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A Linearized Model for Compressible
Flow past a Rotating Obstacle: Analysis
via Modified Bochner-Riesz Multipliers
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Abstract. Consider the flow of a compressible Newtonian fluid around or past a
rotating rigid obstacle in R3. After a coordinate transform to get a problem in a
time-independent domain we assume the new system to be stationary, then linearize
and - in this paper dealing with the whole space case only - use Fourier transform to
prove the existence of solutions u in Lq-spaces. However, the solution is constructed
first of all in terms of g = div u, explicit in Fourier space, and is in contrast to the
incompressible case not based on the heat kernel, but requires the analysis of new
multiplier functions related to Bochner-Riesz multipliers and leading to the restriction
6
5 < q < 6.
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1. Introduction

We consider the flow of a compressible Newtonian fluid past a rotating rigid
compact obstacle K(t) ⊂ R3, t > 0, of constant nonzero angular velocity ~ω ∈ R3.
Without loss of generality we assume that ~ω = ω(0, 0, 1)>, ω = |~ω| > 0. In the
time-dependent exterior domain Ω(t) = R3 \ K(t) the flow is described by the
nonlinear system

ρ
∂u

∂t
+ ρu · ∇u− µ∆u− (µ+ ν)∇div u+∇p(ρ) = ρf

∂ρ

∂t
+ div (ρu) = 0

(1)
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Mathematical Institute, Sokolovská 83, 18675 Praha 8, Czech Republic;
pokorny@karlin.mff.cuni.cz



286 R. Farwig and M. Pokorný

together with the boundary conditions

u(x, t) = ~ω ∧ x at
⋃
t∈(0,∞) ∂Ω(t)× {t}

u(x, t)→ u∞ as |x| → ∞
ρ(x, t)→ ρ∞ as |x| → ∞.

(2)

Here u = (u1, u2, u3) is the unknown velocity field with a zero or nonzero
limit u∞ at space infinity, ρ is the unknown density with limit ρ∞ ≥ 0 which
in this paper is assumed to be nonzero (even ρ∞ = 1 for simplicity), and the
hydrodynamic pressure p = p(ρ) at constant temperature.

Following ideas from [2, 4, 10–12] we introduce a t-dependent coordinate
transform via orthogonal matrices and reduce the problem to a new one in a
t-independent domain, see (9) below. Under the assumptions that the trans-
formed solution is stationary which corresponds to a time-periodic solution of
the original problem and that the axis of rotation is parallel to u∞ we linearize
with respect to a basic state to get a linear stationary system in a new velocity
field v and density function σ coupling an elliptic PDE system with a hyperbolic
equation, see (3) below. This system considered on the whole space R3 is solved
explicitly for g = div v in terms of Fourier transforms. In the incompressible
case the corresponding solution v can be treated by using Littlewood-Paley de-
composition and classical multipliers theorems, see [2,4]; for a more recent and
simpler proof we refer to [7]. However, in the compressible case, the solution
formula for g is much more complicated and defined by a multiplier function
which is non-differentiable on a sphere in the phase plane with radius 2

2µ+ν
and

related to the modified Bochner-Riesz multiplier function

(|ζ|2 − 1)
1
2
+.

Following the proof on the usual Bochner-Riesz multipliers (1 − |ζ|2)λ+, λ ≥ 0,
the range of admissible exponents q to allow for Lq-estimates is restricted to
values of q close to 2; to be more precise, we need that 6

5
< q < 6, see the Main

Theorem 1.1 below. For a different approach avoiding Fourier transformation
and to prove the existence of weak solutions we refer to [13]; here, however, the
fully evolutionary system has been considered. Other results concerning the
flow of rigid bodies in compressible Newtonian fluid can be found in [1] or [6].

Our main result concerns solutions (v, σ) of the linear system

−µ∆v − (µ+ ν)∇div v + (u∞ − ~ω ∧ y) · ∇v + ~ω ∧ v +∇σ = F in R3

div v + div
(
σ(u∞ − ~ω ∧ y)

)
= G in R3.

(3)

Actually, (v, σ) will be obtained from a stationary Oseen problem when
0 6= u∞ ‖ ~ω (or Stokes problem when u∞ = 0) with rotation term and pre-
scribed divergence g, see (12) below. On the other hand, the divergence g is
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obtained from the system

−(2µ+ ν)∆g + (u∞ − ~ω ∧ y) · ∇g + ∆σ = divF in R3

g + (u∞ − ~ω ∧ y) · ∇σ = G in R3
(4)

to be analyzed in Section 3.

Note that F is related to the external force f given in (1) by the coordinate
transform; we included a general right-hand side G in (3)2, (4)2 for possible
future application. Now the Main Theorem reads as follows:

Theorem 1.1. Let 6
5
< q < 6 and |u∞| ≤ 1

2
. Furthermore, let G ∈ Lq(R3) and

assume that F = div Φ satisfies Φ, (~ω ∧ y) · ∇Φ, u∞ · ∇Φ ∈ Lq(R3).

Then problem (4) has a unique solution g ∈ Lq(R3) which satisfies the
estimate

‖g‖q ≤ c

((
ω(2µ+ ν)

)2
+

1(
ω(2µ+ ν)

)4
)

×
(
‖G‖q + ‖ωΦ‖q + ‖(~ω ∧ y) · ∇Φ‖q + ‖u∞ · ∇Φ‖q

)
(5)

where the constant c = cq > 0 is independent of ω, u∞, and µ, ν.

By [2], [3, Theorem 1.1 (1)], [4], the solution g of problem (4) yields a
solution (v, σ) of (3) (or (12)) satisfying the estimate

‖µ∇2v‖q + ‖∇σ‖q ≤ cq
(
‖F + (µ+ ν)∇g‖q + ‖µ∇g + (~ω ∧ y)g − u∞g‖q

)
(6)

with a constant cq>0 independent of ω and u∞, provided µ∇g+(~ω∧y)g∈Lq(R3);
for estimates of lower order derivatives of v we refer to [2]. A further discussion
concerning (6) is given in Remark 3.10 at the end of the paper.

Note that Theorem 1.1 does not yield the assumptions on g needed in (6),
i.e., µ∇g+ (~ω∧ y)g ∈ Lq(R3). On the other hand, (6) holds for any 1 < q <∞.
Actually, the main aim of this paper is to prove the a priori estimate (5) which
results in rather elaborate estimates of the multiplier functions involved in the
explicit solution (see (17)–(26) in Section 3) of (4).

In the following section we describe in more details the procedure of the
coordinate transform and of calculating an explicit solution of the linearized
problem (4) in Fourier space. An analysis of the corresponding multiplier func-
tions will be performed in Section 3. The crucial estimates for the modified
Bochner-Riesz multipliers are found in Lemmata 3.5 and 3.7. We remark that

this analysis is performed not only for (|ζ|2 − 1)
1
2
+, but simultaneously for the

more general multiplier function (|ζ|2 − 1)λ+ with Reλ > 1
4
, cf. Theorem 3.9.
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2. The coordinate transform and the solution formula

As already mentioned a main disadvantage of the system (1), (2) is the problem
that the spatial domain Ω(t) is time-dependent. In order to work in a fixed
domain Ω ⊂ R3 we introduce the orthogonal matrix

O(t) = Oω(t) =

cosωt − sinωt 0

sinωt cosωt 0

0 0 1

 . (7)

Obviously, Ȯ := d
dt
O(t) = Ω̃O(t) where Ω̃ ∈ R3,3 is the skew symmetric matrix

such that Ω̃a = ~ω ∧ a for a ∈ R3. Let us define the new variable and unknowns

y = O(t)>x, v(y, t) = O(t)>
(
u(x, t)− u∞

)
, ρ̃(y, t) = ρ(x, t) (8)

as well as F (y, t) = O(t)>f(x, t). Then we get with the fixed domain Ω =
O(t)>Ω(t) the following problem:

ρ̃
∂v

∂t
− µ∆v − (µ+ ν)∇div v + ρ(Ȯ>Oy) · ∇v

+(Ȯ>O)>v + ρ̃(O>u∞) · ∇v + ρ̃v · ∇v +∇p(ρ̃) = ρ̃F,

∂ρ̃

∂t
+ div

(
ρ̃v + (Ȯ>Oy)ρ̃+ (O>u∞)ρ̃

)
= 0

(9)

in Ω× (0,∞), together with the conditions

v(y, t) = (Ȯ>O)>y −O>u∞ on ∂Ω× (0,∞)

v(y, t)→ 0 as |y| → ∞
ρ̃(y, t)→ 1 as |y| → ∞.

