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The Weak Inverse Mapping Theorem

Daniel Campbell, Stanislav Hencl and Frantǐsek Konopecký

Abstract. We prove that if a bilipschitz mapping f is in Wm,p
loc (Rn,Rn) then the in-

verse f−1 is also a Wm,p
loc class mapping. Further we prove that the class of bilipschitz

mappings belonging to Wm,p
loc (Rn,Rn) is closed with respect to composition and mul-

tiplication without any restrictions on m, p ≥ 1. These results can be easily extended
to smooth n-dimensional Riemannian manifolds and further we prove a form of the
implicit function theorem for Sobolev mappings.
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1. Introduction

It is well known that for a mapping of Rn to Rn, which is of class Cm and
has positive Jacobian at some point x we can find neighbourhoods of x and
f(x) such that the restriction of f is a Cm class diffeomorphism of the two
neighbourhoods. Building on [7] and [9], we ask if this result can be extended
to classes of Sobolev mappings.

Since the seminal paper of Arnold [2] a variety of techniques have been
applied to hydrodynamics and other partial differential equations using certain
properties of the spaces of Sobolev diffeomorphisms on smooth Riemannian
manifolds. We refer the reader to [9] for more detailed motivation and applica-
tions.

In [9] the authors considered the regularity of the inverse of a Sobolev
diffeomorphism and the composition of a Sobolev mapping in W s+r,2(Rn,Rn)
with a mapping pertaining to a certain class ofW s,2

loc Sobolev C1 diffeomorphisms,
s ∈ R. Our result is a generalization of the above, in that we remove the
condition s > n

2
+ 1 completely and consider p ∈ [1,∞] arbitrary. We also relax
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the condition that f needs to be a diffeomorphism and require only bilipschitz
regularity. Our result is also an extension of that proved in [7, Theorem 1.3],
where it was assumed that m = 2. Our main result is as follows.

Theorem 1.1. Let Ω,Ω′ ⊂ Rn be open. Let m ∈ N, p ∈ [1,∞] and f : Ω →
Ω′ = f(Ω) be such that

f ∈ Wm,p
loc (Ω,Rn) ∩ Biliploc(Ω,Rn).

Then
f−1 ∈ Wm,p

loc (Ω′,Rn).

Further, if Dmf ∈ BVloc(Ω,Rnm+1
) then Dmf−1 ∈ BVloc(Ω

′,Rnm+1
).

The counterexamples given in [7] (see also Remark 3.5) show that the bilip-
schitz condition is vital to guarantee that the inverse is Sobolev or BV, i.e. the
result may fail if f is not Lipschitz and it may fail if f−1 is not Lipschitz. For
the definition of bilipschitz mappings, Biliploc(Ω,Rn), see the preliminaries. It
is not difficult to check that the Sobolev imbedding theorem gives that if r ∈ N
is such that r < m− n

p
then f and f−1 are Cr mappings.

In [9] the authors pose the question whether the composition of two diffeo-
morphisms in W s,2(M,M), f ◦g, is a W s,2(M,M) map, s ∈ N, s > n

2
. We prove

this is true for Wm,p
loc (Rn,Rn) mappings if the interior function is bilipschitz and

the exterior Lipschitz. Our result places no constraint on m, p other than m ∈ N
and p ∈ [1,∞]. Note that previous results about the regularity of the composi-
tion (see e.g. [3] and [12]) usually assume that all lower order derivatives of f
are bounded which is not necessary if we moreover assume that g is bilipschitz.
The results from [9] are extended also for fractional order Sobolev spaces. We
have not pursued this direction but we don’t see any obstacles in doing so. Our
result is as follows.

Theorem 1.2. Let Ω,Ω′ ⊂ Rn be open. Let m ∈ N, p ∈ [1,∞] and g : Ω →
Ω′ = f(Ω) be such that

g ∈ Wm,p
loc (Ω,Rn) ∩ Biliploc(Ω,Rn), f ∈ Wm,p

loc (Ω′,Rn) ∩W 1,∞(Ω′,Rn).

Then
f ◦ g ∈ Wm,p

loc (Ω,Rn).

Again this result may fail if g−1 is not Lipschitz and it may fail if f is not
Lipschitz even for bilipschitz g - see Remark 3.4. We also prove the following
result about the product of two functions in the class considered above.

Theorem 1.3. Let Ω,⊂ Rn be open. Let m ∈ N, p ∈ [1,∞] and

f, g ∈ Wm,p
loc (Ω) ∩ Liploc(Ω).

Then
fg ∈ Wm,p

loc (Ω) ∩ Liploc(Ω).



The Weak Inverse Mapping Theorem 323

It is not difficult to check that the Sobolev imbedding theorem gives that if
r ∈ N is such that r < m− n

p
then g ◦ f and fg are Cr mappings.

Let us give the brief idea of our proof of the main result Theorem 1.1. By
twice differentiation D2(f ◦ f−1) = D2(id) = 0 we obtain the identity

D2f−1(y) = −Df−1(y)D2f(f−1(y))Df−1(y)Df−1(y),

see Preliminaries for the interpretation of the higher order derivatives. Using
the Leibniz rule and the chain rule we derive this identity further and we express
Dkf−1 as a product of lower order derivatives of f and f−1. We estimate the
integrability of the lower order terms using induction and the famous Gagliardo-
Nirenberg interpolation inequality. Simple use of Hölder’s inequality gives our
final claim. Let us note that the simple use of the Sobolev embedding theorem
would not be sufficient to prove the claim without some extra assumption on
the lower order derivatives. Fortunately the Gagliardo-Nirenberg interpolation
inequality gives us a better integrability of the lower order terms which gives
us exactly the desired result.

It is not difficult to show that similar results hold on smooth n-dimensional
Riemannian manifolds. In Section 4 we show that it is enough to apply our
Euclidean result for the composition with reference maps. Finally in Section 5
we prove a variant of the implicit mapping theorem for Sobolev mappings
using our inverse mapping theorem 1.1.

2. Preliminaries

2.1. Results on Sobolev functions. We start by defining locally bilipschitz
mappings.

Definition 2.1. Let Ω ⊂ Rn be open and u : Ω→ Rd. The space Biliploc(Ω,Rd)
is the class of mappings u : Ω → Rd such that for all x0 ∈ Ω there exists some
δ > 0 and C1, C2 > 0, such that for all x, x′ ∈ Ω ∩B(x0, δ) it holds that

C1|x− x′| < |u(x)− u(x′)| < C2|x− x′|.

For the following Theorem see [1, Theorem 3.16 and Corollary 3.19]:

Theorem 2.2. Let Ω,Ω′ ⊂ Rn be open. Let u : Ω → Rd. Suppose that
F : Ω→ Ω′ = F (Ω) is Lipschitz and a homeomorphism.

