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with Normal Compliance, Friction and

Material Damage
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Abstract. This work studies a model for quasistatic frictional contact between a
viscoelastic body and a reactive foundation. The constitutive law is assumed to be
nonlinear and contains damage effects modeled by a parabolic differential inclusion.
Contact is described by the normal compliance condition and a subdifferential fric-
tional condition. A variational-hemivariational formulation of the problem is provided
and the existence and uniqueness of its solution is proved. The proof is based on a
surjectivity result for pseudomonotone coercive operators and a fixed point argument.

Keywords. Quasistatic contact, nonlinear viscoelastic material, normal compliance,
subdifferential friction condition, damage, variational-hemivariational inequality

Mathematics Subject Classification (2010). Primary 47J20, secondary 47J22,
74M10, 74M15, 70K75

1. Introduction

We study a mathematical model for the process of quasistatic evolution in
which a viscoelastic body or component comes in frictional contact with a reac-
tive foundation, when material damage may develop. It extends the model that
has been developed and analyzed in [18] by replacing the Coulomb frictional
contact condition with a more general subdifferential condition. Thus, it may be
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applied to a wider range of friction conditions. We establish, under reasonably
general assumptions on the problem data, the existence of the unique variational
solution of the model. The novelty here is that the boundary conditions are
multivalued of the general subdifferential type.

Recent models for mechanical damage derived from thermomechanical con-
siderations can be found in [15, 27] (see also [8] for additional information and
references). Material damage refers to the phenomena in a solid body in which
microcracks and microcavities open and grow as a result of the internal strains
and stresses. This leads to the gradual or possibly rapid decrease in the load
carrying capacity of the body, leading eventually to the breaking of the system.
The concept of material damage is closely related to that of fatigue, but is more
general. Indeed, fatigue in a mechanical system is associated with many cycles
of loading and unloading, or forcing cycles, while damage includes it, but also
allows for rapid deterioration of the mechanical integrity of the system. Re-
cent mathematical results for problems with material damage can be found in
[9, 17, 20–22, 26, 29] and the many references therein. Mathematical analysis of
one-dimensional problems with damage appeared in [1, 2, 11, 16, 19]. Modeling
and analysis of contact problems with adhesion and friction can be found in
[5, 6, 8]. For some other contact effects we refer to [3, 7, 10,13,25,28].

Models and mathematical results on various aspects of contact can be found
in the monographs [15,23,27,29] and the many references therein.

The model we analyze consists of a quasistatic system that is nonlinear for
the mechanical behavior of the body, a parabolic inclusion for the development
of material damage, the normal compliance contact condition, and a general
subdifferential condition of friction that includes, as a special case, Coulomb’s
law of dry friction. We establish the existence and uniqueness of the weak
or variational solution for the model. The general idea of the proof comes
from [18], where fixed point arguments for operators that satisfy certain integral
constraints were used. Since in this work the boundary condition is multivalued,
we use in addition a surjectivity result for pseudomonotone operators.

The rest of the paper is structured as follows. The following section re-
calls various mathematical notions and tools needed later. The model and the
mathematical problem are introduced in Section 3. Its variational formulation
is described in Section 4, where the assumptions on the problem data are listed.
The proofs of the existence of the unique solution to the system of two coupled
inequalities, the variational-hemivariational inequality for displacement and the
variational inequality for material damage, can be found in Section 5, and sum-
marized in Theorem 5.1. The proof is conducted in steps in which auxiliary
problems are introduced and solved by applying various fixed point arguments.



Quasistatic Contact Problem with Damage 253

2. Preliminaries

In this section we provide various mathematical definitions, notation, and results
used in the paper.

If X is a reflexive Banach space, we denote by X∗ its topological dual and
〈·, ·〉X∗×X denotes the duality pairing of X and X∗. A mapping A : X → X∗ is
called bounded if A maps bounded sets of X into bounded sets of X∗. It is called
monotone if 〈Au−Az, u−z〉X∗×X > 0 for all u, z ∈ X. It is maximal monotone
if it is monotone, and if z ∈ X and w ∈ X∗ satisfy 〈Au − w, u − z〉X∗×X > 0
for all u ∈ X, then we have w = Az. Moreover, the operator A : X → X∗ is
called to be pseudomonotone if it is bounded and if un → u weakly in X and
lim sup〈Aun, un − u〉X∗×X 6 0 imply

〈Au, u− v〉X∗×X 6 lim inf〈Aun, un − v〉X∗×X , for all v ∈ X.
An equivalent definition of pseudomonotonicity is: A mapping A : X → X∗ is
pseudomonotone if it is bounded and if un → u weakly in X and

lim sup〈Aun, un − u〉X∗×X 6 0,

imply lim〈Aun, un − u〉X∗×X = 0 and Aun → Au weakly in X∗.

Definition 2.1. Let X be a reflexive Banach space and A : D(A) ⊂ X → 2X
∗

be a multivalued operator. We say that the operator A is

(a) monotone if

〈u∗ − v∗, u− v〉X∗×X > 0 for all u, v ∈ D(A), u∗ ∈ Au, v∗ ∈ Av.
(b) maximal monotone if it is monotone and it has a maximal graph (in the

sense of inclusion among all monotone operators), i.e., if

〈u∗ − w, u− v〉X∗×X > 0 for all u ∈ D(A), u∗ ∈ Au,
implies that v ∈ D(A) and w ∈ Av.

Definition 2.2. Let Y, Z be two Hausdorff topological spaces and let F : Y −→
2Z \ {∅} be a multifunction. We say that F is upper semicontinuous, if for any
closed set C ⊆ Z, the set F−(C) = {y ∈ Y : F (y) ∩ C 6= ∅} is closed in Y .

Definition 2.3. Let X be a reflexive Banach space. We say that a multivalued
operator A : X → 2X

∗
is pseudomonotone if

(a) for every u ∈ X, the set Au ⊂ X∗ is nonempty, closed and convex;

(b) A is upper semicontinuous from each finite dimensional subspace of X
into X∗ endowed with its weak topology;

(c) for every sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un → u weakly
in X, u∗n ∈ Aun for all n > 1, and lim sup〈u∗n, un − u〉X∗×X 6 0, we have
that for every v ∈ X, there exists u∗(v) ∈ Au such that

〈u∗(v), u− v〉X∗×X 6 lim inf〈u∗n, un − v〉X∗×X .
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The following surjectivity result is due to Naniewicz-Panagiotopoulos [24,
Theorem 2.12] cast in a form used in the proof of the existence theorem.

Theorem 2.4. If X is a real reflexive Banach space, T : X → 2X
∗

is a maximal
monotone operator, T : X → 2X

∗
is a multivalued bounded pseudomonotone

operator which is coercive in the following sense

〈u∗, u〉X∗×X > c(‖u‖X)‖u‖X for all u ∈ D(T ), u∗ ∈ T (u),

where c : R+ −→ R is a function such that c(r) −→ +∞ as r → +∞, then
T + T is surjective.

We turn to some basic tools from convex analysis and nonsmooth analysis,
cf. Clarke [12].