(10)

The computations how to get from (1), (2) to (9), (10) are relatively standard
in the case of incompressible flows, see e.g. [5]. Hence we only describe some
ideas to get (9)3. By (7), (8) and the simple calculation

Ȯ>O = −Ω̃, Ȯ>Oa = −ω ∧ a for a ∈ R3

we get that ∂
∂t
ρ(x, t) = ∂ρ̃

∂t
(y, t) +

∑3
j,k,l=1

∂ρ̃
∂yj

Ȯ>jkOkl yl = ∂ρ̃
∂t

+ (Ȯ>Oy) · ∇yρ̃

= ∂ρ̃
∂t

+ divy
(
(Ȯ>Oy)ρ

)
and
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divx
(
ρ(x, t)u(x, t)

)
=

3∑
j,k=1

∂

∂xj

(
ρ̃(O>x, t)

(
Ojkvk(O

>x, t) + (u∞)j
))

=
3∑

j,k,l=1

∂

∂yl

(
O>lj ρ̃(y, t)

(
Ojkvk(y, t) + (u∞)j

))
= divy

(
(O>u∞)ρ̃

)
+ divy(ρ̃v).

Summarizing the last two identities we are led to (9)3.
We further simplify (9) and assume that the flow in Ω is time-independent,

i.e., ∂v
∂t

= 0 and ∂ρ̃
∂t

= 0; this assumption is related to a time-periodic flow in

the original problem. To this aim the terms Ȯ>O and O>u∞ must be constant
in t. For the latter condition we assume that ω is parallel to u∞ so that

O(t)>u∞ = u∞ for all t > 0.

Now, writing ρ̃ = ρ̃(y) in the form

ρ̃ = 1 + σ,

and linearizing (9), (10) in (v, σ) around (0, 0) we get the coupled linear system

−µ∆v − (µ+ ν)∇div v + (u∞ − ~ω ∧ y) · ∇v + ~ω ∧ v +∇σ = F

div v + div
(
σ(u∞ − ~ω ∧ y)

)
= G.

(11)

In view of [2–4] it suffices to find a solution formula for the unknown function
g = div v, since then (v, σ) can be considered as a solution of the generalized
Oseen system with rotation effect

−µ∆v + (u∞ − ~ω ∧ y) · ∇v + ~ω ∧ v +∇σ = F + (µ+ ν)∇g
div v = g

(12)

in R3. For this reason we apply div to (11)1 and get, since div
(
(~ω ∧ y) · ∇v −

~ω ∧ v
)

= (~ω ∧ y) · ∇g, that (g, σ) solves the system

−(2µ+ ν)∆g + (u∞ − ~ω ∧ y) · ∇g + ∆σ = divF

g + (u∞ − ~ω ∧ y) · ∇σ = G.
(13)

Since the operators ∆ and (~ω ∧ y) · ∇ commute, (13)2 yields

∆g + (u∞ − ~ω ∧ y) · ∇(∆σ) = ∆G. (14)

Now we may insert ∆σ from (13)1 into (14) to get that

∆g −
(
(u∞ − ~ω ∧ y) · ∇

)2
g + (u∞ − ~ω ∧ y) · ∇(2µ+ ν)∆g

= ∆G− (u∞ − ~ω ∧ y) · ∇(divF ).
(15)



290 R. Farwig and M. Pokorný

Due to the geometry of the problem we introduce cylindrical coordinates for

y ∈ R3, i.e., let y
∧
= (r, θ, y3), r = |(y1, y2)| ≥ 0, θ ∈ [0, 2π), y3 ∈ R. Then it is

easily seen that (~ω ∧ y) · ∇ = ω∂θ where ∂θ denotes the angular derivative with
respect to θ. Exploiting the commutator identity [u∞ · ∇, (~ω ∧ y) · ∇] = 0 we
are led to the equation

ω2∂2θg+ω
(
(2µ+ν)∆−2u∞·∇

)
∂θg+

(
−∆−(2µ+ν)u∞·∇∆+(u∞·∇)2

)
g=H (16)

where

H = −∆G+ (u∞ · ∇ − ω∂θ)divF. (17)

For the subsequent computation we write that u∞ = ke3, k ≥ 0, so that

u∞ · ∇ = k∂3, k = |u∞|,

and use the Fourier transform, formally defined by

Fu(ξ) = û(ξ) =
1

(2π)
3
2

∫
R3

e−ix·ξu(x) dx, ξ ∈ R3.

Since in cylindrical coordinates in ξ-space, say ξ
∧
= (s, ϕ, ξ3), ∂̂θu(ξ) = ∂ϕû(ξ),

(16), (17) can be written in Fourier space in the form

ω2∂2ϕĝ+ω∂ϕĝ
(
−(2µ+ν)|ξ|2−2ikξ3

)
+ĝ
(
|ξ|2+(2µ+ν)ikξ3|ξ|2−k2ξ23

)
= Ĥ (18)

where

Ĥ(ξ) = |ξ|2Ĝ+ (−iω ∂ϕ − kξ3)(ξ · F̂ ). (19)

Note that (18) may be considered as a second order differential equation for g
with respect to ϕ ∈ [0, 2π], and that we are looking for a 2π-periodic solution

ĝ(ξ)
∧
= ĝ(ϕ). The characteristic polynomial

χ(λ) = λ2 − 1

ω

(
(2µ+ ν)|ξ|2 + 2ikξ3

)
λ+

1

ω2

(
|ξ|2 + (2µ+ ν)ikξ3|ξ|2 − k2ξ23

)
of (18) has the zeros

λ1,2 = λ1,2(ξ) =
1

2ω

(
(2µ+ ν)|ξ|2 + 2ikξ3 ±

√
(2µ+ ν)2|ξ|4 − 4|ξ|2

)
. (20)

Then the general solution ĝ(ϕ) of (18) has the form

ĝ(ϕ) = c1e
λ1ϕ + c2e

λ2ϕ +
1
ω2

λ1 − λ2

∫ ϕ

0

(
e−λ1(t−ϕ) − e−λ2(t−ϕ)

)
Ĥ(t) dt, (21)
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where, with a slight abuse of notation, Ĥ(t) = Ĥ(ξ) for ξ
∧
= (s, t, ξ3) in cylin-

drical coordinates and with c1(|ξ|, ξ3), c2(|ξ|, ξ3) ∈ C. In order to get a 2π-
periodic solution of class C2 with respect to ϕ, ĝ must satisfy ĝ(0) = ĝ(2π) and
∂ϕĝ(0) = ∂ϕĝ(2π), i.e.,

c1 + c2

= c1e
2πλ1 + c2e

2πλ2 +
1
ω2

λ1−λ2

∫ 2π

0

(
e−λ1(t−2π) − e−λ2(t−2π)

)
Ĥ(t) dt,

λ1c1 + λ2c2

= λ1e
2πλ1c1 + λ2e

2πλ2c2 +
1
ω2

λ1−λ2

∫ 2π

0

(
e−λ1(t−2π)λ1 − e−λ2(t−2π)λ2

)
Ĥ(t) dt. (22)

The previous identities define a (2×2)-linear system for c1, c2 with unique solu-
tion

c1 =
1
ω2

(λ1 − λ2)(1− e2πλ1)

∫ 2π

0

e−λ1(t−2π)Ĥ(t) dt ,

c2 =
− 1
ω2

(λ1 − λ2)(1− e2πλ2)

∫ 2π

0

e−λ2(t−2π)Ĥ(t) dt.