1. If u ∈ BVloc(Ω,Rd) then u ◦ F−1 ∈ BVloc(Ω
′,Rd).

2. If u ∈ W 1,1
loc (Ω,Rd) and F−1 is Lipschitz, then u ◦F−1 ∈ W 1,1

loc (Ω′,Rd) and

Du ◦ F−1(y) = Du(F−1(y))DF−1(y) for almost all y ∈ Ω′.

We will refer to the following lemma as the product rule or the Leibniz rule.
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Lemma 2.3. Let Ω ⊂ Rn be open and f, g ∈ W 1,1
loc (Ω,Rd). Suppose that

fDg, gDf ∈ L1
loc(Ω,Rd).

Then

D(f(x)g(x)) = g(x)Df(x) + f(x)Dg(x) for almost all x ∈ Ω.

Similarly we can prove the formula for differentiation of three or more terms
under the assumption that all summands are integrable.

Proof. By considering the component functions we may assume that d = 1. We
approximate the functions by truncation. Our truncated functions belong to
W 1,1

loc (Ω)∩L∞(Ω) and here we can use the standard convolution approximations
to get our result for the truncated functions. The function C(|gDf |+ |fDg|) is
integrable and dominates the derivative of our truncation approximations. This
however gives us the desired equality almost everywhere.

The following theorem [7, Theorem 1.3] will be a start for our induction
process.

Theorem 2.4. Let Ω,Ω′ ⊂ Rn be open, p ≥ 1 and suppose that f : Ω → Ω′ is
a bilipschitz mapping. If Df ∈ W 1,p

loc (Ω,Rn2
), then Df−1 ∈ W 1,p

loc (Ω′,Rn2
).

The Sobolev Embedding Theorem is well known.

Theorem 2.5. Let Ω ⊂ Rn be open and have a Lipschitz boundary. Further let
p ∈ [1, n) and f ∈ W 1,p(Ω). Then f ∈ L

np
n−p (Ω) and moreover

‖f‖
L

np
n−p (Ω)

≤ c‖f‖W 1,p(Ω).

Further if f ∈ W k,p(Ω) and kp < n then for every i ∈ {0, , . . . , k − 1} we
have f ∈ W i,pi(Ω) where pi = np

n−(k−i)p . If f ∈ W 1,p(Ω) for some p > n then

f ∈ L∞(Ω). This also holds for mappings with values in Rd.

The following theorem is referred to as the Gagliardo-Nirenberg interpola-
tion inequality and is a result of [13].

Theorem 2.6. Let u : Rn → R, q, r ∈ [1,∞] and k̂ ∈ N. Further let j ∈
{1, . . . , k̂}, p̂ ∈ [1,∞) and α ∈ [ j

k̂
, 1] be such that

1

p̂
=
j

n
+ α

(1

r
− k̂

n

)
+

1− α
q

.

Then u ∈ Lq(Rn) and |Dk̂u| ∈ Lr(Rn) implies that |Dju| ∈ Lp̂(Rn) and this
embedding is continuous.
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Let us now prove that this result can be extended as follows.

Theorem 2.7. Let u : Rn → R and q ∈ [1,∞] and k̂ ∈ N. Further let
j ∈ {1, . . . , k̂ − 1}, p̂ ∈ [1,∞) and α ∈ [ j

k̂
, 1] be such that

1

p̂
=
j

n
+ α

(
1− k̂

n

)
+

1− α
q

.

Then u ∈ Lq(Rn) and Dk̂−1u ∈ BV(Rn) implies that |Dju| ∈ Lp̂(Rn).

Sketch of the proof. For fk, the convolution approximations of f , it holds that
fk ∈ Wm,1(Rn) and we may apply Theorem 2.6. Since ||fk||q ≤ ||f ||q and
||Dmfk||1 ≤ ||Dmf ||1 (where ||Dmf ||1 signifies the total variation) we have that
Djfk is a bounded sequence and by moving if necessary to a subsequence we
find for every (a1, . . . , aj) ∈ {1, . . . , n}j a waj ,...,a1 ∈ Lp̂j(Rn) such that for any
ϕ ∈ C∞c (Rn) we have ∫

Rn
Daj ,...,a1fkϕ→

∫
Rn
waj ,...,a1ϕ

and clearly∫
Rn
Daj ,...,a1fkϕ = (−1)j

∫
Rn
fkDaj ,...,a1ϕ→ (−1)j

∫
Rn
fDaj ,...,a1ϕ.

This however implies that Daj ,...,a1f = waj ,...,a1 ∈ Lp̂j(Rn).

We will use the so called ACL classification of Sobolev mappings.

Theorem 2.8. Let Ω ⊂ Rn be open and let f ∈ W 1,p(Ω) then there exists a
representative f̂ of f such that f̂ is absolutely continuous on almost all lines
parallel to each of the coordinate axes. Further the classical partial derivatives
of f̂ equal the weak derivatives of f almost everywhere.

It is not difficult to use the previous theorem recurrently to see that if
f ∈W k,p(Ω) then there exists a representative of f such that for all 1≤j≤k−1,
the derivative Djf is absolutely continuous on almost all lines parallel to the
coordinate axis. Further the classical partial derivatives of our representative
equal the weak derivatives of f almost everywhere.

2.2. Representation of higher order derivatives. During the course of this
work we will need to represent and work with higher order derivatives. We refer
the reader to [11] for more information about multi-linear algebra which could
be used to represent our higher-order derivatives.
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To shorten our notation Di, i ∈ {1, 2, . . . , n}, will denote the weak deriva-
tive in the direction of the i-th canonic basis vector. Given a finite sequence
a1, a2, . . . , am ∈ {1, 2, . . . , n} we define the symbol

Dam,...,a2,a1f(x) = Dam

(
· · ·
(
Da2

(
Da1f(x)

))
· · ·
)
.

We will use the following notation for the components of a mapping f :
Rn → Rn, f(x) = (f 1(x), f 2(x), . . . , fn(x)). This notation will be useful as in
the chain rule we will always sum over indices, one of which is a superscript and
the other a subscript. This corresponds to common practice in tensor notation.

Given some f ∈ Wm,1
loc (Ω,Rn) we can define the symbol Dmf as the

mapping from {1, 2, . . . , n}m → L1(Ω,Rn) such that technically speaking for
ai ∈ {1, 2, . . . , n} we have

Dmf(a1, . . . , am) = Dam,...,a1f = Dam(· · ·Da2(Da1f)) · · · ),

but we will write
Dmf =

(
Dam,...,a1f

)
a1,...,am∈{1,2,...,n}

.

It therefore follows that for f ∈ Wm,1
loc (Ω,Rn) we can identify Dmf with an

element of the set L1
loc(Ω,Rnm+1

). It is an easy result of the definition of the
weak derivative that the order of partial derivatives is interchangeable, i.e.

