∑
j=1

2!

j!(2− j)!

{
∂j

∂xj
Φε(t, x)

}
M

4a
∇k+1−j
x uεx

+O
(
g
(
∇k+1
x uεx,∇k+1

x uεx
) 1

2 g(uεx, u
ε
x)

1
2

)
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)
. (44)

Since {Φε}x = g(uεx, u
ε
x),

4∑
j=1

4!

j!(4− j)!

{
∂j

∂xj
Φε(t, x)

}
M

4a
∇k+3−j
x uεx

=
M

a
∇x

{
g(uεx, u

ε
x)∇k+1

x uεx

}
+O

(
g
(
∇k+1
x uεx,∇k+1

x uεx
) 1

2 g(uεx, u
ε
x)

1
2

)
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)
.

Substituting this into (44), we have

M

4a
Φε(t, x)∇t∇k−1

x uεx

=
(
−ε+ aJ(uε)

)
∇4
x

{
M

4a
Φε(t, x)∇k−1

x uεx

}
+ J(uε)∇2

x

{
M

4a
Φε(t, x)∇k−1

x uεx

}
−M

(
−ε
a

+ J(uε)
)
∇x

{
g(uεx, u

ε
x)∇k+1

x uεx

}
+O

(
g
(
∇k+1
x uεx,∇k+1

x uεx
) 1

2 g(uεx, u
ε
x)

1
2

)
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)
. (45)

On the other hand,{
M

2a

∫ x

−∞
g
(
∇tu

ε
x, u

ε
x

)
dy

}
∇k−1
x =

{
M

2a

∫ x

−∞
g
(
−ε∇4

xu
ε
x + · · · , uεx

)
dy

}
∇k−1
x

= O
(
‖uεx‖2

H4

)
∇k−1
x . (46)
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Multiply (43) by J(uε), and substitute (45) and (46) into it. We deduce

∇t

(
M

4a
Φε(t, x)J(uε)∇k−1

x uεx

)
=
(
−ε+ aJ(uε)

)
∇4
x

{
M

4a
Φε(t, x)J(uε)∇k−1

x uεx

}
+ J(uε)∇2

x

{
M

4a
Φε(t, x)J(uε)∇k−1

x uεx

}
+M

(
1 +

ε

a
J(uε)

)
∇x

{
g(uεx, u

ε
x)∇k+1

x uεx

}
+O

(
g
(
∇k+1
x uεx,∇k+1

x uεx
) 1

2 g(uεx, u
ε
x)

1
2

)
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)
. (47)

Combining (41) with l = k and (47), we obtain

∇tVk=
(
−ε+ aJ(uε)

)
∇4
xV

ε
k + J(uε)∇2

xV
ε
k

+M
(

1 +
ε

a
J(uε)

)
∇x

{
g(uεx, u

ε
x)∇xV

ε
k

}
+∇x

{
R
((
−ε+ aJ(uε)

)
∇x

(
∇k
xu

ε
x

)
, ux

)
uεx

+ bg(uεx, u
ε
x)J(uε)∇x

(
∇k
xu

ε
x

)
+ cg

(
∇x

(
∇k
xu

ε
x

)
, uεx

)
J(uε)uεx

}
+O

(
g
(
∇k+1
x uεx,∇k+1

x uεx
) 1

2 g(uεx, u
ε
x)

1
2

)
+O

(
k∑
l=0

g
(
∇l
xu

ε
x,∇l

xu
ε
x

) 1
2

)
. (48)

By using (48) and integration by parts, we deduce that there exists positive con-
stants C2 and C3 which are independent of ε ∈ (0, 1] such that

d

dt

∫
R
g(V ε

k , V
ε
k )dx = 2

∫
R
g
(
∇tV

ε
k , V

ε
k

)
dx

6 −2ε

∫
R
g
(
∇2
xV

ε
k ,∇2

xV
ε
k

)
dx+ C3N (uε)2

− (2M − C2)

∫
R
g(uεx, u

ε
x)g
(
∇xV

ε
k ,∇xV

ε
k

)
dx. (49)