Hence the unique 2π-periodic solution ĝ(ϕ) of (18) reads

ĝ(ϕ) =
1
ω2

λ1 − λ2

{
−1

1− e−2πλ1

∫ 2π

0

e−λ1(t−ϕ)Ĥ(t) dt+

∫ ϕ

0

e−λ1(t−ϕ)Ĥ(t) dt

+
1

1− e−2πλ2

∫ 2π

0

e−λ2(t−ϕ)Ĥ(t) dt−
∫ ϕ

0

e−λ2(t−ϕ)Ĥ(t) dt

}
. (23)

From (23) we deduce two different representation formula which will be
used for |ξ| small and for |ξ| large, see (25) for small |ξ| and (26) for large |ξ|,
respectively. Consider the first two terms involving λ1 in (23): since Ĥ(t) is
2π-periodic a shift of coordinates implies that

−1

1− e−2πλ1

∫ 2π

0

e−λ1(t−ϕ)Ĥ(t) dt+

∫ ϕ

0

e−λ1(t−ϕ)Ĥ(t) dt

=
1

1− e−2πλ1

(∫ ϕ

0

(
e−λ1(t−ϕ) − e−λ1(t+2π−ϕ))Ĥ(t) dt−

∫ 2π

0

e−λ1(t−ϕ)Ĥ(t) dt

)
=

−1

1− e−2πλ1

∫ 2π

0

e−λ1tĤ(t+ ϕ) dt.

A similar result holds for the last two terms in (23) involving λ2.
At this point let us introduce the orthogonal matrix O1(t), cf. the definition

in (11), modeling rotation around the x3- or ξ3-axis by the angle t ∈ R. We note
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that FH
(
O1(t) ·

)
(ξ) = Ĥ

(
O1(t)ξ

)
and Ĥ(t+ϕ) = Ĥ

(
O1(t)ξ

)
for ξ

∧
= (s, ϕ, ξ3)

in polar coordinates. Hence we get from (23) that

ĝ(ξ) =
1
ω2

λ1 − λ2

∫ 2π

0

(
e−λ2t

1− e−2πλ2
− e−λ1t

1− e−2πλ1

)
Ĥ
(
O1(t)ξ

)
dt. (24)

In order to “get rid of” the term 2ikξ3 in the definition of λj, see (20), recall
that the multiplication in Fourier space by − ikξ3

ω
t equals the change of variables

x 7→ x− k
ω
te3 in x-space. Hence, defining the modified zeros

µ1,2 =
1

2ω

(
(2µ+ ν)|ξ|2 ±

√
(2µ+ ν)2|ξ|4 − 4|ξ|2

)
,

we may rewrite (24) in the form

ĝ(ξ) =
1
ω2

µ1 − µ2

∫ 2π

0

(
e−µ2t

1− e−2πλ2
− e−µ1t

1− e−2πλ1

)
FH

(
O1(t) · −

k

ω
te3
)
(ξ) dt. (25)

On the other hand, we may write the term (1 − e−2πλj)−1 as a geometric
series, since Re λj > 0 when ξ 6= 0. Then, using the 2π-periodicity of Ĥ(O1(t)ξ)
in t, the first term involving λ2 in (24) can be written in the form

∞∑
j=0

∫ 2π

0

e−λ2(t+2πj)Ĥ
(
O1(t)ξ

)
dt =

∫ ∞
0

e−λ2tĤ
(
O1(t)ξ

)
dt.

Hence (23) simplifies to the formula

ĝ(ξ) =
1
ω2

µ1 − µ2

∫ ∞
0

(e−µ2t − e−µ1t)F
(
H(O1(t) · −

k

ω
te3)

)
(ξ) dt. (26)

For later use we assume that F has the form

F = div Φ = (div Φ1, div Φ2, div Φ3), Φ = (Φkj)
3
k,j=1,

with Φ ∈ Lq(R3), or in Fourier space that

F̂ = iξ · Φ̂ = i(ξ · Φ̂1, ξ · Φ̂2, ξ · Φ̂3), Φ̂k = (Φ̂kj)
3
j=1.

Since ∂ϕ = (e3 ∧ ξ) · ∇, we have ∂ϕ(ξ · F̂ ) = (ξ · ∂ϕF̂ ) + (ξ ∧ F̂ )3 and finally

∂ϕ(ξ · F̂ ) = i
{
ξ · ∂ϕΦ̂ · ξ + ξ · (ξ ∧ Φ̂)3 +

(
ξ ∧ (ξ · Φ̂)

)
3

}
where the vector and scalar product of ξ with Φ̂ are calculated as vector and
scalar products of ξ with the vectors Φ̂1, Φ̂2 and Φ̂3. In particular, we see that
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∂ϕ(ξ · F̂ ) = ξ · Â0(ξ) ·ξ where the coefficients of Â0(ξ) consist of terms like Φ̂ij(ξ)

and ∂ϕΦ̂ij(ξ). Moreover, ξ3ξ · F̂ = iξ3ξ · Φ̂ · ξ. Hence Ĥ, see (19), has the form

Ĥ(ξ) = ξ · Â(ξ) · ξ with Â(ξ) = Ĝ(ξ)I3 + Â1(ξ) (27)

where Â1(ξ) is a (3× 3)-matrix with coefficients like ωΦ̂ij, ω∂ϕΦ̂ij and kξ3Φ̂ij,
and where I3 = (δij) ∈ R3,3. From the Hörmander-Mikhlin Multiplier Theo-
rem 3.1 below we conclude that A satisfies for every 1 < q <∞ the Lq-estimate

‖A‖q ≤ cq
(
‖G‖q + ‖ωΦ‖q + ‖(~ω ∧ y) · ∇Φ‖q + ‖u∞ · ∇Φ‖q

)
(28)

with a constant cq > 0 independent of ω and u∞.

3. Proofs

For the estimate of g in Lq(R3) we use multiplier theory and have to distinguish
three cases concerning the behavior of λj = λj(ξ), j = 1, 2, as functions of
ξ ∈ R3.

3.1. Preliminaries. Let η0, η1, η2 ∈ C∞
(
R3; [0, 1]

)
be a partition of unity of R3

such that

η0 = 1 for |ξ| ≤ 1

4

2

2µ+ ν
, η0 = 0 for |ξ| ≥ 1

2

2

2µ+ ν
,

η1 = 1 for
1

2

2

2µ+ ν
≤ |ξ| ≤ 2

2

2µ+ ν
,

η2 = 1 for 4
2

2µ+ ν
≤ |ξ|, η2 = 0 for |ξ| ≤ 2

2

2µ+ ν
.

Looking at this distinction of cases it will be advantageous to define the new
variable

ζ =
2µ+ ν

2
ξ

and the new parameter

ω′ =
2µ+ ν

2
ω.

Using ζ, ω′ the terms η0, η1, η2 and λ1,2, µ1,2 have the following properties:

η0 =

{
1, |ζ| ≤ 1

4

0, |ζ| ≥ 1
2

, η1 = 1 for
1

2
≤ |ζ| ≤ 2, η2 =

{
1, |ζ| ≥ 4

0, |ζ| ≤ 2
,

and

λ1,2 =
1

ω′
(
|ζ|2 + ikζ3 ±

√
|ζ|4 − |ζ|2

)
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with a similar formula for µ1,2 when omitting the term ikζ3 in λ1,2. Moreover,

µ1 ∼
2

ω′
|ζ|2, µ2 ∼

1

2ω′
, µ1 − µ2 ∼

2

ω′
|ζ|2 as |ζ| → ∞,

µ1,2 ∼
1

ω′
|ζ|2 ± i

ω′
|ζ|
(
1 + o(1)

)
, µ1 − µ2 ∼

2i

ω′
|ζ| as |ζ| → 0.

