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Multiplicity of Nontrivial Solutions of a
Class of Fractional p-Laplacian Problem

Ghanmi Abdeljabbar

Abstract. In this paper, we deal with existence of nontrivial solutions to the frac-
tional p-Laplacian problem of the type{

(−4)αpu = 1
r
∂F (x,u)
∂u + λa(x)|u|q−2u in Ω,

u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, a ∈ C(Ω), p ≥ 2,
α ∈ (0, 1) such that pα < n, 1 < q < p < r < np

n−αp , and F ∈ C1(Ω×R,R). Using the
decomposition of the Nehari manifold, we prove that the non-local elliptic problem
has at least two nontrivial solutions.
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1. Introduction

In this paper, we are concerned with the multiplicity of nontrivial solutions for
the following problem

(P)

{
(−4)αpu = 1

r
∂F (x,u)
∂u

+ λa(x)|u|q−2u in Ω,

u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary, a ∈ C(Ω), λ > 0,
p ≥ 2, such that n > pα and 1 < q < p < r < p∗α, p∗α = np

n−αp . The function

F ∈ C1(Ω × R,R) is positively homogeneous of degree r , that is, F (x, tu) =
trF (x, u, v)(t > 0) holds for all (x, u) ∈ Ω× R.
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Throughout this paper the sign changing weight function a satisfies the
following condition

(A) a ∈ C(Ω) with ‖a‖∞ = 1 and a± := max(±a, 0) 6≡ 0,

and the fractional p-Laplacian operator may be defined for p ∈ (1,∞) as

(−4)αpu(x) = 2 lim
ε↘0

∫
Rn\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+pα
dy, x ∈ Rn.

Recently, a lot of attention is given to the study of fractional and non-local
operators of elliptic type due to concrete real world applications in finance, thin
obstacle problem, optimization, quasi-geostrophic flow etc. Dirichlet bound-
ary value problem in case of fractional Laplacian using variational methods is
recently studied in [3,5,7,9,10]. Also existence and multiplicity results for nonlo-
cal operators with convex-concave type nonlinearity is shown in [12]. Moreover
multiplicity results with sign-changing weight functions using Nehari manifold
and fibering map analysis is also studied in many papers (see [1, 2, 4, 10]).

In this paper, we propose a very simple variational method to prove the
existence of at least two nontrivial solutions of problem (P). In fact, we use
the decomposition of the Nehari manifold as λ vary to prove our main result.
Before stating our main result, we need the following assumptions:

(H1) F : Ω× R −→ R is a C1 function such that

F (x, tu) = trF (x, u)(t > 0) for all x ∈ Ω, u ∈ R.

(H2) F (x, 0) = ∂F
∂u

(x, 0) = 0.

(H3) F±(x, u) = max(±F (x, u), 0) 6= 0 for all u 6= 0.

We remark that assumption (H1) leads to the so-called Euler identity

u
∂F

∂u
(x, u) = rF (x, u)

and

|F (x, u)| ≤ K|u|r for some constant K > 0. (1)

Our main result is the following

Theorem 1.1. Under the assumptions (A) and (H1)-(H3), there exists λ0 > 0
such that for all 0 < λ < λ0, problem (P) has at least two nontrivial solutions.

This paper is organized as follows. In Section 2, we give some notations
and preliminaries. Proofs of Theorem 1.1 is given in Section 3.
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2. Preliminaries

In this preliminary section, for the reader’s convenience, we collect some basic
results that will be used in the forthcoming sections. in the following, For all
1 ≤ r ≤ ∞ denote by ‖.‖r the norm of Lr(Ω). The Gagliardo seminorm is
defined for all measurable function u : Rn → R by

|u|α,p :=

(∫
R2n

|u(x)− u(y)|p

|x− y|n+pα
dxdy

) 1
p

.

We define the fractional Sobolev space

Wα,p(Rn) := {u ∈ Lp(Rn) : u measurable , |u|α,p <∞}

endowed with the norm

||u||α,p :=
(
||u||pp + |u|pα,p

) 1
p .