Definition 2.5. Let X be a Banach space and let ϕ : X → R be a locally
Lipschitz function. The generalized directional derivative, in the sense of Clarke,
of ϕ at x ∈ X in the direction v ∈ X, denoted by ϕ0(x; v), is defined by

ϕ0(x; v) = lim sup
y→x, λ↓0

ϕ(y + λv)− ϕ(y)

λ

and the generalized gradient (subdifferential) of ϕ at x, denoted by ∂ϕ(x), is a
subset of a dual space X∗ given by

∂ϕ(x) = { ζ ∈ X∗ | ϕ0(x; v) > 〈ζ, v〉X∗×X for all v ∈ X }.

Proposition 2.6. If ϕ : X → R is a locally Lipschitz function on a Banach
space X, then for every x ∈ X the generalized gradient ∂ϕ(x) is a nonempty,
convex, and weak∗ compact subset of X∗, and the graph of the generalized gra-
dient ∂ϕ is closed in X× (w∗–X∗)-topology, i.e., if {xn} ⊂ X and {ζn} ⊂ X∗

are sequences such that ζn ∈ ∂ϕ(xn) and xn → x in X, ζn → ζ weak∗ in X∗,
then ζ ∈ ∂ϕ(x).

Given a convex, lower-semicontinuous (l.s.c.) function ϕ : X → (−∞,+∞]
on a Banach space X, we recall that ϕ is proper if it is not identically +∞. The
effective domain of ϕ is denoted by domϕ = {x ∈ X | ϕ(x) < +∞}.

Definition 2.7. Let X be a Banach space and let ϕ : X → (−∞,+∞] be a
proper, l.s.c. and convex function. The mapping ∂ϕ : X → 2X

∗
defined by

∂ϕ(x) = {x∗ ∈ X∗ | 〈x∗, v − x〉X∗×X 6 ϕ(v)− ϕ(x) for all v ∈ X}

for x ∈ X with ϕ(x) < +∞ and by ∂ϕ(x) = ∅ for x ∈ X with ϕ(x) = +∞,
is called the subdifferential of ϕ. An element x∗ ∈ ∂ϕ(x) (if any) is called a
subgradient of ϕ at x.
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The following important result is due to Denkowski-Migórski-Papageorgiou
[14, Theorem 6.3.19].

Theorem 2.8. Let X be a real Banach space and let ϕ be a proper, l.s.c. and
convex function on X. Then ∂ϕ is a maximal monotone operator from X to X∗.

The following fixed point argument will be needed below.

Theorem 2.9. If X is a real Banach space and Λ: C([0, T ];X) −→ C([0, T ];X)
is an operator for which there exist k ∈ N+ and c > 0 such that for all t ∈ [0, T ],
we have

‖(Λu)(t)− (Λv)(t)‖kX 6 c

∫ t

0

‖u(s)− v(s)‖kXds for all u, v ∈ C([0, T ];X),

then Λ has a unique fixed point in C([0, T ];X).

The proof of this theorem is similar to that in Migórski-Ochal-Sofonea [23,
pp. 107–108].

3. The model

We consider a viscoelastic body that occupies a domain Ω ⊆ Rd (d = 2, 3 in
applications) with a Lipschitz continuous boundary Γ. We assume that Γ has
outward normal ν and consists of three sets ΓD, ΓN and ΓC such that ΓD, ΓN
and ΓC are pairwise disjoint, and meas (ΓD) > 0. The body is held fixed on ΓD
and surface tractions of density fN act on ΓN . The potential contact surface
is ΓC and the gap g between it and the deformable foundation is measured along
the normal ν.
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Figure 1: ΓC is the contact surface

The volume forces f 0 that act in Ω and the tractions fN are assumed to
vary slowly in time so the process is quasistatic, as the accelerations in the
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system are negligible. We describe the contact process with the normal com-
pliance condition and a subdifferential friction condition. We use a viscoelastic
constitutive law with damage effects, which are described by the damage func-
tion β, the growth of which is governed by a parabolic differential inclusion and
satisfies a homogeneous Neumann boundary condition.

We denote by [0, T ] the time interval of interest, with T > 0, and use the
notation

Q = Ω× (0, T ).

The classical model for the process is as follows.

Problem P: Find a displacement field u : Q −→ Rd, a stress field σ : Q −→ Sd
and a damage function β : Q −→ R, such that for all t ∈ (0, T ),

σ(t) = A(ε(u̇(t))) + G(ε(u(t)), β(t)) in Ω, (1)

β̇(t)− κ∆β(t) + ∂ψ[0,1](β(t)) 3 φ(t, ε(u(t)), β(t)) in Ω, (2)

Divσ(t) + f 0(t) = 0 in Ω, (3)

∂β(t)

∂ν
= 0 on Γ, (4)

u(t) = 0 on ΓD, (5)

σ(t)ν = fN(t) on ΓN , (6)

−σν(t) = kνpν(uν(t)− g) on ΓC , (7)

−στ (t) ∈ kτ∂jτ (u̇τ (t)) on ΓC , (8)

u(0) = u0, β(0) = β0 in Ω. (9)

Here, Sd denotes the space of second order symmetric tensors on Rd, ∂β
∂ν

is
the normal derivative on Γ, Div denotes the divergence operator, σν and στ
stand for the normal and tangential traces of σ, respectively, uν and u̇τ are
the normal and tangential components of displacement u and velocity u̇, re-
spectively. By ∂ψ[0,1] we denote the convex subdifferential of ψ, the indicator
function of [0, 1] and by ∂jτ we mean the Clarke subdifferential of jτ with respect
to the last variable.

The viscoelastic constitutive law (1) depends linearly on the velocity and is
nonlinear in the elastic part, which includes the effects of material damage. The
evolution of the damage variable β is described by the parabolic inclusion (2)
with the damage source function φ and boundary condition (4). Since we as-
sume that the process is quasistatic, we use the steady state equation (3) to de-
scribe the evolutions of the mechanical state of the body. Equations (5) and (6)
represent the displacement and traction boundary conditions, respectively. Re-
lation (7) is the so-called normal compliance condition and the inclusion (8) is
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the subdifferential frictional condition, which generalizes Coulomb’s dry friction.
The initial conditions for displacement and damage are given by (9).

The damage process, as was noted above, is associated with the opening
and growth of microcracks and microcavities in the material as a result of the
internal strains. As these grow the strength and load carrying capacity of the
system decrease. The damage function β is chosen as

β =
Yeff
Y0

,

where Y0 is the Young modulus of the original material and Yeff is the current
effective modulus. Thus, β measures the fractional decrease in the mechanical
stiffness of the system, so it satisfies the condition 0 6 β 6 1. When β = 1
the material is undamaged, i.e., in its original form, when β = 0 the material is
completely damaged and cannot support any load, and when 0 < β < 1 there
is fractional reduction in strength. The term ∂ψ[0,1](β(t)) in (2) guarantees
that 0 ≤ β ≤ 1, thus preserving the interpretation of β as a fraction. We
assume that the damage source function depends on the indicated variables and
examples can be found in [15,18,27]. The derivation of (2) from thermodynamic
considerations can be found in [15,27].

4. Variational-hemivariational formulation

We first introduce the notation and concepts needed in the sequel, describe the
assumptions imposed on the problem data as well as the variational formulation
of the problem. In what follows the indices i and j run between 1 and d and the
summation convention over repeated indices is used. Also, an index following a
comma indicates a partial derivative.

In Rd we use the inner product u ·v = uivi, and the norm ‖v‖Rd =
√
v · v,

for u,v ∈ Rd. By Sd we denote the space of second order symmetric tensors on
Rd, or equivalently, the space of symmetric matrices of order d, with the inner
product σ · τ = σijτ ij and the norm ‖τ‖Sd =

√
τ · τ , for σ, τ ∈ Sd.