Since η0 + η1 + η2 = 1 on R3, we write

g = g0 + g1 + g2, gk = F−1(ηkĝ), k = 0, 1, 2,

and consider each term separately. However, we do need further cut-off func-
tions η′0, η

′
1, η

′
2 ∈ C∞

(
R3; [0, 1]

)
just as η0, η1, η2 such that e.g. η′0 = 1 for

|ζ| ≤ 1
2

and η′0 = 0 for |ζ| ≥ 3
4
; then η0 = η0η

′
0 = η0(η

′
0)

2. The functions η′1, η
′
2

are defined in a similar way so that ηj = ηjη
′
j = ηj(η

′
j)

2 for j = 1, 2 as well.
Hence

g = F−1(η0η′0ĝ + η1η
′
1ĝ + η2η

′
2ĝ).

The main tool in Subsections 3.2 and 3.3 below will be the multiplier theorem
of Hörmander-Mikhlin, see [8, Theorem 5.2.7].

Theorem 3.1. Let 1 < q < ∞ and let m ∈ C2
(
R3 \ {0}

)
be a multiplier

function satisfying the pointwise Hörmander-Mikhlin condition

‖m‖M := sup
{
|ξ||α| |Dαm(ξ)| : 0 6= ξ ∈ R3, |α| ≤ 2

}
<∞ (29)

where α runs through the set of multi-indices α ∈ N3
0 with |α| ≤ 2. Then

the multiplier operator T : u 7→ F−1(mû), u ∈ S(R3), can be extended to a
bounded linear operator from Lq(R3) to Lq(R3). To be more precise, there exists
a constant c(q) > 0 such that

‖Tu‖q ≤ c(q)‖m‖M ‖u‖q.

We note that ‖m(β ·)‖M = ‖m‖M for every β > 0. Hence it suffices to
consider multiplier functions below as functions of ζ instead of ξ. In particular,
the product of two multiplier functions m1,m2 satisfying (29) yields a multi-
plier function ξ 7→ m1(ξ)m2(βξ) satisfying (29) as well and ‖m1(·)m2(β·)‖M ≤
c‖m1‖M‖m2‖M with an absolute constant c > 0 independent of m1,m2 and
β > 0.

3.2. The term g2. Concerning η2ĝ we use the representation (26), (27) and
note that

m1(ξ) :=
ξjξk|ω|−2

µ1 − µ2

η2(ξ) =
1

ω′
· ζjζk
|ζ|2
·
η2

(
2ζ

2µ+ν

)
√

1− |ζ|−2
, 1 ≤ j, k ≤ 3,
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satisfies the pointwise Hörmander-Mikhlin multiplier condition (29) with bound
‖m1‖M ≤ c 1

ω′
where c is independent of k, µ, ν, ω. For the term e−µ2(ξ)t to be

multiplied with η′2(ξ) we note that

µ2(ξ) =
1

ω′
1

1 +
√

1− |ζ|−2
=

1

2ω′
(1 +m2(ξ)), m2(ξ) =

1−
√

1− |ζ|−2

1 +
√

1 + |ζ|−2
,

where m2 satisfies 0 ≤ m2(ξ) ≤ 1 for all ξ ∈ supp η′2 ⊆ {ξ ∈ R3 : |ζ| ≥ 3
2
} and

the pointwise Hörmander-Mikhlin bound (independent of the parameter 2µ+ν)

sup
ξ∈ supp η′2

|ξ||α||Dαm2(ξ)| ≤ cα, |α| ≤ 2.

Consequently, the multiplier η′2(ξ)e
−µ2(ξ)t satisfies (29) with bound ce−

t
4ω′ where

c is independent of k, µ, ν, ω.
Consider g2,2 defined by

ĝ2,2(ξ) = η2(ξ)
ξjξkω

−2

µ1 − µ2

∫ ∞
0

η′2(ξ)e
−µ2(ξ)tÂt,jk(ξ) dt (30)

1 ≤ j, k ≤ 3, cf. (26), (27), where At(x) = A
(
O(t)x − k

ω
te3
)
. By the previous

arguments and since ‖At‖q = ‖A‖q for all t > 0, g2,2 can be estimated for
1 < q <∞ as follows:

‖g2,2‖q ≤ c
1

ω′

∫ ∞
0

e−
t

4ω′ ‖At‖q dt ≤ c‖A‖q (31)

with a constant c = cq > 0 independent of k, ω and µ, ν.
Next we consider g2,1 similarly defined as g2,2 in (30) but with µ2 replaced

by µ1. Since

µ1(ξ) =
1

ω′
|ζ|2
(

1 +
√

1− |ζ|−2
)
≥ 5|ζ|2

3ω′
, ξ ∈ supp η′2,

and similar upper bounds hold for |ξ||α||Dαµ1|, ξ ∈ supp η′2, we obtain that
η′2(ξ)e

−µ1(ξ)t has a pointwise multiplier bound exp
(
− t

ω′

)
uniformly in t > 0.

In particular g2,1 satisfies an estimate similar to (31) with c > 0 independent of
k, ω, µ, ν, i.e., for 1 < q <∞

‖g2,1‖q ≤ cq‖A‖q. (32)

3.3. The term g0. Next we analyze g0 = F−1(η0ĝ) in Lq(R3), 1 < q < ∞,
using the representation (25), (27), i.e.,

ĝ0(ξ) =
1

ω2
η0(ξ)

ξjξk
µ1 − µ2

∫ 2π

0

(
e−µ2t

1− e−2πλ2
− e−µ1t

1− e−2πλ1

)
Ât,jk(ξ) dt

=
ξj ω

−1

µ1 − µ2

η0(ξ) ·
ξk ω

−1

1− e−2πλ2(ξ)
η′0(ξ) ·

∫ 2π

0

η′0(ξ)e
−µ2(ξ)tÂt,jk(ξ) dt

− similar terms with λ2, µ2 replaced by λ1, µ1,

(33)
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1 ≤ j, k ≤ 3. Due to the properties of the cut-off function η0 and its derivatives,
the function

m3(ξ) :=
ξj ω

−1

µ1 − µ2

η0(ξ) =
ζj

2i|ζ|
√

1− |ζ|2
η0

( 2ζ

2µ+ ν

)
(34)

is easily shown to be a multiplier with bound ‖m3‖M ≤ c. Moreover,

mt(ξ) = e−µ1,2(ξ)t η′0(ξ) = exp
(
− t

ω′
(
|ζ|2 ± i|ζ|

√
1− |ζ|2

))
η′0

( 2ζ

2µ+ ν

)
is a multiplier function with multiplier bound ‖mt‖M ≤

(
1 + 1

ω′

)
uniformly

in t ∈ (0, 2π); note that the term 1
ω′

comes into play when differentiating the

purely imaginary term i|ζ|
√

1− |ζ|2 in the exponential function.
Finally we have to consider the functions

m1,2(ξ) =
ξk ω

−1

1− e−2πλ1,2
η′0(ξ) =

1

ω′

ζkη
′
0

(
2ζ

2µ+ν

)
D1,2(ζ)

with the denominator

D1,2(ζ) = 1− exp
{
− 2π

ω′
(
|ζ|2 + ikζ3 ± i|ζ|

√
1− |ζ|2

)}
.

For ζ ∈ B 3
4
(0) ∩ Bω′

2
(0) Taylor’s expansion of the complex exponential function

implies that

D1,2(ζ) =
2πi

ω′
(
± |ζ|+ kζ3

)
+O(|ζ|2) as |ζ| → 0 .

Under the assumption |k| ≤ 1
2

we conclude that m1,2 is uniformly bounded for

ζ ∈ B 3
4
(0) ∩ Bω′

2
(0). By analogy, we can estimate derivatives of m1,2 and finally

get a constant c > 0 independent of k, µ, ν, ω such that

|m1,2|+ |ξ| |∇ξm1,2|+ |ξ|2 |∇2
ξm1,2| ≤ c, ζ ∈ B 3

4
(0) ∩ Bω′

2
(0) .