Dam,...,a1f = Daπ(m),...,aπ(1)f

for any π ∈ Sm the symmetric group. It suffices to take the definition of the
weak derivatives, where in the integral we can change the order of derivatives
on the test function as it is smooth. Thus our derivatives Djf are symmetric.

We shall now expound the iterated chain rule, which is a result of repeatedly
using the chain rule and the product rule, for a pair of smooth mappings f
and g. We will later prove that the same holds for Sobolev mappings given g is
bilipschitz.

Let f and g be smooth. Clearly

D(f ◦ g)(x) = Df(g(x))Dg(x)

where the multiplication above is standard matrix multiplication. Now apply D
again and use the product rule. We get

Dj,i(f ◦ g)(x) =
n∑

k,l=1

Dk,lf(g(x))
(
Dig(x)

)k(
Djg(x)

)l
+

n∑
l=1

Dlf(x)
(
Dj,ig(x)

)l
.

This can be symbolically rewritten as

D2(f ◦ g)(x) = D2f(g(x))Dg(x)Dg(x) +Df(x)D2g(x), (1)
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where we expand the concept of matrix multiplication as follows: in the first
term we sum over {1, 2, . . . , n}2, all second partials of f and the components
of the two Dg terms and over {1, 2, . . . , n}, the first partials of f and the
components of D2g in the second term.

Notice that if we make the following definition of Km with m ∈ N

Km =
{

(k0, . . . , km) ∈ {0, 1, . . . ,m}m+1 :

(k0 ≥ 1) & (ki = 0⇔ i > k0) &
( m∑
i=1

ki = m
)}

we may write the above as follows

D2(f ◦ g)(x) =
∑
k∈K2

Dk0f(g(x))

k0∏
i=1

Dkig(x).

We will now prove the following equality for all m ∈ N by induction

Dm
(
f ◦ g

)
(x) =

∑
k∈Km,χ∈Xk

Dk0f(g(x))

k0∏
i=1

Dkig(x), (2)

where we define Xk below. Here k0 corresponds to the order of derivative of f
and other ki correspond to the derivatives of g. Note that the definition of Km
gives us

∑m
i=1 ki = m since in each step we differentiate some term with g once

more and also ki = 0, i > k0 since after deriving f k0 times we have at most k0

terms with g. In fact, for given numbers {ki}mi=1 there is a number of permissible
permutations (orderings in which the derivatives may be applied), which we will
denote as Xk for some k ∈ Km. This corresponds to the fact that each term
Dk0f(g(x))

∏k0
i=1D

kig(x) is multiplied by some fixed natural number #Xk.
It is no problem for us to work with the identity (2) and with its inter-

pretation. In our proof we will deduce the integrability of each term in the
product Dk0f(g(x))

∏k0
i=1D

kig(x) and then we will apply the Hölder inequality.
Therefore we do not need to care which component is multiplied with which
component of the next term. We have finitely many terms and each of them
can be estimated in the same way.

For our component-wise notation we will need to take a finite sequence in
{1, 2, . . . , n} and apply each corresponding derivative to one of our factors. We
define

Xk =
{
χ : {1, . . . ,m} → {1, . . . , k0}; #{j : χ(j) = i} = ki;

min{j ≤ m : χ(j) = i+ 1} > min{j ≤ m : χ(j) = i} : 1 ≤ i ≤ m− 1
}
.
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We carry on to define bij by denoting

bij = al,

where l is the j-th index which is mapped to i by χ, i.e. χ(l) = i and
#{χ(o) = i : o < l} = j − 1. Assume that the following holds for all m < m̂

Dam,...,a1(f ◦g)(x) =
∑
k∈Km

∑
χ∈Xk

n∑
b01,...,b

0
k0

=1

Db0k0
,...,b01

f(g(x))

k0∏
i=1

(Dbiki
,...,bi1

g(x))b
0
i . (3)

Let us now differentiate the equation above, where m = m̂−1, by applying Dam̂ .
We apply the Leibnitz rule (product rule) repeatedly and when differentiating
Db0k0

,...,b01
f(g(x)) we also use the chain rule and get

Dam̂,...,a1(f ◦g)(x)

=
n∑
ĵ=1

∑
k∈Km̂

∑
χ∈Xk

n∑
b01,...,b

0
k0

=1

Dĵ,b0k0
,...,b01

f(g(x))

k0∏
i=1

(Dbiki
,...,bi1

g(x))b
0
i ·(Dam̂g(x))ĵ

+

k0∑
î=1

∑
k∈Km̂

∑
χ∈Xk

n∑
b01,...,b

0
k0

=1

Db0k0
,...,b01

f(g(x))

×
∏

i∈{1,...k0}\{̂i}

(Dbiki
,...,bi1

g(x))b
0
i ·(D

am̂b
î
k
î
,...,bî1

g(x))b
0
î .

(4)

We can express this equation using the same notation as in (3). To prove this
consider two terms in the above sums, firstly where k0 = s, secondly where
k0 = s+ 1 and add the first line of (4) for k0 = s and the second line of (4) for
k0 = s+ 1. Putting M = {k ∈ Km̂ : k0 = s+ 1} we get

∑
k∈M

∑
χ∈Xk

n∑
b01,...,b

0
k0

=1

Db0k0
,...,b01

f(g(x))

k0∏
i=1

(Dbiki
,...,bi1

g(x))b
0
i .

Summing this over s gives our desired result.
It will be very useful to be able to express the above in some more concise

way, therefore we will introduce the following convention. We will shorten

Dam,...,a1(f ◦g)(x) =
∑
k∈Km

∑
χ∈Xk

n∑
b01,...,b

0
k0

=1

Db0k0
,...,b01

f(g(x))

k0∏
i=1

(Dbiki
,...,bi1

g(x))b
0
i (5)

by realizing that the order of the derivative of f (i.e. k0) is the same as the
number of Dg factors and we sum over the derivative indices of f and component
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indices of Dg-type terms as above, writing only

Dmf ◦ g(x) =
∑

k∈Km,χ∈Xk

Dk0f(g(x))

k0∏
i=1

Dkig(x) (6)

where the previous equalities hold at all points x where f ◦ g is defined. As
previously mentioned we will extend this result for bilipschitz Sobolev mappings
in Sections 3 and 4.

3. Regularity of the inverse

Recall that if we have some mapping h : Rn → Rl, we denote the components
of h as h(x) = (h1(x), h2(x), . . . , hl(x)).