Combining (42) and (49), we deduce that there exists a positive constant C4 which is
independent of ε ∈ (0, 1] such that

d

dt
N (uε) 6 C4N (uε) and N

(
uε(t)

)
6 N (u0)eC4t, t ∈ [0, Tε]

provided that M is sufficiently large. This shows that there exists a positive time
T such that T 6 Tε and that {uε}ε∈(0,1] is bounded in L∞(0, T ;Hk+1(R;TN)).
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Thus by using the standard compactness argument, we can deduce that there exists
a function u ∈ L∞(0, T ;Hk+1(R;TN)) solving (1), (2). Moreover, the lower semi-
continuity of the norm shows that

N
(
u(t)

)
6 N (u0)eC4t, t ∈ [0, T ], (50)

which will be used in the next section.

5. Uniqueness and continuity in time

Finally in this section we prove the uniqueness of solution and recover the continuity
of the unique solution in time.

Proof of uniqueness. Let u, v ∈ C
(
[0, T ]×R;N

)
∩L∞

(
0, T ;H7(R;TN)

)
be solu-

tions to (1), (2). Set

U = w(u), Ũ = dw(ũ), ũ = ∇xux +
M

4a
Φ(t, x)J(u)ux,

V = w(v), Ṽ = dw(ṽ), ṽ = ∇xvx +
M

4a
Φ(t, x)J(v)vx,

φ(t, x) =
2∑
l=0

{
gu
(
∇l
xux(t, x),∇l

xux(t, x)
)

+ gv
(
∇l
xvx(t, x),∇l

xvx(t, x)
)}
,

Φ(t, x) =

∫ x

−∞
φ(t, y)dy.

It suffices to show that U(t, x)=V (t, x) on [0, T ]×R for sufficiently small T >0. For
this reason, we may assume that U(t, x) and V (t, x) are in the same local coordinate
patch on w(N) for each (t, x) ∈ [0, T ]× R. Note that

Ut = dw(ut), Ux = dw(ux), Vt = dw(vt), Vx = dw(vx).

We shall obtain the partial differential equations satisfied by Z = U − V , Zx =
Ux − Vx and Z̃ = Ũ − Ṽ , and evaluate

D(t)2 =
1

2

∫
R

{
|Z(t, x)|2 + |Zx(t, x)|2 + |Z̃(t, x)|2

}
dx.

Note that D(0)=0. In the same way as the uniform energy estimates in the previous
section, the highest order derivative Z̃ gains extra smoothness to obtain the energy
estimates. In what follows different positive constants are denoted by the same let-
ter C.

First we compute the image of (1) by dw for the estimate of Z and Zx. Let νj(U),
(j = 2n + 1, . . . , d) be local expression of an orthonormal basis of TUw(N)⊥. Let
P (U) : TURd → TUw(N) be the orthogonal projection. Set

J̃(U)ξ = dw
(
J
(
w−1(U))dw−1(ξ)

)
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for ξ ∈ TUw(N). We shall obtain the expression of dw
(
J(u)∇3

xux
)
. By using

∇xJ(u) = 0 and dw(∇x · · · ) = P (U){dw(· · · )}x, we deduce that

dw
(
J(u)∇3

xux
)

= dw
(
∇2
x

(
J(u)∇xux

))
= P (U)

[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x

=
[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x

−
d∑

j=2n+1

〈[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x
, νj(U)

〉
νj(U). (51)

Since 〈P (U) · · · , νj(U)〉 = 0, j = 2n+ 1, . . . , d, we have〈[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x
, νj(U)

〉
= −

〈
P (U)

{
J̃(U)P (U)Uxx

}
x
,
∂νj
∂U

(U)Ux

〉
.

Then, the equality (51) becomes

dw
(
J(u)∇3

xux
)

=
[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x

+
d∑

j=2n+1

〈
P (U)

{
J̃(U)P (U)Uxx

}
x
,
∂νj
∂U

(U)Ux

〉
νj(U).