However, for the remaining ζ ∈ B 3
4
(0) \ Bω′

2
(0) , i.e., 3

4
≥ |ζ| > ω′

2
(provided

that ω′ < 3
2
),

|D1,2(ζ)| ≥ 1− exp
(
− 2π|ζ|2

ω′

)
≥ 1− exp

(
− π|ζ|

)
≥ c|ζ|

with a suitable constant c > 0. Hence |m1,2| is bounded by c
ω′

. Analogously, we
get the estimates

|ξ| |∇ξm1,2| ≤ c
(
1 + 1

ω′2

)
, ζ ∈ B 3

4
(0) \Bω′

2
(0) ,

|ξ|2 |∇2
ξm1,2| ≤ c

(
1 + 1

ω′3

)
, ζ ∈ B 3

4
(0) \Bω′

2
(0) .
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Summarizing the previous estimates we see that m1,2 are multipliers with mul-
tiplier bound ‖m1,2‖M ≤ c

(
1 + ω′−3

)
.

Hence the product of multipliers m3, mt and m1,2 as discussed above and
used to define ĝ0 in (33) yields a multiplier with bound c

(
1+ 1

ω′4

)
. Now Theorem

3.1 leads for each 1 < q <∞ to the estimate

‖g0‖q ≤ c
(

1 +
1

ω(2µ+ ν)

)4
‖A‖q (35)

where c > 0 is independent of k, µ, ν, ω. Here the assumption k = |u∞| ≤ 1
2

from Theorem 1.1 has been used.

Remark 3.2. (i) By (35) the a priori estimate of ‖g0‖q by ‖A‖q indicates
a possible blow-up when the angular speed ω tends to zero. This seems to
contradict better estimates in the case when ω = 0. However, this phenomenon
is known also for the first order derivative u∞ · ∇v in the Oseen system of in-
compressible flow with rotation effect and even in the L2-case, cf. [3, Theorem 2].

(ii) Formula (33) of ĝ0 looks like a problem for second order derivatives, but
due to the behaviour of µ1 − µ2 for small |ζ| in the denominator in (33) one
order of |ξ| has been cancelled, see (34).

3.4. The term g1. Finally we consider the term g1 = F−1(η1ĝ) which will
pose most difficulties since the functions λ1,2(ξ) are non-differentiable on the
manifold |ξ| = 2

2µ+ν
(i.e. |ζ| = 1) where additionally the denominator µ1 − µ2

in (26) will vanish.
First we observe that

m(ξ) =
1

ω2
ξjξkη

′
1(ξ)

is a multiplier on Lq(R3), 1 < q < ∞, with multiplier bound ‖m‖M ≤ c
ω′2

.
Looking at the representation formula (26) and (27) we still have to analyze

ĝ1(ξ) = η1(ξ)

∫ ∞
0

e−µ2t − e−µ1t

µ1 − µ2

Ât dt (36)

where, as before, At(x) = A
(
O(t)x− k

ω
te3
)
. For this reason we write

e−µ2t − e−µ1t

µ1 − µ2

= t

∫ 1

0

e−(µ2s+µ1(1−s))t ds. (37)

Hence the problem is reduced to the analysis of the family of multipliers

mt,s(ξ) = η1(ξ) e
−(µ2s+µ1(1−s))t, t ∈ (0,∞), s ∈ [0, 1]. (38)
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Note that in (38) we get an exponent

µ2s+ µ1(1− s) =
1

ω′
(
|ζ|2 + i(1− 2s)|ζ|

√
1− |ζ|2

)
which has to be considered for 1

4
≤ |ζ| ≤ 4 and s ∈ [0, 1].

However, the classical Hörmander-Mikhlin multiplier theorem does not ap-
ply, since mt,s(ξ) is not differentiable for |ζ| = 1. Even the integral version of
the multiplier condition ([8, (5.2.11) in Theorem 5.2.7]) is not applicable due

to singularities of the type (1 − |ζ|2)− 1
2 and (1 − |ζ|2)− 3

2 . Therefore, we refer
to the analysis of Bochner-Riesz multipliers of the type (1 − |ζ|2)λ+, [8, 9], and
perform a much more careful analysis of the multiplier mt,s. Using a “partial”
Taylor expansion of the exponential functions and the notation

t∗ =
t

ω′
, hs(ζ) = −i(1− 2s) · |ζ|

√
1− |ζ|2

mt,s will be written in the form

mt,s(ξ) = η1(ξ)e
−|ζ|2t∗

[
η′1(ξ)

−i(1− 2s)|ζ|
hs(ζ)

(
ehst∗ − 1− h2st

2
∗

2
− h4st

4
∗

4!

)]
×
{
η′1(ξ)

√
1− |ζ|2 χB1(ζ) + iη′1(ξ)

√
|ζ|2 − 1 χB4\B1(ζ)

}
+ η1(ξ)e

−|ζ|2t∗η′1(ξ)
(

1 +
h2st

2
∗

2
+
h4st

4
∗

4!

)
=: m1

t,s(ξ) [m2
t,s(ξ)]× {M1(ξ) +M2(ξ)}+m1

t,s(ξ)m
3
t,s(ξ). (39)

The crucial terms are the multipliers M1 and M2 in (39) due to the non-
differentiable factor

√
1− |ζ|2 well-known from Bochner-Riesz multipliers. Note

that for m2
t,s(ξ) in (39) the singularity

√
1− |ζ|2 cancels due to the partial Tay-

lor expansion, at least for small hst∗; hence m2
t,s will be a multiplier function of

class C2 on R3.

Lemma 3.3. There exists a constant c > 0 independent of t ∈ (0,∞), s ∈ [0, 1]
and ω > 0 such that

‖m1
t,s ·m2

t,s‖M ≤ Ce−
t

16ω

(
1 +

( t
ω

)7)
, (40)

‖m1
t,s ·m3

t,s‖M ≤ Ce−
t

16ω

(
1 +

( t
ω

)6)
. (41)

Proof. Obviously, m1
t,s = η1(ξ)e

−|ζ|2t∗ satisfies the Hörmander-Mikhlin estimate

‖m1
t,s‖M ≤ c exp

(
− t

16ω

)(
1 +

(
t
ω

)2)
since supp η′1 ⊂ B4 \ B 1

4
. Now (41) is an

immediate consequence.
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Concerning the pointwise estimate (29) of m2
t,s(ξ) we note that

1

hs(ζ)t∗

(
ehst∗ − 1− h2st

2
∗

2
− h4st

4
∗

4!

)
can be written as a convergent power series in the complex variable hs(ζ)t∗
starting with the terms 1 + 1

6
h2st

2
∗ + 1

5!
h4st

4
∗. Hence m2

t,s satisfies the estimate∣∣|ξ|αDαm2
t,s(ξ)

∣∣ ≤ c(1 + t5∗) for ξ ∈ R3 with |hs(ζ)t∗| ≤ 1

and all α ∈ N3
0, |α| ≤ 2. Now let ξ ∈ R3 and |hs(ζ)t∗| > 1 but |ζ| < 1 so

that hs(ζ) is purely imaginary and hence |ehst∗ | ≤ 1. Then we get the estimate∣∣|ξ|αDαm2
t,s(ξ)

∣∣ ≤ c(1 + t5∗) for |ζ| < 1 < |hs(ζ)t∗|.

Finally we consider ξ ∈ supp η′1 satisfying |ζ| ≥ 1 and |hs(ζ)t∗| > 1. Depending
on s ∈ [0, 1] we have hs(ζ) ≥ 0 or hs(ζ) < 0; hence a reasonable estimate of
m2
t,s(ξ) is not available due to the exponential term exp(hst∗). However, the

product m1
t,s ·m2

t,s involves an exponential term with exponent

(
−|ζ|2+(2s−1)|ζ|

√
|ζ|2−1

)
t∗≤−|ζ|

(
|ζ|−

√
|ζ|2−1

)
t∗=−

|ζ|t∗
|ζ|+

√
|ζ|2−1

≤−t∗
2
.