For a detailed account on the properties of Wα,p(Rn) we refer the reader to [6].
We shall work in the closed linear subspace

E := {u ∈ Wα,p(Rn) : u(x) = 0 a.e. in Rn \ Ω} ,

which can be equivalenty renormed by setting || · || = | · |α,p, note that these type
of spaces were introduced in [9]. It is readily seen that (E, || · ||) is a uniformly
convex Banach space and that the embedding E ↪→ Lr(Ω) is continuous for all
1 ≤ r ≤ p∗α, and compact for all 1 ≤ r < p∗α. The dual space of (E, || · ||)
is denoted by (E∗, || · ||∗), and ≺ ·, · � denotes the usual duality between E
and E∗.

Definition 2.1. We say that u ∈ E is a weak solution of (P) if for every v ∈ E
we have ∫

R2n

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+pα
dxdy

=
1

r

∫
Ω

∂F

∂u
(x, u(x))v(x)dx+ λ

∫
Ω

a(x)|u(x)|q−2u(x)v(x)dx.

The Euler functional Jλ : E → R associated to the problem (P) is defined as

Jλ(u) =
1

p
||u||p − 1

r

∫
Ω

F (x, u)dx− λ

q

∫
Ω

a(x)|u(x)|qdx.

Then Jλ is Fréchet differentiable and, for all u ∈ E, we have

≺ J ′λ(u), u �= ||u||p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u(x)|qdx,
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which shows that the weak solutions of (P) are critical points of the func-
tional Jλ. It is easy to see that the energy functional Jλ is not bounded below
on the space E, but is bounded below on an appropriate subset of E and a min-
imizer on subsets of this set gives raise to solutions of (P). In order to obtain
the existence result, we introduce the Nehari manifold

Nλ := {u ∈ E :≺ J ′λ(u), u �= 0}.

Then, u ∈ Nλ if and only if

||u||p −
∫

Ω

F (x, u)dx− λ
∫

Ω

a(x)|u(x)|qdx = 0. (2)

We note that Nλ contains every non zero solution of (P).

Lemma 2.2. Jλ is coercive and bounded below on Nλ.

Proof. Let u ∈ Nλ, then we have

Jλ(u) =

(
1

p
− 1

r

)
||u||p − λ

(
1

q
− 1

r

)∫
Ω

a(x)|u(x)|qdx ≥ c1||u||p − c2||u||q.

Hence, Jλ is bounded below and coercive on Nλ.

Now as we know that the Nehari manifold is closely related to the behavior
of the functions Φu : [0,∞)→ R defined as

Φu(t) = Jλ(tu).

Such maps are called fiber maps and were introduced by Drabek and Pohozaev
in [7].

For u ∈ E, we have

Φu(t) =
tp

p
||u||p− t

r

r

∫
Ω

F (x, u)dx−λt
q

q

∫
Ω

a(x)|u(x)|qdx,

Φ′u(t) = tp−1||u||p−tr−1

∫
Ω

F (x, u)dx−λtq−1

∫
Ω

a(x)|u(x)|qdx,

Φ′′u(t) = (p−1)tp−2||u||p−(r−1)tr−2

∫
Ω

F (x, u)dx−λ(q−1)tq−2

∫
Ω

a(x)|u(x)|qdx.

Then, it is easy to see that tu ∈ Nλ if and only if Φ′u(t) = 0 and in particular,
u ∈ Nλ if and only if Φ′u(1) = 0. Thus it is natural to split Nλ into three parts
corresponding to local minima, local maxima and points of inflection. For this
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we set

N+
λ = {u ∈ Nλ : Φ′′u(1) > 0} = {tu ∈ E : Φ′u(t) = 0,Φ′′u(t) > 0} ,
N−λ = {u ∈ Nλ : Φ′′u(1) < 0} = {tu ∈ E : Φ′u(t) = 0,Φ′′u(t) < 0} ,
N 0
λ = {u ∈ Nλ : Φ′′u(1) = 0} = {tu ∈ E : Φ′u(t) = 0,Φ′′u(t) = 0} .