Next, we introduce the following spaces

H =
{
v = (vi)| vi ∈ L2(Ω)

}
= L2(Ω;Rd),

H1 =
{
v = (vi)| vi ∈ H1(Ω)

}
= H1(Ω;Rd),

H =
{
τ = (τij)| τij = τji ∈ L2(Ω)

}
= L2(Ω;Sd),

H1 =
{
τ ∈H | (τij,j) ∈ H

}
,
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which are real Hilbert spaces endowed with the inner products

〈u,v〉H =

∫
Ω

uivi dx, 〈σ, τ 〉H =

∫
Ω

σijτij dx,

〈u,v〉H1 = 〈u,v〉H + 〈ε(u), ε(v)〉H ,

〈σ, τ 〉H1 = 〈σ, τ 〉H + 〈Divσ,Div τ 〉H ,

and with the respective norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H , ‖ · ‖H1 . Here ε : H1 −→H
and Div : H1 −→ H are the deformation and divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

For an element v ∈ H1 we denote by v its trace on Γ and by vν = v · ν and
vτ = v − vνν its normal and tangential components on the boundary. For an
element σ ∈H1, σν and στ denote the normal and tangential traces of σ. If σ
is smooth then

σν = (σν) · ν and στ = σν − σνν.

The following Green formula holds

〈σ, ε(v)〉H + 〈Divσ,v〉H =

∫
Γ

σν · v dΓ for all v ∈ H1 and σ ∈H1. (10)

Let V be the closed subspace of H1, given by

V =
{
v ∈ H1| v = 0 a.e. on ΓD

}
.

Since meas (ΓD) > 0 and Γ is Lipschitz continuous, the Korn inequality holds

‖ε(v)‖H > c‖v‖H1 for all v ∈ V, (11)

where here and below c represents a positive constant which may change from
line to line and may depend on the data. We define the inner product on V by

〈u,v〉V = 〈ε(u), ε(v)〉H for all u,v ∈ V. (12)

It follows from (11) and (12) that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V .
Moreover, we denote by γ : V −→ L2(Γ;Rd) the trace operator, by ‖γ‖ its norm
in L (V ;L2(Γ;Rd)) and by γ∗ : L2(Γ;Rd) −→ V ∗ the adjoint operator to γ.

Note that the assumption on the Lipschitz continuity of the boundary Γ
ensures that the outward normal vector ν is defined a.e. on Γ, the normal and
tangential components of various functions make sense, and the Korn inequality
holds.
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Finally for a real Banach space (X, ‖ · ‖X) we use the standard notation
for Bochner-Lebesgue spaces Lp(0, T ;X) (with 1 6 p 6 +∞), Bochner-Sobolev
spaces Hk(0, T ;X) (with k ∈ N), space of vector-valued continuous functions
C([0, T ];X) and space of vector-valued continuously differentiable functions
C1([0, T ];X). Moreover, if X1 and X2 are two real Hilbert spaces then X1×X2

denotes the product space endowed with the canonical inner product 〈·, ·〉X1×X2

and norm ‖ · ‖X1×X2 .

We assume the following on the problem data.

H(A): The viscosity operator A : Ω× Sd −→ Sd satisfies:

(a) A(·, ε) is measurable on Ω for all ε ∈ Sd;
(b) A(x, ·) is continuous on Sd for a.e. x ∈ Ω;

(c) there exist a0 ∈ L2(Ω), a0 > 0 and a1 > 0 such that for all ε ∈ Sd and
a.e. x ∈ Ω,

‖A(x, ε)‖Sd 6 a0(x) + a1‖ε‖Sd ;

(d) there exists mA > 0 such that for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) > mA‖ε1 − ε2‖2
Sd ;

(e) A(x,0) = 0 for a.e. x ∈ Ω.

H(G): The elasticity operator G : Ω× Sd × R −→ Sd is such that

(a) G(·, ε, β) is measurable on Ω for all ε ∈ Sd, β ∈ R;

(b) there exists LG > 0 such that

‖G(x, ε1, β1)− G(x, ε2, β2)‖Sd 6 LG(‖ε1 − ε2‖Sd + |β1 − β2|)

for all ε1, ε2 ∈ Sd, β1, β2 ∈ R and a.e. x ∈ Ω;

(c) G(x,0, 0) ∈H for a.e. x ∈ Ω.

H(φ): The damage source function φ : Q× Sd × R −→ R satisfies:

(a) φ(·, ·, ε, β) is measurable on Q for all ε ∈ Sd, β ∈ R;

(b) there exists Lφ > 0 such that

|φ(x, t, ε1, β1)− φ(x, t, ε2, β2)| 6 Lφ(‖ε1 − ε2‖Sd + |β1 − β2|)

for all ε1, ε2 ∈ Sd, β1, β2 ∈ R and a.e. (x, t) ∈ Q;

(c) φ(x, ·, ε, β) is continuous on [0, T ] for all ε ∈ Sd, β ∈ R and a.e. x ∈ Ω;

(d) φ(·, ·,0, 0) ∈ L2(Q).
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H(pν): The normal compliance function pν : ΓC × R −→ R+ is such that

(a) pν(·, r) is measurable on ΓC for all r ∈ R;

(b) there exists Lν > 0 such that for all r1, r2 ∈ R and a.e. x ∈ ΓC

|pν(x, r1)− pν(x, r2)| 6 Lν |r1 − r2|;

(c) pν(·, r) = 0 for r 6 0 on ΓC .

H(kν): The surface contact stiffness coefficient kν : ΓC −→ R+ is a measurable

function such that 0 6 kν(x) 6 kν , for some kν > 0, a.e. x ∈ ΓC .

H(jτ ): The friction dissipation pseudopotential jτ : ΓC × Rd −→ R satisfies:

(a) jτ (·, ξ) is measurable on ΓC for all ξ ∈ Rd and there exists e ∈ L2(ΓC ;Rd)
such that jτ (·, e(·)) ∈ L2(ΓC);

(b) jτ (x, ·) is locally Lipschitz on Rd for a.e. x ∈ ΓC ;

(c) there exist c0τ , c1τ > 0 such that for all ξ ∈ Rd and for a.e. x ∈ ΓC

‖∂jτ (x, ξ)‖Rd 6 c0τ + c1τ‖ξ‖Rd ;

(d) there exists c2τ > 0 such that for all ξ1, ξ2 ∈ Rd and for a.e. x ∈ ΓC

j0
τ (x, ξ1; ξ2 − ξ1) + j0

τ (x, ξ2; ξ1 − ξ2) 6 c2τ‖ξ1 − ξ2‖2
Rd .

H(kτ ): The friction coefficient kτ : ΓC −→ R+ is a measurable function such

that 0 6 kτ (x) 6 kτ for some kτ > 0 and for a.e. x ∈ ΓC .

The volume force density, surface traction density, gap function, and initial
functions, respectively, are assumed to satisfy:

H0: (a) f 0 ∈ C([0, T ];H);

(b) fN ∈ C([0, T ];L2(ΓN ;Rd));

(c) g ∈ L∞(ΓC), g > 0;

(d) u0 ∈ V ;

(e) β0 ∈ H1(Ω) is such that 0 6 β0 6 1 a.e. in Ω.