This argument yields the estimate |m1
t,s · m2

t,s(ξ)| ≤ ce−
t∗
2 (1 + t5∗) for these

ξ ∈ supp η′1; it also holds for derivatives |ξ|αDα, α ∈ N3
0, |α| ≤ 2. Summarizing

the previous discussion we get (40).

It remains to discuss the operators defined by the multiplier functions M1

and M2. We write

M1(ξ)=η′1(ξ)
√

1−|ζ|2 χB1(ζ)=
√

1−|ζ|2 χB1(ζ)+
(
η′1(ξ)− 1

)√
1−|ζ|2 χB1(ζ)

where ξ 7→
(
η′1(ξ) − 1

)√
1− |ζ|2 χB1(ζ) defines a smooth multiplier satisfy-

ing (29) with an absolute bound ‖ · ‖M. Moreover, the first term is the classical
Bochner-Riesz multiplier which defines a bounded operator on Lp(R3) provided
6
5
< p < 6, cf. [9, Theorem 10.4.6]. Hence we proved the following result.

Lemma 3.4. The multiplier operator defined by the multiplier function M1 is
bounded on Lp(R3) if and only if 6

5
< p < 6. The operator norm on Lp(R3) is

independent of µ, ν, k and ω.

To prove the corresponding result for M2 we consider an even more general
multiplier function with the singular term (|ζ|2 − 1)λ where λ ∈ C. The first
result concerns properties of inverse Fourier transforms to be used as kernels in
convolution integrals.
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Lemma 3.5. On R3 and for Reλ > −1 let

Kλ(x) := F−1
(
(|ζ|2 − 1)λ+g(|ζ|)

)
where g ∈ C∞

(
[1,∞)

)
satisfies g(τ) = 1 for 1 ≤ τ ≤ 2 but g(τ) = 0 for τ ≥ 4.

Then there exists a constant C = C(Reλ) > 0 such that

|Kλ(x)| ≤ C

(
1 + |Im|λ|

)[Reλ]+2

(1 + |x|)Reλ+2

(
× log(2 + |x|) when Reλ ∈ N0

)
. (42)

Proof. Evidently, (|ζ|2 − 1)λ+g(|ζ|) ∈ L1(R3) with L1-norm bounded by c
Reλ+1

.
This proves (42) for small |x|. It remains to consider (42) for large |x|.

Since the Fourier transform of Kλ is radially symmetric, the same holds

for Kλ itself, and, using the classical Bessel function J 1
2
(r) =

(
2
πr

) 1
2 sin r,

Kλ(x) =
2

|x|

∫ ∞
0

sin(2π|x|τ)g(τ)(τ 2 − 1)λ+ τ dτ

=
2

|x|

∫ 4

1

sin(2π|x|τ)(τ 2 − 1)Reλei Imλ ln(τ2−1) τg(τ) dτ.

In the following we will omit the constant 2π in the integrand (or replace x
by 2πx) and omit the constant 2 in front of the integral. It will suffice to compute
the real part of Kλ(x), the imaginary part being just a minor modification.

Assume for a moment that Reλ > 0. Then, after the above-mentioned

simplification, we get with an integration by parts for kλ(x)
∧
= ReKλ(x) that

kλ(x) =
1

|x|

∫ 4

1

d

dτ

(
− 1

|x|
cos(|x|τ)

)
(τ 2 − 1)Reλ cos

(
Imλ ln(τ 2 − 1)

)
τg(τ) dτ

=
2

|x|2

∫ 4

1

cos(|x|τ)(τ 2 − 1)Reλ−1[Reλ cos
(
Imλ ln(τ 2 − 1)

)
− Imλ sin

(
Imλ ln(τ 2 − 1)

)]
τ 2g(τ) dτ

+
1

|x|2

∫ 4

1

cos(|x|τ)(τ 2 − 1)Reλ cos
(
Imλ ln(τ 2 − 1)

) d

dτ

(
τg(τ)

)
dτ.

Note that the boundary terms at τ = 1 and τ = 4 vanish. In the last integral
with term (τ 2−1)Reλ a further integration by parts immediately yields another
power |x|−1; in this sense this integral will have better decay properties than
the first integral. To perform a further integration by parts in the other integral
and to gain another term |x|−1 we have to assume that Reλ > 1. Then we find
a polynomial pn = pn(Reλ, Imλ) of degree at most n (for the moment n = 2)
such that

kλ(x) =
p2
|x|3

∫ 4

1

sin(|x|τ)(τ 2−1)Reλ−2 cos
(
Imλ ln(τ 2−1)

)
g1(τ) dτ + · · · .
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Here g1 ∈ C∞
(
[1,∞)

)
, supp g1 ⊂ [1, 4], and the dots · · · are the abbreviation

of similar terms where sine and cosine may be replaced by cosine and sine or
terms where the power of (τ 2 − 1) is larger than Reλ− 2.

We may repeat this procedure and arrive after ([Reλ] + 1) steps at the
formula

kλ(x) =
p[Reλ]+1

|x|[Reλ]+2

∫ 4

1

cos(|x|τ)(τ 2 − 1)Reλ−[Reλ]−1

· cos
(
Imλ ln(τ 2 − 1)

)
g2(τ) dτ + · · ·

(43)

provided that Reλ > [Reλ] ≥ 0. Now we use the change of variables s = |x|τ
to see that a typical leading term in kλ(x) (concerning decay as |x| → ∞) has
the form

kλ(x) =
p[Reλ]+1

|x|2Reλ−[Reλ]+1

∫ 4|x|

|x|
cos s

(
(s− |x|)(s+ |x|)

)Reλ−[Reλ]−1

· cos

(
Imλ ln

(
s2

|x|2
− 1

))
g2

(
s

|x|

)
ds + · · ·

(44)

This integral will be considered separately on [|x|, |x|+ 1] and [|x|+ 1, 4|x|].
On [|x|, |x|+ 1] we estimate as follows: there exist cλ = C(Reλ) > 0 such that∣∣∣∣∣

∫ |x|+1

|x|
(. . . )

∣∣∣∣∣ ≤ cλ|x|Reλ−[Reλ]−1
∫ |x|+1

|x|
(s− |x|)Reλ−[Reλ]−1 ds

≤ cλ|x|Reλ−[Reλ]−1,

(45)

since Reλ− [Reλ]− 1 ∈ (−1, 0). On [|x|+ 1, 4|x|] we replace the variable s by
t = s− |x| to get from (44) the integral

∫ 3|x|

1

cos(t+ |x|)
(
t(t+ 2|x|)

)Reλ−[Reλ]−1

· cos

(
Imλ ln

(
(t+ |x|)2

|x|2
− 1

))
g2

(
t+ |x|
|x|

)
dt.