Lemma 3.1. Let Ω,Ω′ ⊂ Rn be open. Let f : Ω → Ω′ = f(Ω) be a bilipschitz
mapping such that f ∈ W 2,1

loc (Ω,Rn). Then f−1 ∈ W 2,1
loc (Ω′,Rn) and(

Dj,if
−1(y)

)k
=−

n∑
l=1

n∑
l1,l2=1

(
Dlf

−1(y)
)k(

Dl2,l1f(f−1(y))
)l(

Dif
−1(y)

)l1(
Djf

−1(y)
)l2
,

(7)

which may also be written as

D2f−1(y) = −Df−1(y)D2f(f−1(y))Df−1(y)Df−1(y) (8)

for almost all y ∈ Ω′.

Remark 3.2. In the above lemma, the left-most factor on the right hand side
of (8) is the matrix Df−1(y). The reason for this is that it then corresponds to
standard composition (multiplication) of matrices. Notice however that in (7)
the order of the factors is irrelevant given we sum the correct upper and lower
indices.

Proof of Lemma 3.1. First let us note that f−1 ∈ W 2,1
loc (Ω′,Rn) is a direct result

of Theorem 2.4. Clearly we have almost everywhere that

0 = D(I) = D2(id) = D2(f ◦ f−1) = D
(
D(f ◦ f−1)

)
where I is the (n×n) identity matrix and id the identity mapping on Rn. Now
we can use Theorem 2.2 on f ◦ f−1 as f is bilipschitz. Therefore we get

0 = Dj

( n∑
l1=1

Dl1f(f−1(y))
(
Dif

−1(y)
)l1)
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for all i, j ∈ {1, 2, . . . , n} and for almost all y ∈ Ω′. As Df(f−1), Df−1 ∈ L∞(Ω′)
and f, f−1 are of Sobolev type W 2,1

loc it is easy to see that we will have no trouble
in applying the product rule, Lemma 2.3. Deriving again, using the product
rule and then Theorem 2.2 on Df(f−1), we get

0=
n∑

l1,l2=1

Dl2,l1f(f−1(y))
(
Dif

−1(y)
)l1(Djf

−1(y)
)l2 +

n∑
l=1

Dlf(f−1(y))
(
Dj,if

−1(y)
)l
.

Notice that thanks to the Lipschitz qualities of f and f−1 we have Df−1(y) =(
Df(f−1(y))

)−1
almost everywhere in terms of the inverse of matrices. We

apply Df−1(y) (matrix multiplication from the left) to get

0 =
n∑
l=1

n∑
l1,l2=1

(
Dlf

−1(y)
)k(

Dl2,l1f(f−1(y))
)l(

Dif
−1(y)

)l1(
Djf

−1(y)
)l2

+
(
Dj,if

−1(y)
)k

for all components k ∈ {1, 2, . . . , n} and for almost all y ∈ Ω′.

Lemma 3.3. Let Ω,Ω′ ⊂ Rn be open. Let f : Ω → Ω′ = f(Ω) be a bilipschitz
mapping such that f ∈ W k,p

loc (Ω,Rn). Then∣∣D(Dk−1f(f−1)
)∣∣ ∈ Lploc(Ω

′)

and for all k-tuples a1, a2, . . . ak ∈ {1, 2, . . . , n} we have

Dak(Dak−1,...,a1f(f−1(y))) =
n∑
l=1

Dl,ak−1,...,a1f(f−1(y))
(
Dakf

−1(y)
)l
.

Proof. Clearly Dak−1,...,a1f ∈ W 1,p
loc (Ω,Rn) and therefore belongs also to the

Sobolev space W 1,1
loc (Ω,Rn). Since f−1 is bilipschitz, Theorem 2.2 implies that

the weak derivative of Dak−1,...,a1f(f−1(·)) exists and since as f−1 is a bilip-

schitz change of variables we have Dak−1,...,a1f(f−1(·)) ∈ W 1,p
loc (Ω′,Rn). From

Theorem 2.2 we get

Dak(Dak−1,...,a1f(f−1(y))) =
n∑
l=1

DlDak−1,...,a1f(f−1(y))(Dakf
−1(y))l (9)

for almost all y ∈ Ω′. Since |Df−1| ∈ L∞(Ω′) we get∣∣D(Dk−1f(f−1(·))
)∣∣ ∈ Lploc(Ω

′).

By applying (9) to all (a1, . . . ak−1) ∈ {1, 2, . . . , n}k−1 we get that by our con-
vention, described between (5) and (6), that we may write

D(Dk−1f(f−1(y))) = Dkf(f−1(y))Df−1(y) for almost all y ∈ Ω′.
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Proof of Theorem 1.1. Consider the case m = 1. Our claim is trivial as f is
bilipschitz. For the case m = 2 Theorem 2.4 gives our result. Our proof will
continue by induction. We continue to prove the case m = 3 explicitly to aid
the comprehension of the reader.

Firstly, we know by Lemma 3.1 that (7) holds. We differentiate (7) ac-
cording to Theorem 2.2, Lemma 3.3 and Lemma 2.3, initially formally, and will
afterward verify the assumptions. Thus,

Da3,a2,a1f
−1(y)

=−Da3

( n∑
l0,l1,l2=1

Dl0f
−1(y)

(
Dl2,l1f(f−1(y))

)l0(Da1f
−1(y)

)l1(Da2f
−1(y)

)l2)

=
n∑

l0,l1,l2=1

Da3,l0f
−1(y)

(
Dl2,l1f(f−1(y))

)l0(Da1f
−1(y)

)l1(Da2f
−1(y)

)l2
+

n∑
l0,l1,l2,l3=1

Dl0f
−1(y)

(
Dl3,l2,l1f(f−1(y))

)l0
×
(
Da1f

−1(y)
)l1(Da2f

−1(y)
)l2(Da3f

−1(y)
)l3

+
n∑

l0,l1,l2=1

Dl0f
−1(y)

(
Dl2,l1f(f−1(y))

)l0(Da3,a1f
−1(y)

)l1(Da2f
−1(y)

)l2
+

n∑
l0,l1,l2=1

Dl0f
−1(y)

(
Dl2,l1f(f−1(y))

)l0(Da1f
−1(y)

)l1(Da3,a2f
−1(y)

)l2 ,
which can be summarized, according to our convention, by omitting indices as
follows

D3f−1(y) =D2f−1(y)D2f(f−1(y))Df−1(y)Df−1(y)

+Df−1(y)D3f(f−1(y))Df−1(y)Df−1(y)Df−1(y)

+Df−1(y)D2f(f−1(y))D2f−1(y)Df−1(y)

+Df−1(y)D2f(f−1(y))Df−1(y)D2f−1(y).

We want to prove that the norms of the objects on the right hand side are
Lploc(Ω

′) functions. The second term is trivial as the point-wise norms |Df−1(y)|
are uniformly bounded almost everywhere (remember f−1 ∈ W 1,∞(Ω′,Rn)) and
by our hypothesis |D3f | ∈ Lploc(Ω) and the f−1-bilipschitz change of variables
does not effect this.