Finally, we have the following additional assumptions:

H1: (a) c2τkτ‖γ‖2 < mA;

(b) at least one of the following two conditions holds:

(i) mA > c1τkτ
√

2‖γ‖2;

(ii) there exists dτ > 0 such that j0
τ (x, ξ;−ξ) 6 dτ (1 + ‖ξ‖Rd) for all

ξ ∈ Rd and a.e. x ∈ Ω.
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Remark 4.1. Every convex function j : Rd −→ R satisfies H(jτ )(b) and (d)
with c2τ = 0. Indeed, the convexity of j implies that j0(ξ1; ξ2 − ξ1) 6
j(ξ2) − j(ξ1) and j0(ξ2; ξ1 − ξ2) 6 j(ξ1) − j(ξ2), and adding these inequa-
lities yields j0(ξ1; ξ2 − ξ1) + j0(ξ2; ξ1 − ξ2) 6 0 for all ξ1, ξ2 ∈ Rd.

If the function j : R −→ R is of the form j(r) =
∫ r

0
h(s) ds, for r ∈ R with

a continuous function h : R −→ R, then the condition H(jτ )(d) is equivalent to
each one of the following two conditions:

(i) (h(s1)− h(s2))(s2 − s1) 6 c(s1 − s2)2 for all s1, s2 ∈ R and some c > 0;

(ii) the function R 3 s 7−→ cs+ h(s) ∈ R is nondecreasing for some c > 0.

We now derive the variational formulation of Problem P. To that end, we
consider the function for combined forces and tractions f: [0, T ] −→ V ∗, given by

〈f(t),v〉V ∗×V = 〈f 0(t),v〉H + 〈fN(t),γv〉L2(ΓN ;Rd) for all v∈V, t∈ [0, T ], (13)

and the set of admissible damage functions

K =
{
ζ ∈ H1(Ω) : 0 6 ζ 6 1 a.e. in Ω

}
.

Assume that {u,σ, β} are sufficiently smooth functions that solve (1)–(9),
v ∈ V , ζ ∈ K and t ∈ [0, T ]. First we use the steady state equation (3) and
the Green formula (10) to obtain

〈σ(t), ε(v)− ε(u̇(t))〉H = 〈f 0(t),v − u̇(t)〉H +

∫
Γ

σ(t)ν · (v − u̇(t)) dΓ. (14)

Taking into account the boundary condition (5), the fact that

σ(t)ν · v = σν(t)vν + στ (t) · vτ ,

the equality (7), and the definition of the Clarke subdifferential combined
with (8), we obtain∫

Γ

σ(t)ν · (v − u̇(t)) dΓ

>
∫

ΓN

fN(t) · (v − u̇(t)) dΓ−
∫

ΓC

kνpν(uν(t)− g)(vν − u̇ν(t)) dΓ

−
∫

ΓC

kτj
0
τ (u̇τ (t);vτ − u̇τ (t)) dΓ. (15)

Hence, using (15) and (13) in (14), we have

〈σ(t), ε(v)− ε(u̇(t))〉H

+

∫
ΓC

kνpν(uν(t)− g)(vν − u̇ν(t)) dΓ +

∫
ΓC

kτj
0
τ (u̇τ (t);vτ − u̇τ (t)) dΓ

> 〈f(t),v − u̇(t)〉V ∗×V .
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Next, using the definition of the subdifferential of the indicator function ψ[0,1]

and integration by parts, we see that

0 > 〈φ(t, ε(u(t)), β(t))− β̇(t), ζ − β(t)〉L2(Ω)− κ〈∇β(t), ∇ζ −∇β(t)〉L2(Ω;Rd).

Now collecting these relations and inequalities leads to the following varia-
tional-hemivariational formulation of Problem P.

Problem PV: Find u ∈ C1([0, T ];V ), σ ∈ C([0, T ]; H1) and
β ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

σ(t) = A(ε(u̇(t))) + G(ε(u(t)), β(t)) in Ω, for all t ∈ [0, T ] (16)

〈σ(t), ε(v)− ε(u̇(t))〉H +

∫
ΓC

kνpν(uν(t)− g)(vν − u̇ν(t)) dΓ

+

∫
ΓC

kτj
0
τ (u̇τ (t);vτ − u̇τ (t)) dΓ

> 〈f(t),v − u̇(t)〉V ∗×V for all v ∈ V and all t ∈ [0, T ] (17)

〈β̇(t), ζ − β(t)〉L2(Ω) + κ〈∇β(t),∇ζ −∇β(t)〉L2(Ω;Rd)

> 〈φ(t, ε(u(t)), β(t)), ζ − β(t)〉L2(Ω) for all ζ ∈ K and all t ∈ [0, T ] (18)

β(t) ∈ K for all t ∈ [0, T ] (19)

u(0) = u0, β(0) = β0 in Ω. (20)

5. Existence and uniqueness results

We now state and prove the main result of this work.

Theorem 5.1. If hypotheses H(A), H(G), H(φ), H(pν), H(kν), H(jτ ), H(kτ ),
H0 and H1 hold, then Problem PV has a unique solution (u,σ, β).

The proof is done in steps in which auxiliary problems are analyzed. In
the first step we assume that the elastic part of the stress η ∈ C([0, T ]; H )
and the damage source function θ ∈ C([0, T ];L2(Ω)) are given and consider the
following two auxiliary problems.

Problem P1
η: Find uη ∈ C1([0, T ];V ) and ση ∈ C([0, T ]; H1) such that

ση(t) = A(ε(u̇η(t))) + η(t) for all t ∈ [0, T ]

〈ση(t), ε(v)− ε(u̇η(t))〉H +

∫
ΓC

kνpν(uην(t)− g)(vν − u̇ην(t)) dΓ

+

∫
ΓC

kτj
0
τ (u̇ητ (t);vτ − u̇ητ (t)) dΓ

> 〈f(t),v − u̇η(t)〉V ∗×V for all v ∈ V and all t ∈ [0, T ] (21)

uη(0) = u0. (22)
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Problem Pθ: Find βθ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

〈β̇θ(t), ζ − βθ(t)〉L2(Ω) + κ〈∇βθ(t),∇ζ −∇βθ(t)〉L2(Ω;Rd)

> 〈θ(t), ζ − βθ(t)〉L2(Ω) for all ζ ∈ K and all t ∈ [0, T ] (23)

βθ(t) ∈ K for all t ∈ [0, T ]

βθ(0) = β0. (24)

Proposition 5.2. Under the hypotheses of Theorem 5.1, for every fixed
η ∈ C([0, T ]; H ), Problem P1

η admits a unique solution (uη,ση).

Proof. First, we formulate Problem P1
η in terms of the velocity wη = u̇η. Then,

uη(t) =

∫ t

0

wη(s) ds+ u0 for all t ∈ [0, T ]. (25)

Problem P1
η can be written in the following form.

Problem P2
η: Find wη ∈ C([0, T ];V ) and ση ∈ C([0, T ]; H1) such that

ση(t) = A(ε(wη(t))) + η(t) for all t ∈ [0, T ]

〈ση(t), ε(v)− ε(wη(t))〉H +

∫
ΓC

kνpν

(∫ t

0

wην(s) ds+ u0ν − g
)

(vν − wην(t)) dΓ

+

∫
ΓC

kτj
0
τ (wητ (t);vτ −wητ (t)) dΓ

> 〈f(t),v −wη(t)〉V ∗×V for all v ∈ V and all t ∈ [0, T ].