(46)

With an integration by parts we arrive at the boundary terms

sin(4|x|)(3|x| 5|x|)Reλ−[Reλ]−1 cos(· · · )g2(· · · )
− sin(1 + |x|)(1 + 2|x|)Reλ−[Reλ]−1 cos(· · · )g2(· · · ),

(47)

which can be estimated for |x| > 1 by C|x|Reλ−[Reλ]−1, and the new integrals
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−
∫ 3|x|

1

sin(t+ |x|)(t+ 2|x|)Reλ−[Reλ]−1

· d

dt

[
tReλ−[Reλ]−1 cos

(
Imλ ln

(
s2

|x|2
− 1

))
g2

(
s

|x|

)]
dt (48)

−
∫ 3|x|

1

sin (t+ |x|) cλ
(
t(t+ 2|x|)

)Reλ−[Reλ]−2
t cos(· · · )g2(· · · ) dt. (49)

The integral in (49) is immediately estimated by

cλ

∫ 3|x|

1

(t+ 2|x|)Reλ−[Reλ]−2 dt ≤ cλ|x|Reλ−[Reλ]−1. (50)

In (48) we estimate the first two terms of the integrand by C|x|Reλ−[Reλ]−1.
Hence it remains to show that∫ 3|x|

1

∣∣∣∣ d

dt

[
tReλ−[Reλ]−1 cos

(
Imλ ln

(
t(t+ 2|x|)
|x|2

))
g2

(
1 +

t

|x|

)]∣∣∣∣ dt
≤ cλ(1 + |Imλ|)

(51)

for |x| > 1. A first term due to the differentiation of tReλ−[Reλ]−1 yields the
bound in (51) since Reλ − [Reλ] − 2 < −1. The second term comes from the
differentiation of the cosine function, yields the factor Imλ and exploits the
estimate ∣∣∣∣ d

dt
ln

(
t(t+ 2|x|)
|x|2

)∣∣∣∣ =
2(t+ |x|)
t(t+ 2|x|)

≤ 2

t
; (52)

hence we are led to the integration of tReλ−[Reλ]−2 and again to (51). Finally∣∣ d
dt
g2
(
1 + t

|x|

)∣∣ ≤ c
|x| ≤

c
t

for t ∈ [1, 3|x|]. Now (51) is proved. Summarizing the

ideas from (44)–(51) we arrive at the estimate

|kλ(x)| ≤ C
(1 + |Imλ|)[Reλ]+2

|x|Reλ+2

and hence (42) provided Reλ /∈ N0.
In the case when Reλ ∈ N0 we start as for Reλ /∈ N0 with integration

by parts but stop before reaching (43) with the term (τ 2 − 1)Reλ−[Reλ]−1 =
(τ 2 − 1)−1, i.e., we stop with the identities

kλ(x) =
pReλ

|x|Reλ+1

∫ 4

1

cos(|x|τ) cos
(
Imλ ln(τ 2 − 1)

)
g2(τ) dτ + · · ·

=
pReλ

|x|Reλ+2

∫ 4|x|

|x|
cos s cos

(
Imλ ln

( s2

|x|2
− 1
))
g2

( s

|x|

)
ds+ · · · ,
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where s = |x|τ , cf. (43), (44). Since the integral
∫ |x|+1

|x| (· · · ) ds is bounded

uniformly in |x|, cf. (45), it suffices to estimate the integral∫ 3|x|

1

cos(t+ |x|) cos

(
Imλ ln

(
s2

|x|2
− 1

))
g1

(
s

|x|

)
dt,

cf. (46). Using integration by parts in t = s−|x| we get in |x| uniformly bounded
boundary terms, cf. (47), and the new integral

+

∫ 3|x|

1

sin(t+ |x|)(Imλ)
d

dt

[
ln

(
s2

|x|2
− 1

)]
sin(· · · )g2(· · · ) dt (53)

plus a further integral involving d
dt
g2(

s
|x|), cf. (48). The integral corresponding to

(49) vanishes since cλ = 0. On [1, 3|x|] we use (52) to estimate the derivative of
the logarithm; moreover, g2(

s
|x|) is bounded from below by a positive constant.

Hence (53) is bounded by C(1 + |Imλ|) log |x|.

Remark 3.6. Note that the estimate (42) for the Bochner-Riesz kernel Kλ(x)
is - up to the additional term log(2 + |x|) when Reλ ∈ N0 - the same as for the
kernel with Fourier transform (1− |ζ|2)λ+, cf. [8, Appendix B5]. Therefore, the
asymptotic structure of Kλ is more or less not a consequence of special inte-
gral identities of Bessel functions, used for the usual Bochner-Riesz multipliers,
see [8, Appendix B3], but only of their asymptotic and oscillatory behavior.
Similarly, we could proceed in the n-dimensional case where, however, the com-
putations would become much more complicated.

Together with Lemma 3.5 we are in a position to modify the proof of [8,
Theorem 10.4.6] to get mapping properties of the convolution operator Kλ ∗ on
Lp-spaces.

Lemma 3.7. The convolution operator Kλ ∗ has the properties:

‖Kλ ∗ f‖2 ≤ C‖f‖2 for Reλ ≥ 0, (54)

‖Kλ ∗ f‖p ≤ C(Reλ)(1 + |Imλ|)q ‖f‖p for Reλ >
1

4
(55)

when 1 ≤ p ≤ 4
3

and p > 3
2+Reλ

. Here q ∈ N depends on [Reλ].

Proof. Since K̂λ is bounded when Reλ ≥ 0, Plancherel’s Theorem shows (54)
for p = 2. By (42) Kλ ∈ L1(R3) for Reλ > 1; this proves (55) when p = 1 and
Reλ > 1.

To prove (55) for p > 1 we choose a radially symmetric function ϕ ∈ C∞0 (B2)
with ϕ(x) = 1 for x ∈ B1, and define

ψj(x) = ψ(2−jx) = ϕ(2−jx)− ϕ(2−j+1x), j ∈ N.
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Note that suppψj ⊂ B2j+1 \B2j−1 and ψ̂j(ζ) = 23jψ̂(2jζ). Moreover, we define

T λ0 (x) = (ϕKλ)(x), T λj (x) = (ψjKλ)(x), j ∈ N.

Then formally

Kλ ∗ f = T λ0 ∗ f +
∞∑
j=1

T λj ∗ f. (56)

Since Kλ is a bounded function, T λ0 is bounded with compact support.
Hence T λ0 ∗ is a bounded convolution operator on each space Lp(R3), 1 ≤ p ≤ ∞,
with norm growing polynomially in |Imλ|.

Concerning T λj our aim is to show the following assertion:

Claim. For p ≥ 1 satisfying 3
4
≤ 1

p
< 1

3
(2+Reλ) (hence Reλ > 1

4
) the estimate

‖T λj ∗ f‖p ≤ C(Reλ)(1 + |Imλ|)qj 2−jδ‖f‖p, j ∈ N, (57)

holds; here q = q([Reλ]) ∈ N, δ = 1
2
(1 + 2Reλ) − 3(1

p
− 1

2
) > 0 and C is

independent of j ∈ N.

We note that (57) makes the formal identity (56) rigorous and proves esti-
mate (55) for p, λ satisfying 3

4
≤ 1

p
< 1

3
(2+Reλ); in particular, (55) holds when

p = 4
3
,Reλ > 1

4
. In the following a constant C > 0 always depends on Reλ,

Imλ, but only in a polynomial way on |Im, λ|, and is independent of j ∈ N.

Proof of Claim. We decompose the function f into pieces fχQk
, k ∈ N, where

the Qk’s are pairwise disjoint cubes of side length R = 2j+1. Since T λj is
supported in a cube of side length 2R = 2j+2, for each x ∈ R3 at most 53

pieces T λj ∗ fχQk
, k ∈ N, overlap. Hence an estimate like ‖T λj ∗ f‖p ≤ C‖f‖p

valid for all f with support in a cube of side length R suffices to get the general
estimate ‖T λj ∗ f‖p ≤ 53C‖f‖p for all f ∈ L2(R3), cf. [9, Exercise 10.4.4]. Using
this idea let us consider f with support in a cube of side length 2j+1 so that
suppT λj ∗ f is contained in a cube of side length 3 · 2j+1. Then for 1 ≤ p ≤ 2

‖T λj ∗ f‖2p ≤ c 26j( 1
p
− 1

2
)‖T λj ∗ f‖22 = c 26j( 1

p
− 1

2
)‖T̂ λj f̂‖22. (58)

To proceed with the term ‖T̂ λj f̂‖22 we use polar coordinates in ζ-space. Since

T λj and T̂ λj are radial, we get ‖T̂ λj f̂‖22 =
∫∞
0
|T̂ λj (r, 0, 0)|2

( ∫
S2 |f̂(rθ)|2 dθ

)
r2 dr.