We know by Theorem 2.4 that if |D2f | ∈ Lqloc(Ω) then |D2f−1| ∈ Lqloc(Ω
′).

The first and the last two terms are essentially the same. We have two bounded
factors of |Df−1| and two factors with the same integrability as |D2f |. We now
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apply Theorem 2.6 by choosing i ∈ {1, 2, . . . , n} and taking u = Dif , r = p,

q = ∞, k̂ = 2, j = 1, α = 1
2

and get |D2f | ∈ L2p
loc(Ω). Hereby we get that each

of the three terms in question are in Lploc(Ω
′) because clearly 1

1
2p

+ 1
2p

= p. This

both proves that we can use the chain and product rule (see Lemma 2.3) and

thus D3f−1 ∈ Lploc(Ω
′), which was our claim.

We now continue to the induction step, where we consider m ≥ 4 and
assume that |Dkf | ∈ Lqloc(Ω) implies |Dkf−1| ∈ Lqloc(Ω

′) for 1 ≤ k ≤ m− 1 and
any q ∈ [1,∞]. We take the equation (7) and differentiate it (m − 2)-times,
again initially formally and verifying the hypothesis later. The differences here
compared to the preliminaries Dm(f ◦ g) derivatives are as follows. Instead of
equation (1) we start with equation (8) and we proceed similarly with the help
of Theorem 2.2. We have an extra Df−1 factor, whose derivatives are summed
with the components of the Df factor, and therefore we adjust the set Km to
the set K′m as follows

K′m =
{

(k0, . . . , km+1) ∈ {0, 1, . . . ,m}m+2 :

(k0 ≥ 2) & (ki = 0⇔ i > k0 + 1) &
(m+1∑

i=1

ki = m+ 1
)}
.

We take the extra Df−1 factor to correspond to the index 1. The set of orderings
Yk will also differ slightly from Xk as follows,

Yk 3 χ : {1, . . . ,m} → {1, . . . , k0 + 1}
min{j ≤ m : χ(j) = i+ 1} > min{j ≤ m : χ(j) = i} for all 2 ≤ i ≤ k0

#{j : χ(j) = i} = ki for all 2 ≤ i ≤ k0 + 1

#{j : χ(j) = 1} = k1 − 1.

Deriving according to Lemma 2.3 and Lemma 3.3 analogously as we did in (5)
and (6) we get by Theorem 2.2

Dmf−1(y) =
∑

k∈K′m,χ∈Yk

Dk0f(f−1(y))

k0+1∏
i=1

Dkif−1(y) for almost all y∈Ω′. (10)

The calculations are almost identical to those leading up to (4) and so we omit
the details.

Clearly ki ≤ m− 1 for all i ≥ 1 and thereby our induction hypothesis tells
us that

|Dkif | ∈ Lqloc(Ω)⇒ |Dkif−1| ∈ Lqloc(Ω
′) (11)

for all 1 ≤ i ≤ k0 + 1 and any q ∈ [1,∞]. We take the norms of the derivatives
from (10) and estimate their integrability. We have (k0 + 1) factors, which are
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in the spaces Lpiloc(Ω
′), i = 0, 1, . . . , k0. We use (11), boundedness of the first

order derivatives and Theorem 2.6 (with u = Dof for o ∈ {1, 2, . . . , n}, r = p,
j = ki − 1, k̂ = m − 1 and α = ki−1

m−1
) to get that the product in (10) is in the

Lebesgue space Lqloc(Ω
′) where

1

q
=

k0+1∑
i=0

1

pi

1

pi
=
ki − 1

n
+
ki − 1

m− 1
(
1

p
− m− 1

n
) =

ki − 1

p(m− 1)

1

q
=

k0 − 1

p(m− 1)
+

∑k0+1
i=1 (ki − 1)

p(m− 1)
=

k0 − 1

p(m− 1)
+

m− k0

p(m− 1)
=

1

p
.

(12)

Hence q = p. This implies that the norm of the expression in (10) is in Lploc(Ω
′)

and therefore our use of the chain rule and the products rule is correct (see
Lemma 2.3 and Theorem 2.2). More significantly, it also implies that |Dmf−1| ∈
Lploc(Ω

′), which was the first part of our claim.
Now let us return to BV-regularity of the inverse and assume further that

Dmf ∈ BVloc

(
Ω,Rnm+1)

. Hence |Dmf | ∈ L1
loc(Ω) and from the previous result

we know that f ∈ Wm,1
loc (Ω,Rn) implies |Dmf−1| ∈ L1

loc(Ω). Moreover, we have

Dmf−1(y) =
∑

k∈K′m,χ∈Yk

Dk0f(f−1(y))

k0+1∏
i=1

Dkif−1(y) for almost all y∈Ω′ (13)

and we need to show that the right hand side is a BV function, i.e. its derivative
exists and it is a measure. All the terms with k0 < m can be dealt with as in the
previous part of the proof with the help of the Gagliardo-Nirenberg inequality
for BV functions Theorem 2.7 and we obtain that the part of the sum with
k0 < m belongs even to W 1,1

loc

(
Ω′,Rnm+1)

. It remains to consider the term

Dmf(f−1(y))
m+1∏
i=1

Dkif−1(y) = Dmf(f−1(y))
(
Df−1(y)

)m+1
.

Take any Ω̃ ⊂⊂ Ω and corresponding f(Ω̃) = Ω̃′ ⊂⊂ Ω′. Let us define

al(y) := Dmfl(f
−1(y))

(
Df−1(y)

)m+1
,

where fl denotes the convolution approximations of f , i.e. Dm(fl)→ Dm(f) in
L1(Ω̃) and hence also Dm(fl(f

−1(y))) → Dm(f(f−1(y))) in L1
(
Ω̃′,Rnm+1)

as f
is bilipschitz. Moreover, Dm+1fl (and hence also Dm+1fl(f

−1)) form a bounded
sequence in L1

(
Ω̃′,Rnm+1)

and therefore it is not difficult to show using the
chain rule that

Dal is a bounded sequence in L1
(
Ω̃′,Rnm+1)

.
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We select a subsequence still denoted as Dal which converges w∗ to some Radon
measure µ. For all ϕ ∈ D(Ω̃′) we get by the definition of the weak derivative∫

Ω̃′
Dal(y)ϕ(y) dy = −

∫
Ω̃′
al(y)Dϕ(y) dy

= −
∫

Ω̃′
Dmfl(f

−1(y))
(
Df−1(y)

)m+1
Dϕ(y) dy .