We need the following operators and functions. The operator A : V −→ V ∗

is given by

〈A(w),v〉V ∗×V = 〈A(ε(w)), ε(v)〉H for all v,w ∈ V,

R : C([0, T ];V ) −→ C([0, T ];L2(ΓC)) is given by

(Rw)(t) = pν
( ∫ t

0

wν(s) ds+ u0ν − g
)

for all w ∈ C([0, T ];V ) and t ∈ [0, T ],

and the functions ϕ, j : ΓC × Rd −→ R, and f̃ : [0, T ] −→ V ∗ are given by

ϕ(x, ξ) = kν(x) ξν for all x ∈ ΓC , ξ ∈ Rd,

j(x, ξ) = kτ (x) jτ (x, ξτ ) for all x ∈ ΓC , ξ ∈ Rd,

〈f̃(t),v〉V ∗×V = 〈f(t),v〉V ∗×V − 〈η(t), ε(v)〉H for all v ∈ V, t ∈ [0, T ].
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Using this notation Problem P2
η takes the following form.

Problem P3
η: Find wη ∈ C([0, T ];V ) such that

〈A(wη(t)),v −wη(t)〉V ∗×V +

∫
ΓC

(Rwη)(t)
(
ϕ(γv)− ϕ(γwη(t))

)
dΓ

+

∫
ΓC

j0
(
γwη(t); γv − γwη(t)

)
dΓ

> 〈f̃(t),v −wη(t)〉V ∗×V for all v ∈ V and all t ∈ [0, T ].

For given µ ∈ C([0, T ];V ), let zµ = Rµ and consider the following problem.

Problem Pηµ: Find wηµ ∈ C([0, T ];V ) such that

〈A(wηµ(t)),v −wηµ(t)〉V ∗×V +

∫
ΓC

zµ(t)
(
ϕ(γv)− ϕ(γwηµ(t))

)
dΓ

+

∫
ΓC

j0
(
γwηµ(t); γv − γwηµ(t)

)
dΓ

> 〈f̃(t),v −wηµ(t)〉V ∗×V for all v ∈ V and all t ∈ [0, T ]. (26)

Lemma 5.3. Problem Pηµ admits a unique solution wηµ.

Proof. Consider the functional J : L2(ΓC ;Rd) −→ R given by

J(v) =

∫
ΓC

j(v) dΓ for all v ∈ L2(ΓC ;Rd),

the operator B : V −→ 2V
∗

given by

B(v) = γ∗∂J(γv) for all v ∈ V,

and the functional Φ: [0, T ]× V −→ R given by

Φ(t,v) =

∫
ΓC

zµ(t)ϕ(γv) dΓ for all v ∈ V and all t ∈ [0, T ].

From [23, Theorem 3.47], we know that the functional J is well defined,
Lipschitz continuous on bounded subsets of L2(ΓC ;Rd), and satisfies

J0(u;v) 6
∫

ΓC

j0(x,u(x);v(x)) dΓ for all u,v ∈ L2(ΓC ;Rd) (27)

and

‖∂J(u)‖L2(ΓC ;Rd) 6 c0 + c1‖u‖L2(ΓC ;Rd) for all u ∈ L2(ΓC ;Rd), (28)
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with c0 = c0τkτ
√

2 meas (ΓC) and c1 = c1τkτ
√

2. Also the values of ∂J are
nonempty, convex and weakly compact subsets of L2(ΓC ;Rd) (see, e.g., [23,
Proposition 3.23(iv)]) and thus for every v ∈ V , the set B(v) is nonempty,
closed and convex in V ∗. Next, from (28), for every v ∈ V , we have

‖B(v)‖V ∗6‖γ∗‖‖∂J(γv)‖L2(ΓC ;Rd)6c0‖γ‖+c1‖γ‖2‖v‖V, (29)

so the operator B is bounded. From (29), for every v ∈ V , we also have

〈B(v),v〉V ∗×V > −c1‖γ‖2‖v‖2
V − c0‖γ‖‖v‖V . (30)

Next we show that the operator B is also generalized pseudomonotone.
Let {vn}n>1 be a sequence of V such that vn → v in V , let {v∗n}n>1 be a
sequence of V ∗ such that v∗n → v∗ weakly in V ∗, v∗n ∈ B(vn) for all n > 1 and
lim sup〈v∗n,vn−v〉V ∗×V 6 0. From the definition of the operator B we have that
v∗n = γ∗ζn with ζn ∈ ∂J(γvn) for all n > 1. From (28) we see that the sequence
{ζn}n>1 is bounded in L2(ΓC ;Rd) and so, passing to a subsequence if necessary,
we may assume that ζn → ζ weakly in L2(ΓC ;Rd). Since the graph of ∂J is
closed in L2(ΓC ;Rd)× (w−L2(ΓC ;Rd))-topology and γvn → γv in L2(ΓC ;Rd),
by the compactness of the trace operator we obtain that ζ ∈ ∂J(γv). Moreover,
as v∗n = γ∗ζn, it follows that v∗ = γ∗ζ. Thus, v∗ ∈ γ∗∂J(γv) = B(v) and
also 〈v∗n,vn〉V ∗×V = 〈γ∗ζn,vn〉V ∗×V = 〈ζn, γvn〉L2(ΓC ;Rd) → 〈ζ, γv〉L2(ΓC ;Rd) =
〈γ∗ζ,v〉V ∗×V = 〈v∗,v〉V ∗×V , which proves that the operator B is generalized
pseudomonotone and therefore it is also pseudomonotone.

As for the functional Φ, first note that by hypothesis H(kν), we have
ϕ(·, γv(·)) ∈ L2(ΓC) for all v ∈ V and because zµ(t) ∈ L2(ΓC) for all t ∈ [0, T ],
we have that Φ(t, ·) is well defined for all t ∈ [0, T ]. Moreover, it is clear
that dom Φ(t, ·) = V for all t ∈ [0, T ]. Next, since zµ(x, t) > 0 (see hypoth-
esis H(pν)) and ϕ(x, ·) is convex, we easily infer that Φ(t, ·) is convex for all
t ∈ [0, T ]. Also, it is proper and continuous. Therefore, by Theorem 2.8, we
deduce that for all t ∈ [0, T ], the operator ∂Φ(t, ·) : V −→ 2V

∗
is maximal

monotone with D(∂Φ(t, ·)) = V .
Next, let us consider the operator A. First we check that it is bounded.