In the same way, we obtain

dw
(
J(u)∇3

xux
)

= dw
(
∇x

(
J(u)∇2

xux
))

= P (U)
[
J̃(U)P (U)

{
P (U)Uxx

}
x

]
x
.

It is relatively easy to compute the image of the second and the third terms of the
right hand side of (1) by dw. Thus we obtain

Ut = a
[
P (U)

{
J̃(U)P (U)Uxx

}
x

]
x

+ a
d∑

j=2n+1

〈
P (U)

{
J̃(U)P (U)Uxx

}
x
,
∂νj
∂U

(U)Ux

〉
νj(U)

+
{

1 + b〈Ux, Ux〉
}
J̃(U)P (U)Uxx + c

〈
P (U)Uxx, Ux

〉
J̃(U)Ux (52)

= aP (U)
[
J̃(U)P (U)

{
P (U)Uxx

}
x

]
x

+
{

1 + b〈Ux, Ux〉
}
J̃(U)P (U)Uxx + c

〈
P (U)Uxx, Ux

〉
J̃(U)Ux. (53)
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Using (52), we have

Zt = a
[
P (U)

{
J̃(U)P (U)Zxx

}
x

]
x

+ a
[
P (U)

{
J̃(U)P (U)Vxx

}
x
− P (V )

{
J̃(V )P (V )Vxx

}
x

]
x

+ a

d∑
j=2n+1

〈
P (U)

{
J̃(U)P (U)Zxx

}
x
,
∂νj
∂U

(U)Ux

〉
νj(U)

+ a

d∑
j=2n+1

[〈
P (U)

{
J̃(U)P (U)Vxx

}
x
,
∂νj
∂U

(U)Ux

〉
νj(U)

−
〈
P (V )

{
J̃(V )P (V )Vxx

}
x
,
∂νj
∂V

(V )Vx

〉
νj(V )

]
+O

(
|Zxx|+ |Zx|+ |Z|

)
= a
[
P (U)

{
J̃(U)P (U)Zxx

}
x

]
x

+O
(
|Ux||Zxxx|+ |Zxx|+ |Zx|+ |Z|

)
. (54)

Similarly, using (53), we have

Zt = aP (U)
[
J̃(U)P (U)

{
P (U)Zxx

}
x

]
x

+O
(
|Zxx|+ |Zx|+ |Z|

)
. (55)

It follows that Z ∈ C1
(
[0, T ];L2(R;Rd)

)
from Zt ∈ C

(
[0, T ];L2(R;Rd)

)
and

Z(0) = 0 ∈ L2(R;Rd). In particular, Z(t) ∈ L2(R;Rd) for all t ∈ [0, T ] is guaran-
teed. By using (54) and integration by parts, we deduce

d

dt

1

2

∫
R
|Z|2dx =

∫
R
〈Zt, Z〉dx

= a

∫
R

〈[
P (U)

{
J̃(U)P (U)Zxx

}
x

]
x
, Z
〉
dx

+

∫
R

〈
O
(
|Zxxx|+ |Zxx|+ |Zx|+ |Z|

)
, Z
〉
dx

= −a
∫
R

〈
P (U)

{
J̃(U)P (U)Zxx

}
x
, Zx

〉
dx

+O
(∫

R

(
|Zxx|2 + |Zx|2 + |Z|2

)
dx

)
= a

∫
R

〈
J̃(U)P (U)Zxx,

{
P (U)Zx

}
x

〉
dx

+O
(∫

R

(
|Zxx|2 + |Zx|2 + |Z|2

)
dx

)
6 CD(t)2. (56)
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By using (55), we deduce

d

dt

1

2

∫
R
|Zx|2dx =

∫
R
〈Zxt, Zx〉dx

= −
∫
R
〈Zt, Zxx〉dx

= −a
∫
R

〈
P (U)

[
J̃(U)P (U)

{
P (U)Zxx

}
x

]
x
, Zxx

〉
dx+O

(
D(t)2

)
= a

∫
R

〈
J̃(U)P (U)

{
P (U)Zxx

}
x
,
{
P (U)Zxx

}
x

〉
dx+O

(
D(t)2

)
= O

(
D(t)2

)
6 CD(t)2. (57)