The left-hand side converges to
∫
ϕ dµ and hence in the limit we have∫

Ω̃′
ϕ(y) dµ(y) = −

∫
Ω̃′
Dmf(f−1(y))

(
Df−1(y)

)m+1
Dϕ(y) dy

since Dm(fl(f
−1(y))) → Dm(f(f−1(y))) in L1

(
Ω̃′,Rnm+1)

. Clearly our deriva-

tive µ is defined uniquely on any open set G ⊂⊂ Ω′, as for any two Ω̃1, Ω̃2 ⊃ G
and any ϕ ∈ D(G) we have

∫
G
ϕdµ1 =

∫
G
ϕdµ2. This shows that the remaining

term (13) belongs to BVloc

(
Ω′,Rnm+1)

and finishes the proof.

Remark 3.4. To prove the necessity of our assumptions in Theorem 1.2 let us
consider the composition of two mappings f ◦ g, with f, g : Rn → Rn.To see
that the inverse of the interior must be a Lipschitz mapping consider g to be
the projection of Rn to Re1 and some f which is not measurable on Re1.

The next example shows that if f is not Lipschitz the composition may
fail to have the original degree of integrability even for bilipschitz g. Consider
n = 9, p = 3

2
, ε ∈ (0, 1

3
),

g(x) = x+ x|x|1+ε sin(|x|−1) and f(x) = x|x|ε−3

with ε > 0. Main part of the functions is of the form x
|x|ϕ(|x|) and hence we can

compute the derivative in a standard way (see e.g. [8, Lemma 2.1]). We know,

|Djf(x)| ≈ f(x)

|x|j
≤ |x|ε−2−j (14)

giving us that f ∈ W 4,p(Ω,Rn). Further we may estimate the j-th derivative
by

|D1,...,1g(x)| ≥ C
|x|2+ε

|x|2j
(15)

for some C independent of x for a set with positive density at the origin (i.e. on
S := {x : | sin(|x|−1)| > 1

4
and | cos(|x|−1)| > 1

4
}). From (14) and (15) we get

that f, g ∈ W 4,p(B(0, 1)). We may calculate that

|D4(f ◦ g)(x)| ≈ |Df(g(x))| · |D4g(x)| ≈ 1

|x|9−2ε
>

1

|x|8

on a set with positive density at the origin. Hereby we see that f ◦ g ∈
W 4,1(B(0, 1)) but D4f ◦ g /∈ Lp(B(0, 1)) as 8p > 9.
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Remark 3.5. The optimal assumptions for the first order regularity of the
inverse f−1 ∈ W 1,q usually contain some sort of the assumption about the
integrability of the distortion function (see e.g. [4, 8] or [10, Chapter 6]).

One can ask if the bilipschitz assumption can be replaced by some condition
on the distortion. It is evident that only very restricted results could hold. For
example the radial stretching

f(x) =
x

|x|
|x|α

with non-zero α ∈ R has bounded distortion, as does its inverse. Chose n,m ∈ N
and put α = m + 1. Although f ∈ Wm,∞(Ω,Rn) it can be calculated that
|Dmf−1|β ∈ L1

loc(Ω
′) only for

β <
n

m− (m+ 1)−1
.

In the previous example we did not have f−1 Lipschitz. Nevertheless the coun-
terexample in [7] is a homeomorphism with f−1 Lipschitz and the distortion
function satisfies K ∈ Lcn(Ω) so even given these assumptions we can barely
expect any a priori results without f bilipschitz.

4. The algebra of bilipschitz Sobolev mappings and its a
to smooth Riemannian manifolds

First let us show that bilipschitz Sobolev mappings form an algebra, i.e. they
are closed under composition, multiplication and inverse. We start with the
following lemma.

Lemma 4.1. Let Ω,Ω′ ⊂ Rn be open. Let g : Ω′ → Ω be such that
g ∈ W k,p

loc (Ω′,Rn) ∩ Biliploc(Ω
′,Rn) and let f ∈ W k,p

loc (Ω,Rn). Then∣∣D(Dk−1f(g)
)∣∣ ∈ Lploc(Ω

′)

and

Dak(Dak−1,...,a1f(g(x))) =
n∑
l=1

Dl,ak−1,...,a1f(g(x))
(
Dakg(x)

)l
or more simply

D(Dk−1f(g(x))) = Dkf(g(x))Dg(x).

Proof. The proof is similar to that of Lemma 3.3. Instead of the assumption
that f−1 is bilipschitz, we use that g is bilipschitz and the rest of the reasoning
is the same.
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Proof of Theorem 1.2. For m = 1 our result follows directly from Theorem 2.2
and the fact that g is bilipschitz. Now let m = 2 and use Lemma 4.1 to get that

D2f ◦ g = D2f(g)DgDg +Df(g)D2g.

But |Df(g)| and |Dg| are both bounded almost everywhere and |D2f(g)| and
|D2g| are both in Lp(Ω′), therefore our claim holds.

Assume |Djf ◦ g| ∈ L1
loc(Ω

′), for j ≤ m − 1. By Lemma 4.1, Theorem 2.2
and Lemma 2.3 repeatedly, we get

Dmf ◦ g(y) =
∑

k∈Km,χ∈Xk

Dk0f(g(y))

k0∏
i=1

Dkig(y)

for almost all y ∈ Ω′, given that the expression on the right is in L1
loc(Ω

′). This
can be shown by the calculations corresponding to those in (12) to get that,
Dm(f ◦ g) ∈ Lp(Ω′).

Proof of Theorem 1.3. Let 1 ≤ j ≤ m − 1. We calculate using Theorem 2.6
similarly as we did in (12) that |Djf |, |Djg| ∈ Lqjloc(Ω), where

1

qj
=

j − 1

p(m− 1)
.

Therefore using the Hölder inequality we get that the product |DjfDm−jg| ∈
Lqloc(Ω) where

1

q
=

j − 1

p(m− 1)
+
m− j − 1

p(m− 1)
<

j − 1

p(m− 1)
+
m− 1− (j − 1)

p(m− 1)
=

1

p
.

Consider the two remaining cases gDmf and fDmg. These are both clearly in
Lploc(Ω). Therefore we can derive fg m-times by the product rule and get that
Dm(fg) ∈ Lploc(Ω).

It is possible to show that similar result holds also on C∞ compact n-
dimensional Riemannian manifolds.

Theorem 4.2. Let M and N be C∞ compact n-dimensional connected Rieman-
nian manifolds. Let m ∈ N, p ∈ [1,∞] and

f ∈ Wm,p(M,N) ∩ Biliploc(M,N),

u ∈ Wm,p(M,N) ∩ Lip(M,N),

ϕ ∈ Wm,p(M,M) ∩ Biliploc(M,M) and

g, h ∈ Wm,p(M,R) ∩ Lip(M,R).

Then
f−1 ∈ Wm,p(N,M),

u ◦ ϕ ∈ Wm,p(M,N) and

gh ∈ Wm,p(M,R).