Using hypothesis H(A)(c) and the Hölder inequality, for all u,v ∈ V , we have

|〈A(u),v〉V ∗×V | 6
∫

Ω

‖A(ε(u))‖Sd‖ε(v)‖Sd dx

6

(∫
Ω

2(a2
0(x) + a2

1‖ε(u)‖2
Sd) dx

) 1
2

‖v‖V

6
√

2(‖a0‖L2(Ω) + a1‖u‖V )‖v‖V ,

so for all u ∈ V , we get

‖A(u)‖V ∗ 6
√

2(‖a0‖L2(Ω) + a1‖u‖V ),
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which implies the boundedness of the operator A.
Next we show that the operator A is coercive. Using hypotheses H(A)(d)

and (e), for all u ∈ V , we have

〈Au,u〉V ∗×V =

∫
Ω

A(ε(u)) · ε(u) dx > mA

∫
Ω

‖ε(u)‖2
Sd dx = mA‖u‖2

V , (31)

so the operator A is coercive.
Next we show that the operator A is monotone and continuous. First using

hypothesis H(A)(d) for all u,v ∈ V , we have

〈A(u)− A(v),u− v〉V ∗×V =

∫
Ω

(A(ε(u))−A(ε(v))) · (ε(u)− ε(v))dx > 0,

which shows the monotonicity of A. Next, let {un}n>1 be a sequence in V such
that un → u in V , which implies that ε(un) → ε(u) in L2(Ω;Sd). Passing to
a subsequence if necessary, we may assume that ε(un)(x)→ ε(u)(x) in Sd for
almost all x ∈ Ω and ‖ε(un)(x)‖Sd 6 w(x) for all n > 1 and almost all x ∈ Ω
with some w ∈ L2(Ω). From the continuity of A(x, ·) on Sd (see hypothesis
H(A)(b)), we have ‖A(x, ε(un)(x)) − A(x, ε(u)(x))‖2

Sd → 0 for almost all
x ∈ Ω and from hypothesis H(A)(c), we deduce that

‖A(x, ε(un)(x))−A(x, ε(u)(x))‖2
Sd

6 2(a0(x) + a1‖ε(un)(x)‖Sd)2 + 2(a0(x) + a1‖ε(u)(x)‖Sd)2

6 8a2
0(x) + 4a2

1(w(x)2 + ‖ε(u)(x)‖2
Sd)

for almost all x ∈ Ω. Thus, by using the Lebesgue dominated convergence
theorem we obtain

‖A(ε(un))−A(ε(u))‖2
H =

∫
Ω

‖A(ε(un))−A(ε(u))‖2
Sd dx → 0.

On the other hand, using the Hölder inequality, for every v ∈ V , we get

〈A(un)− A(u),v〉V ∗×V =

∫
Ω

(A(ε(un))−A(ε(u))) · ε(v) dx

6 ‖A(ε(un))−A(ε(u))‖H ‖ε(v)‖H ,

so we conclude that A(un)→ A(u) in V ∗. Thus, we conclude that A is contin-
uous.

The operator A being bounded, monotone and hemicontinuous, is also
pesudomonotone (see [23, Theorem 3.69(i)]). Since the class of multivalued
pseudomonotone operators is closed under addition of mappings (see, e.g., [23,
Proposition 3.59]), we deduce that A+B is pseudomonotone.
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Finally we establish the coercivity of the operator A+B. First assume that
hypothesis H1(b)(i) holds. Using (30) and (31), for all v ∈ V , we have

〈A(v) +B(v),v〉V ∗×V = 〈A(v),v〉V ∗×V + 〈B(v),v〉V ∗×V

> (mA − c1τkτ
√

2‖γ‖2)‖v‖2
V − c0‖γ‖‖v‖V .

Since by hypothesis H1(b)(i), we have mA > c1τkτ
√

2‖γ‖2, thus the operator
A + B is coercive. Next assume that hypothesis H1(b)(ii) holds. Then, us-
ing (27), we have

J0(v;−v) 6 d1(1 + ‖v‖L2(ΓC ;Rd)) for all v ∈ L2(ΓC ;Rd),

for some d1 > 0. Therefore for every v ∈ V and ζ ∈ ∂J(γv), we have

〈ζ, γv〉L2(ΓC ;Rd) > −J0(γv;−γv) > −d1 − d2‖γ‖‖v‖V ,

for some d2 > 0. So, from this and the coercivity of A (see (31)), we see that
A+B is coercive.

Since we have checked that under our hypotheses the operator A + B is
bounded, pseudomonotone and coercive and the operator ∂Φ(t, ·) : V −→ 2V

∗

is maximal monotone with D(∂Φ(t, ·)) = V , for all t ∈ [0, T ], we can apply
Theorem 2.4 and deduce that A(·) + B(·) + ∂Φ(t, ·) : V −→ 2V

∗
is surjective

and so for each t ∈ [0, T ] there exists wηµ(t) ∈ V such that

A(wηµ(t)) +B(wηµ(t)) + ∂Φ(t,wηµ(t)) 3 f̃(t).

This means that
A(wηµ(t)) + γ∗ζ1(t) + ζ2(t) = f̃(t), (32)

with ζ1(t) ∈ ∂J(γwηµ(t)) and ζ2(t) ∈ ∂Φ(t,wηµ(t)). Let v ∈ V and applying
v −wηµ(t) to (32), we find

〈A(wηµ(t)),v −wηµ(t)〉V ∗×V

+〈ζ1(t), γv − γwηµ(t)〉L2(ΓC ;Rd) + 〈ζ2(t),v −wηµ(t)〉V ∗×V

= 〈f̃(t),v −wηµ(t)〉V ∗×V .

Using the definitions and properties of the Clarke and convex subdifferentials,
we get

〈ζ1(t), γv − γwηµ(t)〉L2(ΓC ;Rd) 6
∫

ΓC

j0(γwηµ(t); γv − γwηµ(t)) dΓ,

〈ζ2(t),v −wηµ(t)〉V ∗×V 6
∫

ΓC

zµ(t)(ϕ(γv)− ϕ(γwηµ(t))) dΓ,

and it follows that wηµ(t) is a solution of Problem Pηµ.
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Next, we show the uniqueness of wηµ, so for a fixed t ∈ [0, T ], assume
that w1(t),w2(t) ∈ V are two solutions of Pηµ. We write (26) for w1(t) with
v = w2(t) and then for w2(t) with v = w1(t). Adding the resulting inequalities
yields

〈A(w1(t))− A(w2(t)),w1(t)−w2(t)〉V ∗×V

6
∫

ΓC

(
j0
(
γw1(t); γw2(t)− γw1(t)

)
+ j0

(
γw2(t); γw1(t)− γw2(t)

))
dΓ.

Then, using hypotheses H(A)(d) and H(jτ )(d), we obtain

mA‖w1(t)−w2(t)‖2
V 6 c2τkτ‖γ‖2‖w1(t)−w2(t)‖2

V ,

so from hypothesis H1(a), we deduce that w1(t) = w2(t) for all t ∈ [0, T ].
To complete the proof of the lemma we show that the mapping [0, T ] 3 t 7−→

wηµ(t) ∈ V is continuous. Let t1, t2 ∈ [0, T ] and let us denote ŵi = wηµ(ti),

ẑi = zµ(ti), f̂ i = f(ti), η̂i = η(ti) for i = 1, 2. We write (26) for t = t1 with
v = ŵ2 and then for t = t2 with v = ŵ1. Adding the resulting inequalities
yields

〈A(ŵ1)− A(ŵ2), ŵ1 − ŵ2〉V ∗×V

6
∫

ΓC

(ẑ2 − ẑ1)(ϕ(γŵ1)− ϕ(γŵ2))dΓ

+

∫
ΓC

(
j0
(
γŵ1; γŵ2 − γŵ1

)
+ j0

(
γŵ2; γŵ1 − γŵ2

))
dΓ

+ 〈f̂ 1 − f̂ 2, ŵ1 − ŵ2〉V ∗×V + 〈η̂2 − η̂1, ε(ŵ1)− ε(ŵ2)〉H .