Next we shall obtain the equation for Z̃ and evaluate it. The equation for ũ is

∇tũ=aJ(u)∇4
xũ+J(u)∇2

xũ+M∇x

{
φ(t, x)∇xũ

}
+∇x

[
R
(
J(u)∇xũ, ux

)
ux+bgu(ux, ux)J(u)∇xũ+cgu(∇xũ, ux)J(u)ux

]
+O

(
|ux||∇xũ||ũ|+|ũ|+|ux|+|u|

)
. (58)

Set ξ(u) as the right hand side of (1) for short. We have

dw
(
ξ(u)

)
= O

(
|Ũxx|+ |Ũx|+ |Ũ |+ |Ux|

)
.

We compute the image of (58) by dw. Since
〈
Ũ , νj(U)

〉
= 0, the left hand side

of (58) becomes

dw(∇tũ) = Ũt −
d∑

j=2n+1

〈
Ũt, νj(U)

〉
νj(U)

= Ũt +
d∑

j=2n+1

〈
Ũ ,

∂νj
∂U

(U)Ut

〉
νj(U)

= Ũt +
d∑

j=2n+1

〈
Ũ ,

∂νj
∂U

(U)dw
(
ξ(u)

)〉
νj(U)

= Ũt +
d∑

j=2n+1

〈
Ũ ,O

(
|Ũxx|+ |Ũx|+ |Ũ |+ |Ux|

)〉
νj(U). (59)
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In the same way as (53) together with (58) and (59), we deduce that

Ũt = aP (U)
[
P (U)

{
J̃(U)P (U)

(
P (U)Ũx

)
x

}
x

]
x

+ P (U)
{
J̃(U)P (U)Ũx

}
x

+M
(
φ(t, x)Ũx

)
x

+
d∑

j=2n+1

〈
Ũ ,O

(
|Ũxx|+ |Ũx|+ |Ũ |+ |Ux|

)〉
νj(U)

+O
((
φ(t, x)Ũx

)
x

)
+O

(
φ(t, x)

1
2 |Ũx|+ |Ũ |+ |Ux|

)
.

Taking the difference between the equations for Ũ and Ṽ , we obtain

Z̃t = aP (U)
[
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x

]
x

+ P (U)
{
J̃(U)P (U)Z̃x

}
x

+M
(
φ(t, x)Z̃x

)
x

+
d∑

j=2n+1

〈
Ũ,O

(
|Z̃xx|

)〉
νj(U)

+O
((
φ(t, x)Z̃x

)
x

)
+O

(
φ(t, x)

1
2 |Z̃x|+ |Z̃|+ |Zx|+ |Z|

)
.

Using this and integration by parts, we deduce that there exists a positive constant C1

such that
d

dt

1

2

∫
R
〈Z̃, Z̃〉dx =

∫
R
〈Z̃t, Z̃〉dx

6 a

∫
R

〈
P (U)

[
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x

]
x
, Z̃
〉
dx (60)

+

∫
R

〈
P (U)

{
J̃(U)P (U)Z̃x

}
x
, Z̃
〉
dx (61)

+
d∑

j=2n+1

∫
R
O
(
φ(t, x)

1
2 |Z̃xx|

)
〈νj(U), Z̃〉dx (62)

− (M − C1)

∫
R
φ(t, x)|Z̃x|2dx+ CD(t)2.

We will evaluate (60), (61) and (62), respectively. First we remark that

〈νj(U), Z̃〉=〈νj(U), Ũ−Ṽ 〉=−〈νj(U),Ṽ 〉=−〈νj(U)−νj(V ),Ṽ 〉=O
(
φ(t, x)

1
2Z
)

(63)

since
〈
νj(U), Ũ

〉
= 0 and

〈
νj(V ), Ṽ

〉
= 0. Applying (63) and integration by parts

to (62), we have
(62) 6 CD(t)2. (64)

Here we note that〈[
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x

]
x
, νj(U)