Before studying the behavior of Nehari manifold using fibering maps, we intro-
duce some notations

F+ =

{
u∈E :

∫
Ω

F (x, u)dx > 0

}
, F−=

{
u∈E :

∫
Ω

F (x, u)dx < 0

}
,

A+ =

{
u∈E :

∫
Ω

a(x)|u(x)|qdx > 0

}
, A−=

{
u∈E :

∫
Ω

a(x)|u(x)|qdx < 0

}
.

Now we study the fiber map Φu according to the sign of
∫

Ω
a(x)|u(x)|qdx and∫

Ω
F (x, u)dx.

Case 1. u ∈ F− ∩ A−.
In this case Φu(0) = 0 and Φ′u(t) > 0, ∀t > 0 which implies that Φu is strictly
increasing and hence no critical point.

Case 2. u ∈ F+ ∩ A−.
In this case, firstly we define mu : [0,∞)→ R by

mu(t) = tp−q||u||p − tr−q
∫

Ω

F (x, u)dx.

Clearly, for t > 0, tu ∈ Nλ if and only if t is a solution of

mu(t) = λ

∫
Ω

a(x)|u(x)|qdx.

As we have mu(t)→ −∞ as t→∞ and

m′u(t) = (p− q)tp−q−1||u||p − (r − q)tr−q−1

∫
Ω

F (x, u)dx.

Therefore, m′u(t) > 0 as t → 0. Since u ∈ A−, there exists T such that
mu(t) = λ

∫
Ω
a(x)|u(x)|qdx. Thus, for 0 < t < T, Φ′u(t) = tq−1

(
mu(t)−

λ
∫

Ω
a(x)|u(x)|qdx

)
> 0 and for t > T,Φ′u(t) < 0. Hence, Φu(t) is increas-

ing on (0, T ), decreasing on (T,∞). Since Φu(t) > 0 for t close to 0 and
Φu(t)→ −∞ as t→∞, we get Φu has exactly one critical point t1, which is a
global maximum point. Hence t1u ∈ N−λ .
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Case 3. u ∈ F− ∩ A+.
In this case, mu(0) = 0, m′u(t) > 0,∀t > 0, which implies that mu is strictly
increasing and since u ∈ A+, there exists a unique t1 > 0 such that mu(t1) =
λ
∫

Ω
a(x)|u(x)|qdx. This implies that Φu is decreasing on (0, t1), increasing on

(t1,∞) and Φ′u(t1) = 0. Thus, Φu has exactly one critical point t1, corresponding
to global minimum point. Hence t1u ∈ N+

λ .

Case 4. u ∈ F+ ∩ A+.
In this case, we claim that there exists µ0 > 0 such that for λ ∈ (0, µ0), Φu

has exactly two critical points t1 and t2. Moreover, t1 is a local minimum point
and t2 is a local maximum point. Thus t1u ∈ N+

λ and t2u ∈ N−λ . We prove this
claim in the following Lemma:

Lemma 2.3. There exists µ0 > 0 such that for λ ∈ (0, µ0), Φu take positive
value for all non-zero u ∈ E. Moreover, if u ∈ F+ ∩ A+, then Φu has exactly
two critical points.

Proof. Let u ∈ E, define

Mu(t) =
tp

p
||u||p − tr

r

∫
Ω

F (x, u)dx.

Then

M ′
u(t) = tp−1||u||p − tr−1

∫
Ω

F (x, u)dx

and Mu attains its maximum value at T =
(

||u||p∫
Ω F (x,u)dx

) 1
r−p

. Moreover,

Mu(T ) =

(
1

p
− 1

r

)(
||u||r∫

Ω
F (x, u)dx

) p
r−p

and

M ′′
u (T ) = (p− r) ||u||

p(r−2)
r−p(∫

Ω
F (x, u)dx

) p−2
r−p

< 0.