Using hypotheses H(A)(d), H(pν), H(kν), H(kτ ), H(jτ )(d), we obtain

mA‖ŵ1 − ŵ2‖2
V

6 ‖ẑ1 − ẑ2‖L2(ΓC)Lνkν‖γ‖‖ŵ1 − ŵ2‖V + kτc2τ‖γ‖2‖ŵ1 − ŵ2‖2
V

+ ‖f̂ 1 − f̂ 2‖V ∗‖ŵ1 − ŵ2‖V + ‖η̂1 − η̂2‖H ‖ŵ1 − ŵ2‖V .

Using hypothesis H1(a), we find

‖ŵ1 − ŵ2‖V 6 c
(
‖ẑ1 − ẑ2‖L2(ΓC) + ‖f̂ 1 − f̂ 2‖V ∗ + ‖η̂1 − η̂2‖H

)
.

It now follows from the continuity of zµ, f , η, that the function

[0, T ] 3 t 7−→ wηµ(t) ∈ V

is continuous. The proof of the lemma is complete.
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Lemma 5.4. Problem P3
η has a unique solution wη.

Proof. In order to show the existence and uniqueness of the solution to Prob-
lem P3

η we use the fixed point argument of Theorem 2.9. Due to Lemma 5.3,
we can define the operator Λη : C([0, T ];V ) −→ C([0, T ];V ) by

Ληµ = wηµ for all µ ∈ C([0, T ];V ),

wherewηµ is the unique solution to Problem Pηµ. We show that Λη has a unique
fixed point µ∗ ∈ C([0, T ];V ). Let µ1,µ2 ∈ C([0, T ];V ) and zi = zµi = Rµi ∈
C([0, T ];L2(ΓC)) for i = 1, 2. Let wi = wηµi be the solutions to Problem Pηµ

for µ = µi (i = 1, 2). Then

‖(Ληµ1)(t)− (Ληµ2)(t)‖V = ‖w1(t)−w2(t)‖V for all t ∈ [0, T ]. (33)

Writing the inequality (26) for w1(t) with v = w2(t), then for w2(t) with
v = w1(t) and adding the resulting inequalities, we get

〈A(w1(t))− A(w2(t)),w1(t)−w2(t)〉V ∗×V

6
∫

ΓC

(z1(t)− z2(t))
(
ϕ(γw2(t))− ϕ(γw1(t))

)
dΓ

+

∫
ΓC

(
j0
(
γw1(t); γw2(t)− γw1(t)

)
+ j0

(
γw2(t); γw1(t)− γw2(t)

))
dΓ.

Using hypotheses H(A)(d), H(pν), H(kν), H(kτ ), H(jτ )(d), we obtain

mA‖w1(t)−w2(t)‖2
V 6 ‖z1(t)− z2(t)‖L2(ΓC)kνLν‖γ(w1(t)−w2(t))‖L2(ΓC ;Rd)

+ kτc2τ‖γ(w1(t)−w2(t))‖2
L2(ΓC ;Rd),

thus

(mA − kτc2τ‖γ‖2)‖w1(t)−w2(t)‖V 6 kνLν‖γ‖‖z1(t)− z2(t)‖L2(ΓC). (34)

Next, using the hypothesis H(pν), we find

‖z1(t)− z2(t)‖L2(ΓC)

= ‖(Rµ1)(t)− (Rµ2)(t)‖L2(ΓC)

=
∥∥pν( ∫ t

0

µ1ν(s) ds+ u0ν − g
)
− pν

( ∫ t

0

µ2ν(s) ds+ u0ν − g
)∥∥

L2(ΓC)

6 Lν
∥∥∫ t

0

|µ1ν(s)− µ2ν(s)| ds
∥∥
L2(ΓC)

6 Lν‖γ‖
∫ t

0

‖µ1(s)− µ2(s)‖V ds. (35)
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It follows from (33), (34), (35) and hypothesis H1(a), that

‖(Ληµ1)(t)− (Ληµ2)(t)‖V 6 c

∫ t

0

‖µ1(s)− µ2(s)‖V ds for all t ∈ [0, T ].

Theorem 2.9 asserts that Λη has a unique fixed point µ∗ ∈ C([0, T ];V ). Thus,
we have zµ∗(t) = (Rµ∗)(t), wηµ∗(t) = µ∗(t) for all t ∈ [0, T ]. Writing inequal-
ity (26) with µ = µ∗ we conclude that µ∗ is a solution of Problem P3

η. By the
uniqueness of the fixed point of Λη we see that wη ≡ µ∗ is the unique solution
of Problem P3

η. This completes the proof of the lemma.

Let wη ∈ C([0, T ];V ) be the unique solution to Problem P3
η. Defining

ση(t) = A(ε(wη(t))) + η(t) for all t ∈ [0, T ],

uη(t) =

∫ t

0

wη(s) ds+ u0 for all t ∈ [0, T ],

we find that (uη,ση) is the unique solution to Problem P1
η. This completes the

proof of Proposition 5.2.

We turn to the problem of damage with given damage source function.

Proposition 5.5. Under the hypotheses of Theorem 5.1, for every θ ∈
C([0, T ];L2(Ω)) and β0 ∈ K , Problem Pθ admits a unique solution βθ.

Proof. The assertion follows from standard results for parabolic variational in-
equalities (see, e.g., Barbu [4, p. 124]).

Now we are ready for the proof of Theorem 5.1.

Proof of Theorem 5.1. Using Propositions 5.2 and 5.5, the operator

Λ: C([0, T ]; H × L2(Ω)) −→ C([0, T ]; H × L2(Ω))

given by

Λ(η, θ) =
(
G(ε(uη), βθ), φ(·, ε(uη), βθ)

)
for all (η, θ) ∈ C([0, T ]; H ×L2(Ω))

is well defined. Here, uη is the unique solution of Problem P1
η (Proposition 5.2)

and βθ is the unique solution to Problem Pθ (Proposition 5.5). We show that
operator Λ has a unique fixed point (η∗, β∗) ∈ C([0, T ]; H × L2(Ω)). To this
end let (η1, β1), (η2, β2) ∈ C([0, T ]; H ×L2(Ω)). We denote ui = uηi , wi = u̇ηi ,
βi = βθi for i = 1, 2. Using hypotheses H(G)(b) and H(φ)(b) we deduce that
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for all t ∈ [0, T ],

‖Λ(η1, θ1)(t)− Λ(η2, θ2)(t)‖H ×L2(Ω)

= ‖G(ε(u1(t)), β1(t))− G(ε(u2(t)), β2(t))‖H
+ ‖φ(t, ε(u1(t)), β1(t))− φ(t, ε(u2(t)), β2(t))‖L2(Ω)

6 (LG + Lφ)
(
‖ε(u1(t))− ε(u2(t))‖H + ‖β1(t)− β2(t)‖L2(Ω)

)
= (LG + Lφ)

(
‖u1(t)− u2(t)‖V + ‖β1(t)− β2(t)‖L2(Ω)

)
. (36)

Since u1(0) = u2(0) = u0 (cf. (22)), using (25), we find

‖u1(t)− u2(t)‖V 6
∫ t

0

‖w1(s)−w2(s)‖V ds for all t ∈ [0, T ]. (37)

For s ∈ [0, t], writing the inequality (21) for w1(s) with v = w2(s), then
for w2(s) with v = w1(s) and adding the resulting inequalities, we get

〈A(ε(w1(s)))−A(ε(w2(s))), ε(w1(s))− ε(w2(s))〉H

6
∫

ΓC

kν
(
pν(u2ν(s)− g)− pν(u1ν(s)− g)

)
(w1ν(s)− w2ν(s)) dΓ

+

∫
ΓC

kτ
(
j0
τ (w1τ (s);w2τ (s)−w1τ (s)) + j0

τ (w2τ (s);w1τ (s)−w2τ (s))
)
dΓ

+ 〈η2(s)− η1(s), ε(w1(s))− ε(w2(s))〉H .