The Weak Inverse Mapping Theorem 337

It is necessary we clarify the meaning of W k,p(M,N) (see e.g. [6]). To begin
with we explain that W 1,∞(M,N) = Lip(M,N) and W 1,∞(M,R) = Lip(M,R).
Let ρ be the induced metric of the compact Riemannian manifold M . Firstly,
notice that all u ∈ Lip(M,R) satisfy the following Poincaré type inequality on
every ball B(z, r) ⊂M and for every x ∈ B,

|u(x)− uB| ≤ −
∫
B

|u(x)− u(y)| ≤ Lipu−
∫
B

ρ(x, y) ≤ cr Lipu .

Notice however that conversely for any mapping u satisfying |u(x) − uB| ≤ cr
where the constant c depends on u but not on B(z, r) ⊂ M , is in the class
Lip(M,R). Take any z such that x, y ∈ B(z, 3ρ(x, y)) (given ρ(x, y) <∞) and
calculate

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB| ≤ cρ(x, y).

Further it holds, if we have f : M → N , φ a map on N and χ a map on M ,
that

φ ◦ f ◦ χ−1 ∈ W 1,∞(U,Rn)⇔ f ∈ Lip(M,N),

where U is the open set where χ−1 is defined. This is because maps are in fact
bilipschitz mappings between the manifold and Rn.

Since we have no problems with continuity or in the spaces W 1,p(M, N) we
may use the classical definition below. We will assume without loss of generality
that for our C∞ compact n-dimensional Riemannian manifolds we have the
finite reference atlases {χ1, χ2, . . . , χk}, χi : M → Rn, and {φ1, φ2, . . . , φk}, φi :
N → Rn. Using a division of unity we can conclude that f ∈ W k,p(M,N) ∩
W 1,∞(M,N) if and only if

φj ◦ f ◦ χ−1
i ∈ W k,p(Ui,Rn) ∩W 1,∞(Ui,Rn)

for all 1 ≤ i, j ≤ k, where Ui is the open set where χ−1
i is defined.

Proof of Theorem 4.2. Without loss of generality f(M) = N . Taking our ref-
erence atlases {χ1, χ2, . . . , χk} on M , and {φ1, φ2, . . . , φk} on N and by using
Theorem 1.1 we obtain that

χi ◦ f−1 ◦ φ−1
j ∈ W

k,p
loc (Vj,Rn) ∩W 1,∞

loc (Vj,Rn),

where Vj is the open set where φ−1
i is defined. Since our reference atlases are

finite we easily get that f−1 ∈ W k,p(N,M) ∩W 1,∞(N,M). Following a similar
argument as above and calculating

φj ◦ u ◦ ϕ ◦ χ−1
i (x) = φj ◦ u ◦ χ−1

l ◦ χl ◦ ϕ ◦ χ
−1
i (x)

for such x that the expression on the right is defined. Both φj ◦ u ◦ χ−1
l and

χl ◦ ϕ ◦ χ−1
i are W k,p-maps where defined. Therefore their composition is also

a W k,p
loc -map where defined according to Theorem 1.2. The compactness of M

again means that the integrability of u ◦ ϕ is global. Apply a similar argument
to g and h using Theorem 1.3 to get the last result.
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5. The implicit function theorem

In this section we prove a theorem analogous to the implicit mapping theo-
rem. Before stating it, let us define some sets. Let Ω ⊂ Rd × Rn be open and
u : Ω→ Rn. Then we define

Ωx
z = {x ∈ Rd : ∃y ∈ Rn : (x, y) ∈ Ω, u(x, y) = z} and

Ωy = {y ∈ Rn : ∃x ∈ Rd : (x, y) ∈ Ω}.

We will consider mappings which are bilipschitz “in the second variable”.
We include our definition here.

Definition 5.1. Let Ω ⊂ Rd × Rn and u : Ω→ Rm. The space Bilip2
loc(Ω,Rm)

is the class of mappings u : Ω → Rm such that for all (x0, y0) ∈ Ω, x0 ∈ Rd,
y0 ∈ Rn, there exists some δ > 0 and C1, C2 > 0 such that for all (x, y), (x, y′) ∈
Ω ∩B((x0, y0), δ) it holds that

C1|y − y′| < |u(x, y)− u(x, y′)| < C2|y − y′|.

Theorem 5.2. Let k, n, d ∈ N, p ∈ [1,∞], let Ω ⊂ Rd × Rn be open and

u ∈ W k,p
loc (Ω,Rn) ∩ Liploc(Ω,Rn) ∩ Bilip2

loc(Ω,Rn).

Then for all z ∈ u(Ω), Ωx
z is open in Rd and for all x ∈ Rd, y, z ∈ Rn such that

u(x, y) = z there exists a neighbourhood Ux ⊂ Ωx
z of x and Vy ⊂ Ωy of y and

exactly one mapping fz : Ux → Vy such that

u(x′, y′) = z ⇔ fz(x
′) = y′ for all (x′, y′) ∈ Ux,×Vy

Further given such a triplet x, y, z we have that fz ∈ W 1,∞(Ux,Rn) and for
almost all z ∈ u(Ux, Vy) we have

fz ∈ W k,p(Ux,Rn).

Remark 5.3. We cannot expect that our hypothesis will guarantee W k,p reg-
ularity for every value of z. This can be seen by considering the following
function,

u(x, y) = y + (x2 + y2)α sin
( 1

x2 + y2

)
with α ∈ (2, 5

2
) and (x, y) ∈ R2 \ {(0, 0)} extended continuously at the origin.

Since u(x, y)− y is a radial mapping it is easy to calculate that the norm of the
derivative for j ≥ 2 is

|Dju(x, y)| ≤ C
|(x, y)|2α

|(x, y)|3j
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for |(x, y)| > 0 and that reverse inequality with different C holds on a a set
with positive density at the origin. Notice that u fulfills the hypothesis of The-
orem 5.2 with k=2 and any p< 1

3−α . The derivative of u has a singularity only
at the origin, which lies on the graph of the corresponding implicit function f0.

We want to prove that
∫ 1

0
|f ′′0 (s)| =∞ and thus f0 /∈ W 2,1. Set

sm =
1√
πm

and note that u(sm, 0) = 0 which implies that f0(sm) = 0. We have that∫ 1

0

|f ′′0 (s)| = c+ lim
j→∞

j∑
m=1

∫ sm

sm+1

|f ′′0 (s)| ≥ lim
j→∞

j∑
m=1

|f ′0(sm + 1)− f ′0(sm)|.