By the Restriction Theorem 3.8 below applied to r−3f(x
r
) with Fourier transform

f̂(rζ), ζ ∈ R3, we see that∫
S2
|f̂(rθ)|2 dθ ≤ C2

p

(∫
R3

r−3p
∣∣f(x

r

)∣∣p dx
) 2

p
= C2

p

(
r−3(p−1)

∫
R3

|f(y)|p dy
) 2

p
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which holds for 1 ≤ p ≤ 4
3
. Therefore

‖T̂ λj f̂‖22≤C2
p‖f‖2p

∫ ∞
0

|T̂ λj (r, 0, 0)|2r2−6
p−1
p dr=C2

p‖f‖2p
∫
R3

|T̂ λj (ζ)|2|ζ|−
6
p′ dζ. (59)

Next we decompose the integral on the right-hand side of (59) into integrals
over B 1

2
and its complement.

To estimate the integral over B 1
2

we claim that for all M > 4 and β < 3
there exists a constant CM,β > 0 such that∫

B 1
2

|T̂ λj (ζ)|2 |ζ|−β dζ ≤ CM,β 2−2j(M−3). (60)

Indeed, we may assume that supp K̂λ ⊂ B2 \B1 by modifying the function g in
the definition of Kλ in Lemma 3.5. Hence

|T̂ λj (ζ)| = |K̂λ ∗ ψ̂j(ζ)| ≤ 23j

∫
1≤|ζ−z|≤2

(|ζ − z|2 − 1)Reλ|ψ̂(2jz)| dz

so that for ζ ∈ B 1
2

we can restrict z to |z| ≥ 1
2
. Since ψ and ψ̂ are Schwartz

functions, we get for |z| ≥ 1
2

that

|ψ̂(2jz)| ≤ CM |2jz|−M ≤ CM2−jM .

Thus |T̂ λj (ζ)| ≤ CM2−j(M−3) for |ζ| ≤ 1
2
. Finally, |ζ|−β is integrable on B 1

2
as

β < 3. Thus (60) follows.
Concerning the integral in (59) over R3 \B 1

2
recall from (42) that

|T λj (x)| ≤ C(1 + |x|)−2−Reλ log(2 + |x|)ψj(x) ≤ Cj 2−(2+Reλ)j

since ψj is supported in 2j−1 ≤ |x| ≤ 2j+1; note that the term log(2 + |x|) and
the factor j are needed only when λ ∈ N. Hence

‖F(T λj )‖22 = ‖T λj ‖22 ≤ C 2−2j(2+Reλ)j2 23j = Cj2 2−(1+2Reλ)j. (61)

Summarizing (59) with (61) and (60) (with β = 3
p′
< 3 which holds for

p < 2) we arrive at the estimate ‖T̂ λj f̂‖22 ≤ Cj2 2−(1+2Reλ)j ‖f‖2p, and, returning

to ‖T λj f‖p, by (58)

‖T λj ∗ f‖p ≤ Cj 2{3(
1
p
− 1

2
)− 1

2
(1+2Reλ)}j ‖f‖p.

The power of 2 is negative iff p > 3
2+Reλ

.

Now the inequality (57) is proved when 3
2+Reλ

< p ≤ 4
3
; this also implies

the restriction Reλ > 1
4
.
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The proof of Lemma 3.7 is a minor modification of the proof of the Lp-
boundedness of the Bochner-Riesz multiplier (1−|ζ|2)λ+. The log-term in Lem-
ma 3.5 is responsible for the additional factor j in (57), but of no consequence
for further convergence properties. A crucial step in the previous proof was the
Restriction Theorem for the Fourier transform, see [9, Theorem 10.4.5]:

Theorem 3.8 (Restriction Theorem for S2 ⊂ R3). Let 1 ≤ p ≤ 4
3

and q = p′

2
.

Then the operator

Rp→q : Lp(R3)→ Lq(S2), f 7→ f̂
∣∣
S2 ,

is bounded. In particular, Rp→2 is bounded for 1 ≤ p ≤ 4
3
.

Theorem 3.9. For Reλ > 1
4

we have the estimate

‖Kλ ∗ f‖p ≤ cp‖f‖p, f ∈ Lp(R3), (62)

provided
∣∣1
p
− 1

2

∣∣ < 1
6
(1+2Reλ). For λ = 1

2
this condition reduces to the inclusion

6
5
< p < 6.

Proof. By Lemma 3.7 the estimate (62) is proved for Reλ > 1
4

when 3
2+Reλ

<

p ≤ 4
3

or p = 2. Hence, by complex interpolation, we get the assertion for all p
satisfying 3

2+Reλ
< p ≤ 2, i.e., when 0 ≤ 1

p
− 1

2
< 1

6
(1 + 2Reλ). Then a duality

argument proves the Theorem.

Proof of Theorem 1.1. We only have to summarize several estimates of Sec-

tion 2 and 3. The solution g of (4)
∧
= (16) has been decomposed into terms

g0, g1, g2 where by (31), (32) ‖g2‖q ≤ c‖A‖q. For g0 a similar estimate holds;

however, by (35) c is multiplied by the term
(
1 + 1

ω(2µ+ν)

)4
. Concerning the

crucial term g1 we exploit that 6
5
< q < 6 and estimate using the representation

of the multipliers mt,s in (39) together with (36)–(38) that

‖g1‖q≤c
∫ ∞
0

(∫ 1

0

(
t‖m1

t,sm
2
t,s‖M(‖M1‖M+‖M2‖M)+‖m1

t,sm
3
t,s‖M

)
‖Ât‖q ds

)
dt

≤ c

∫ ∞
0

t e−tω
−1
(

1+
t

ω

)7
‖Â‖q dt

≤c(ω(2µ+ν))2.

Adding the estimates of g0, g2 and exploiting (28) we arrive at (5).
To prove uniqueness let F = 0, G = 0 in (11), and thus H = 0 in (18). Then

(21), (22) lead to the problem to consider nontrivial solutions (c1, c2)(|ξ|, ξ3) of
the linear system(

1− e−2πλ1 1− e−2πλ2

λ1(1− e−2πλ1) λ2(1− e−2πλ2)

)(
c1
c2

)
= 0.
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The determinant of this matrix equals (1− e−2πλ1)(1− e−2πλ2)(λ2−λ1). In case
that λ1 = λ2 we have c1 = −c2 so that in view of (21) ĝ = 0. Now assume
that e−2πλ1 = 1, i.e., in particular, (2µ+ ν)|ξ|2 + Re

√
(2µ+ ν)2|ξ|4 − 4|ξ|2 = 0.

Obviously, this implies that ξ = 0. Hence supp ĝ ⊂ {0} and, consequently, g is
a polynomial. As we are looking for g ∈ Lq(R3), we conclude that g = 0. The
same reasoning holds when e−2πλ2 = 1.

Remark 3.10. To get the existence and a priori estimate (6) of a solution v, σ
of (3) with the help of Theorem 1.1 we return to (16), i.e., (15). Given the
unique solution g of (15) and by [2], [4] a solution (v, σ) of (12) we conclude
that ∆σ satisfies (13)1. Applying the differential operator (u∞ − (~ω ∧ y)) · ∇
to ∆σ we see from (15) that

∆
(
div (σ(u∞ − (~ω ∧ y)) + div v −G

)
= 0.

Consequently, div (σ(u∞−(~ω∧y))+div v−G is harmonic where by Theorem 1.1
and (6) G, g = div v, ∇σ ∈ Lq(Rn). Under the assumption that also (~ω ∧ y) ·
∇σ ∈ Lq(Rn) we conclude that σ also satisfies (13)2, i.e., (11)2. Note also
that to get the higher order derivatives of g in (6) further assumptions on the
data G and Φ are needed. For a strategy to prove such results we refer to
[5, Theorem 1.2, Lemma 4.4].
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