〉
= −

〈
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x
,
∂νj
∂U

(U)Ux

〉 (65)
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since
〈
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x
, νj(U)

〉
= 0.Applying integration by parts,

(63) and (65) to (60), we have

(60) = a

∫
R

〈[
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x

]
x
, Z̃
〉
dx

− a
d∑

j=2n+1

∫
R

〈[
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x

]
x
, νj(U)

〉〈
νj(U), Z̃

〉
dx

= −a
∫
R

〈{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x
, P (U)Z̃x

〉
dx

+ a

d∑
j=2n+1

∫
R

〈
P (U)

{
J̃(U)P (U)

(
P (U)Z̃x

)
x

}
x
,
∂νj
∂U

(U)Ux

〉〈
νj(U), Z̃

〉
dx

= a

∫
R

〈
J̃(U)P (U)

(
P (U)Z̃x

)
x
,
(
P (U)Z̃x

)
x

〉
dx

+

∫
R
O
(
φ(t, x)

1
2

(
|Z̃xxx|+ |Z̃xx|+ |Z̃x|

))
O
(
φ(t, x)

1
2Z
)
dx

=

∫
R
O
(
φ(t, x)|Z̃x|2 + |Z̃|2 + |Zx|2 + |Z|2

)
dx

6 C2

∫
R
φ(t, x)|Z̃x|2dx+ CD(t)2. (66)

Using integration by parts, we have

(61) = −
∫
R

〈
J̃(U)P (U)Z̃x, P (U)Z̃x

〉
−
∫
R

〈
J̃(U)P (U)Z̃x,

∂P

∂U
(U)UxZ̃

〉
=

∫
R
O
(
φ(t, x)

1
2 |Z̃x||Z̃|

)
dx

6 C3

∫
R
φ(t, x)|Z̃x|2dx+ CD(t)2. (67)

Combining (64), (66) and (67), we obtain

d

dt

1

2

∫
R
|Z̃|2dx 6 −(M −C1−C2−C3)

∫
R
φ(t, x)|Z̃x|2 +CD(t)2 6 CD(t)2 (68)

provided that M is sufficiently large. Combining (56), (57) and (68), we have

d

dt
D(t)2 6 CD(t)2, D(0)2 = 0,

which implies that D(t)2 ≡ 0. This completes the proof of the uniqueness of solu-
tions.

Finally, we shall prove the continuity of the unique solution in time.
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Proof of continuity in time. Let k be an integer not smaller than six, and let u be a
unique solution to the initial value problem satisfying u ∈ L∞(0, T ;Hk+1(R;TN)).
By using the equation (1), we deduce that ut ∈ L∞(0, T ;Hk−3(R;TN)) and u ∈
C([0, T ];Hk−3(R;TN)). Moreover, by using the interpolation technique, we can
deduce that u ∈ C([0, T ];Hk(R;TN)) and that u isHk+1-valued continuous weakly.
Set

Vk = ∇k
xux +

M

4a
Φ(t, x)J(u)∇k−1

x ux,

Φ(t, x) =

∫ x

−∞
g
(
uy(t, y), uy(t, y)

)
dy,

N (u)2 =

∫
R

{
g(Vk, Vk) +

k−1∑
l=0

g
(
∇l
xux,∇l

xux
)}

dx,

where M is a positive constant determined in Section 4. It suffices to show that Vk is
L2(R;TN)-valued continuous at t = 0. It is easy to see that Vk is L2(R;TN)-valued
continuous weakly and that∫

R
g(Vk(0), Vk(0))dx 6 lim inf

t↓0

∫
R
g(Vk(t), Vk(t))dx.

By using (50) and u ∈ C([0, T ];Hk(R;TN)), we deduce

lim sup
t↓0

∫
R
g(Vk(t), Vk(t))dx 6

∫
R
g(Vk(0), Vk(0))dx.

Hence
lim
t↓0

∫
R
g(Vk(t), Vk(t))dx =

∫
R
g(Vk(0), Vk(0))dx.

Combining this and weak continuity, we deduce that Vk is L2(R;TN)-valued con-
tinuous at t = 0.
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