The classical implicit function theorem gives that f |(0,1) ∈ C∞(0, 1) and allows
us to calculate

f ′0(sm) = −D1u(sm, 0)

D2u(sm, 0)
= (−1)m2s2α−4+1

m ,

where we used sin
(

1
s2m+02

)
= 1 and cos

(
1

s2m+02

)
= (−1)m. Now α < 5

2
implies

lim
j→∞

j∑
m=1

|f ′0(sm + 1)− f ′0(sm)| ≥ C lim
j→∞

j∑
m=1

( 1

mπ

)α− 3
2

+
( 1

(m+ 1)π

)α− 3
2

=∞

and therefore f /∈ W 2,1((0, 1)). In fact we have f /∈ W 2,1((−δ, δ)) for any δ > 0.

We start by proving the following lemma.

Lemma 5.4. Let k, n, d ∈ N, p ∈ [1,∞] and

u ∈ W k,p
loc (Rd × Rn,Rn) ∩ Liploc(Rd × Rn,Rn)

Further let r1, r2, L1 > 0, x0 ∈ Rd, y0 ∈ Rn be such that

|u(x, y)− u(x, y′)| > L1|y − y′| for all y, y′ ∈ BRn(y0, r2) (16)

and any x ∈ BRd(x0, r1). Let z ∈ u
(
x0, BRn

(
y0,

L1r2
2L2

))
then there exists δ > 0

and a mapping fz : BRd(x0, δ)→ BRn(y0, r2) such that

u(x, y) = z ⇔ fz(x) = y for all x ∈ BRd(x0, δ).

Further fz ∈ W 1,∞(BRd(x0, δ),Rn) for all z ∈ u
(
x0, BRn

(
y0,

L1r2
2L2

))
and

fz ∈ W k,p(BRd(x0, δ),Rn) for almost all z ∈ u
(
x0, BRn

(
y0,

L1r2

2L2

))
.
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Proof. We have u ∈ Liploc(Rd×Rn,Rn) and therefore there exists some L2 > 0
such that

|u(x, y)− u(x′, y′)| < L2(|x− x′|+ |y − y′|) (17)

for all x, x′ ∈ BRn(x0, r1), and all y, y′ ∈ BRn(y0, r2). Put

δ =
r2L1

2L2

.

We define h : Rd × Rn → Rd × Rn as follows

h(x, y) = (x, u(x, y)).

Evidently h ∈ W k,p
loc (Rd × Rn,Rd+n). We want to prove that

h ∈ Bilip(BRd(x0, r1)×BRn(y0, r2),Rd+n).

It is evident that h is Lipschitz as its component mappings are Lipschitz. Con-
sider x, x′ ∈ BRn(x0, r1), and y, y′ ∈ BRn(y0, r2), such that

|y − y′|
|x− x′|

≤ 2L2

L1

.

We have
|h(x, y)− h(x′, y′)| ≥ |x− x′| ≥ c(|x− x′|+ |y − y′|)

for some c > 0. Now conversely take

|y − y′|
|x− x′|

≥ 2L2

L1

and by (16) and (17) we get

|h(x, y)−h(x′, y′)| ≥ L1|y− y′| −L2|x−x′| ≥
L1|y − y′|

2
≥ c(|x−x′|+ |y− y′|).

for some c > 0. Now we may denote Ω′ = h(BRd(x0, r1), BRn(y0, r2)). Clearly Ω′

is open. By Theorem 1.1 we get the regularity

h−1 ∈ W k,p
loc (Ω′,Rd+n) ∩ Bilip(Ω′,Rd+n).

Our goal is to define fz(x) = y. Let us firstly show that if such a y exists then it
is unique. The inequality (16) guarantees that if u(x, y) = u(x, y′) then y = y′.
Therefore if h(x, y) = h(x, y′) then y = y′, which implies that for any given
x ∈ BRd(x0, r1) and z ∈ u(x,BRn(y0, r2)) there exists at most one y such that
u(x, y) = z.

It now suffices to prove that for all z ∈ Rn such that z = u(x0, ŷ) for some

ŷ ∈ BRn
(
y0,

r2L1

2L2

)
we have: for all x ∈ BRd(x0, δ) there exists a y ∈ BRn(y0, r2)
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such that z = u(x, y). Remember that δL2 = r2L1

2
and put z0 = u(x0, y0). Using

the fact that u is L2-Lipschitz in the y variable and then the definition of δ we

get u
(
x0, BRn

(
y0,

r2L1

2L2

))
⊂ BRn

(
z0,

L1r2
2

)
= BRn(z0, L1r2−δL2). Now since u is

L2-Lipschitz in the x variable and using (16), we get that for all x ∈ BRd(x0, δ)

that
BRn(z0, L1r2 − δL2) ⊂ BRn((x, y0), L1r2) ⊂ u

(
x,BRn(y0, r2)

)
.

Hence we can really find y ∈ BRn(y0, r2) such that u(x, y) = u(x0, y0). This
gives us the existence of a mapping fz defined for all x ∈ BRd(x0, δ). We show
that fz is Lipschitz (with the constant L2

L1
). Consider two pairs (x, y) and (x′, y′)

such that u(x, y) = u(x′, y′) = z. By (16) and (17) we have

|u(x, y)− u(x′, y)| < L2|x− x′|
|u(x, y)− u(x′, y)| = |u(x′, y′)− u(x′, y)| > L1|y − y′|.

Thus

|fz(x)− fz(x′)| = |y − y′| ≤
L2|x− x′|

L1

.

It is now left to prove that for almost all z ∈ u
(
x0, BRn

(
y0,

r2L1

2L2

))
we have

fz ∈ W k,p
loc (BRd(x0, δ),Rn). Here it suffices to use Theorem 2.8 and the ensuing

comment on the mapping h−1 and realize that the ACL condition implies that

h−1(·, z) ∈ W k,p(BRd(x0, δ),Rd+n) for almost all z ∈ u
(
x0, BRn

(
y0,

r2L1

2L2

))
.

Take any such a point z and use the following notation for the coordinate
mappings in the given dimensions d and n, h−1 = (h−1

1 , h−1
2 ), then clearly

h−1
2 (·, z) ∈ W k,p(BRd(x0, δ),Rn). But clearly for all x ∈ BRd(x0, δ) it holds that

h−1
2 (x, z) = fz(x).

Thus we have fz∈W k,p
loc (BRd(x0, δ),Rn) for almost all z∈u

(
x0,BRn

(
y0,

r2L1

2L2

))
.

Proof of Theorem 5.2. We have u ∈ Bilip2
loc(Ω,Rn) and therefore for any fixed

(x, y) ∈ Ω we find r1, r2 > 0 for which we may apply Lemma 5.4 (note that our
proof does not require u defined outside of B(x0, r1) × B(y0, r2)). This means
that for any fixed z ∈ u(Ω) that Ωx

z is open in Rd. It also implies the local
existence of a Lipschitz fz : Ux → Vy for all x, y, z and that for almost all z we
have fz ∈ W k,p(Ux,Rn).
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