For 1 ≤ ν < p∗α we denoted by Sν be the Sobolev constant of embedding
E ↪→ Lν(Ω), then, by (1) we have

Mu(T ) ≥ r − p
rp(KSrr )

p
r−p

= δ, (3)

which is independent of u. We now show that there exists µ0 > 0 such that
Φu(T ) > 0. Using condition (A) and the Soblev imbedding, we get

T q

q

∫
Ω

a(x)|u(x)|qdx ≤
Sqq
q
||u||qT q =

Sqq
q
||u||q

(
||u||p∫

Ω
F (x, u)dx

) q
r−p

=
Sqq
q
Mu(T )

q
p .



Multiplicity of Nontrivial Solutions 315

Thus

Φu(T ) = Mu(T )−λT
q

q

∫
Ω

a(x)|u(x)|qdx ≤Mu(T )−λcMu(T )
q
p = δ

q
p

(
δ
p−q
p −λc

)
,

where δ is the constant given in (3). Let

µ0 =
qδ

p−q
p

Sqq
.

Then, the choice of such µ0 completes the proof.

Corollary 2.4. If λ < µ0, then there exists δ1 > 0 such that Jλ(u) > δ1 for all
u ∈ N−λ .

Proof. Let u ∈ N−λ , then Φu has a positive global maximum at T = 1 and∫
Ω
a(x)|u(x)|qdx > 0. Thus, if λ < µ0, then we have

Jλ(u) = Φu(1) = Φu(T ) ≥ δ
q
p

(
δ
p−q
p − λc

)
> 0,

where δ is the same as in Lemma 2.3, and so the result follows immediately.

Lemma 2.5. There exists µ1 such that if 0 < λ < µ1, then N 0
λ = ∅.

Proof. Let

µ1 =
r − p

Sqq (r − q)

(
p− q

KSrr (r − q)

) p−q
r−p

,

where K is given by (1).
Suppose otherwise, that 0 < λ < µ1 such that N 0

λ 6= ∅. Then, for u ∈ N 0
λ ,

we have

0 = Φ′′u(1) = (p− 1)||u||p − (r − 1)

∫
Ω

F (x, u)dx− λ(q − 1)

∫
Ω

a(x)|u(x)|qdx.

So, it follows from (2) that (r−p)||u||p = λ(r−q)
∫

Ω
a(x)|u|qdx ≤ λ(r−q)Sqq ||u||q,

and so

||u|| ≤
(
λSqq

r − q
r − p

) 1
p−q

. (4)

On the other hand, by (1) we get (p − q)||u||p = λ(r − q)
∫

Ω
F (x, u)dx ≤

K(r − q)Srr ||u||r, then

||u|| ≥
(

p− q
KSrr (r − q)

) 1
r−p

. (5)

Combining (4) and (5) we obtain λ ≥ µ1, which is a contradiction.
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Here and always, we define λ0 as

λ0 = min(µ0, µ1). (6)

We remark that if 0 < λ < λ0, then all the above Lemmas hold true.

Lemma 2.6. Let u be a local minimizer for Jλ on subsets N+
λ or N−λ of Nλ

such that u 6∈ N 0
λ , then u is a critical point of Jλ.

Proof. Since u is a minimizer for Jλ under the constraint Iλ(u) :=≺ J ′λ(u), u �
= 0, by the theory of Lagrange multipliers, there exists µ ∈ R such that
J ′λ(u) = µI ′λ(u). Thus

≺ J ′λ(u), u �= µ ≺ I ′λ(u), u �= µΦ′′u(1) = 0,

but u 6∈ N 0
λ and so Φ′′u(1) 6= 0. Hence µ = 0. This completes the proof.

3. Proof of our result

Throughout this section, we assume that the parameter λ satisfies 0 < λ <
λ0, where λ0 is the constant given by (6). That leads us consequently to the
following results on the existence of minimizers in N+

λ and N−λ .

Lemma 3.1. If 0 < λ < λ0, then Jλ achieves its minimum on N+
λ .

Proof. Since Jλ is bounded below onNλ and so onN+
λ , there exists a minimizing

sequence {uk} ⊂ N+
λ such that

lim
k→∞

Jλ(uk) = inf
u∈N+

λ

Jλ(u).