Using assumptions H(A)(d), H(pν), H(kν), H(kτ ), H(jτ )(d), we obtain

(mA − kτc2τ‖γ‖2)‖w1(s)−w2(s)‖V
6 Lνkν‖γ‖2‖u1(s)− u2(s)‖V + ‖η1(s)− η2(s)‖H ,

then hypothesis H1(a) implies

‖w1(s)−w2(s)‖V 6 c
(
‖u1(s)− u2(s)‖V + ‖η1(s)− η2(s)‖H

)
(38)

for all s ∈ [0, t]. From (37), (38) and the Gronwall inequality, we obtain

‖u1(t)− u2(t)‖V 6 c

∫ t

0

‖η1(s)− η2(s)‖H ds for all t ∈ [0, T ]. (39)

Next, writing inequality (23) for β1(s) with ζ = β2(s), then for β2(s) with
ζ = β1(s) and adding the resulting inequalities, we obtain

〈β̇1(s)−β̇2(s), β1(s)−β2(s)〉L2(Ω) + κ〈∇β1(s)−∇β2(s),∇β1(s)−∇β2(s)〉L2(Ω;Rd)

6 〈θ1(s)−θ2(s), β1(s)−β2(s)〉L2(Ω) for all s ∈ [0, T ].
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Integrating this inequality over (0, t) for t ∈ (0, T ) and using integration by
parts, we get

1

2
‖β1(t)−β2(t)‖2

L2(Ω)−
1

2
‖β1(0)−β2(0)‖2

L2(Ω)+κ

∫ t

0

‖∇β1(s)−∇β2(s)‖2
L2(Ω;Rd) ds

6
∫ t

0

‖θ1(s)−θ2(s)‖L2(Ω)‖β1(s)−β2(s)‖L2(Ω) ds for all t ∈ [0, T ].

Since β1(0) = β2(0) = β0 (cf. (24)), by using the Young inequality, we find

‖β1(t)− β2(t)‖2
L2(Ω) 6 c

∫ t

0

‖θ1(s)− θ2(s)‖2
L2(Ω) ds+

∫ t

0

‖β1(s)− β2(s)‖2
L2(Ω) ds,

for all t ∈ (0, T ). Using the Gronwall inequality yields

‖β1(t)− β2(t)‖2
L2(Ω) 6 c

∫ t

0

‖θ1(s)− θ2(s)‖2
L2(Ω) ds for all t ∈ [0, T ]. (40)

Applying (39) and (40) in (36), we obtain

‖Λ(η1, θ1)(t)− Λ(η2, θ2)(t)‖2
H ×L2(Ω)

6 c

∫ t

0

(
‖η1(s)− η2(s)‖2

H + ‖θ1(s)− θ2(s)‖2
L2(Ω)

)
ds

6 c

∫ t

0

‖(η1, θ1)(s)− (η2, θ2)(s)‖2
H ×L2(Ω) ds.

It follows from Theorem 2.9 that Λ has a unique fixed point (η∗, θ∗).

We now establish the existence of a solution to Problem PV. Let (uη∗ ,ση∗)
be the solution of Problem P1

η for η = η∗ (Proposition 5.2) and let βθ∗ be the
solution of Problem Pθ for θ = θ∗ (Proposition 5.5). From the definition of Λ
we have that

η∗ = G(ε(uη∗), βθ∗) and θ∗ = φ(·, ε(uη∗), βθ∗),

therefore, (uη∗ ,ση∗ , βθ∗) is a solution of Problem PV.
Finally, we show that (uη∗ ,ση∗ , βθ∗) is the unique solution of Problem PV.

To that end, let (u,σ, β) be any solution of Problem PV. Let η ∈ C1([0, T ];V )
and θ ∈ C([0, T ];L2(Ω)) denote the functions

η = G(ε(u), β) and θ = φ(·, ε(u), β). (41)

From (16), (17) and (20) it is clear that (u,σ) is a solution to Problem P1
η. But

by Proposition 5.2 we know that Problem P1
η has a unique solution (uη,ση),

thus u = uη and σ = ση. Similarly, from (18), (19) and (20) it is clear that β
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is a solution to Problem Pθ. However, by Proposition 5.5 Problem Pθ has a
unique solution βθ, thus β = βθ. Using (41), we see that Λ(η, θ) = (η, θ) and
by the uniqueness of the fixed point of the operator Λ we deduce that η = η∗

and θ = θ∗. Thus the solution of Problem PV is unique.
Finally proceeding as in the proof of [23, Theorem 7.5, pp. 210–211], using

assumptions H(A), H(G), relation (16) and regularity of u and β, we can show
that

Divσ(t) = −f 0(t) in Ω, for all t ∈ [0, T ].

So, it follows from H0(a) that Divσ ∈ C([0, T ]; H ) and than we can easily
obtain that σ ∈ C([0, T ]; H1).

The proof of our main result, Theorem 5.1, is now complete.

Acknowledgement. The research was supported by the Marie Curie Inter-
national Research Staff Exchange Scheme Fellowship within the 7th European
Community Framework Programme under Grant Agreement no. 295118, the
International Project co-financed by the Ministry of Science and Higher Edu-
cation of Republic of Poland under grant no. W111/7.PR/2012 and the Na-
tional Science Center of Poland under Maestro Advanced Project no. DEC-
2012/06/A/ST1/00262.

References

[1] Andrews, K. T., Anderson, S., Menike, R. S. R., Shillor, M., Swaminathan, R.
and Yuzwalk, J., Vibrations of a damageable string. In: Fluids and Waves -
Recent Trends in Applied Analysis (Eds.: F. Botelho et al.). Contemp.
Math. 440. Providence (RI): Amer. Math. Soc. 2007, pp. 1 – 14.

[2] Andrews, K. T. and Shillor, M., Thermomechanical behaviour of a damageable
beam in contact with two stops. Appl. Anal. 85 (2006), 845 – 865.

[3] Barboteu, M., Bartosz, K. and Kalita, P., A dynamic viscoelastic contact prob-
lem with normal compliance, finite penetration and nonmonotone slip rate
dependent friction. Nonlinear Anal. Real World Appl. 22 (2015), 452 – 472.

[4] Barbu, V., Optimal Control of Variational Inequalities. Boston: Pitman 1984.

[5] Bartosz, K., Hemivariational inequalities modeling dynamic contact problems
with adhesion. Nonlinear Anal. 71 (2009), 1747 – 1762.

[6] Bartosz, K. and Kalita, P., Optimal control for a class of dynamic viscoelastic
contact problems with adhesion. Dynam. Systems Appl. 21 (2012), 269 – 292.
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[16] Frémond, M., Kuttler, K. L. and Shillor, M., Existence and uniqueness of
solutions for a one-dimensional damage model. J. Math. Anal. Appl. 229 (1999),
271 – 294.
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