As Jλ is coercive on Nλ, {uk} is a bounded sequence in E. Therefore, for all
1 ≤ ν < p∗s we have {

uk ⇀ uλ weakly in E
uk → uλ strongly in Lν(Rn).

If we choose u ∈ E such that
∫

Ω
a(x)|u(x)|qdx > 0, then there exists t1 > 0

such that t1u ∈ N+
λ and Jλ(t1u) < 0, Hence, infu∈N+

λ
Jλ(u) < 0.

On the other hand, since {uk} ⊂ Nλ we have

Jλ(uk) =

(
1

p
− 1

r

)
||uk||p − λ

(
1

q
− 1

r

)∫
Ω

a(x)|uk(x)|qdx,

and so λ(1
q
− 1

r
)
∫

Ω
a(x)|uk(x)|qdx = (1

p
− 1

r
)||uk||p − Jλ(uk). Letting k tends to

infinity, we get ∫
Ω

a(x)|uλ(x)|qdx > 0. (7)
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Next we claim that uk → uλ. Suppose this is not true, then

||uλ||p < lim inf
k→∞

||uk||p.

Since Φ′uλ(t1) = 0, it follows that Φ′uk(t1) > 0 for sufficiently large k. So, we
must have t1 > 1 but t1uλ ∈ N+

λ and so

Jλ(t1uλ) < Jλ(uλ) ≤ lim
k→∞

Jλ(uk) = inf
u∈N+

λ

Jλ(u),

which is a contradiction. Since N 0
λ = ∅, then uλ ∈ N+

λ . Finally, uλ is a
minimizer for Jλ on N+

λ .

Lemma 3.2. If 0 < λ < λ0, then Jλ achieves its minimum on N−λ .

Proof. Let u ∈ N−λ , then from Corollary 2.4, there exists δ1 > 0 such that
Jλ(u) ≥ δ1. So, there exists a minimizing sequence {uk} ⊂ N−λ such that

lim
k→∞

Jλ(uk) = inf
u∈N−

λ

Jλ(u) > 0. (8)

On the other hand, since Jλ is coercive, {uk} is a bounded sequence in E.
Therefore, for all 1 ≤ ν < p∗s we have{

uk ⇀ vλ weakly in E
uk → vλ strongly in Lν(Rn).

Since u ∈ Nλ, then we have

Jλ(uk) =

(
1

p
− 1

q

)
||uk||p +

(
1

q
− 1

r

)∫
Ω

F (x, uk)dx. (9)

Letting k goes to infinity, it follows from (8) and (9) that∫
Ω

F (x, vλ)dx > 0. (10)

Hence, vλ ∈ F+ and so Φvλ has a global maximum at some point T and con-
sequently, Tvλ ∈ N−λ . on the other hand, uk ∈ N−λ implies that 1 is a global
maximum point for Φuk , i.e.

Jλ(tuk) = Φuk(t) ≤ Φuk(1) = Jλ(uk). (11)

Next we claim that uk → uλ. Suppose this is not true, then

||uλ||p < lim inf
k→∞

||uk||p,
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and from (11) it follows that

Jλ(Tvλ) =
T p

p
||vλ||p −

T r

r

∫
Ω

F (x, vλ)dx− λ
T q

q

∫
Ω

a(x)|vλ|qdx

< inf
k→∞

(
T p

p
||uk||p −

T r

r

∫
Ω

F (x, uk)dx− λ
T q

q

∫
Ω

a(x)|uk|qdx
)

≤ lim
k→∞

Jλ(Tuk)

≤ lim
k→∞

Jλ(uk)

= inf
u∈N−

λ

Jλ(u),

which is a contradiction. Hence, uk → vλ. Since N 0
λ = ∅, then vλ ∈ N−λ .

Proof of Theorem 1.1. By Lemma 3.1 and Lemma 3.2, Problem (P) has two
weak solutions uλ ∈ N+

λ and vλ ∈ N+
λ . On the other hand, from (7) and

(10), these solutions are nontrivial. Since N−λ ∩ N
+
λ = ∅, then uλ and vλ are

distinct.
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