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Abstract. In the case of classical convolution operators, an important characteriza-
tion of absolute continuity is given in terms of convergence in variation. In this paper
we will study this problem for Mellin integral operators, proving analogous charac-
terizations in the frame of the classical BV -spaces, both in the one-dimensional and
in the multidimensional setting.

Keywords. Mellin integral operators, absolute continuity, multidimensional varia-
tion, convergence in variation

Mathematics Subject Classification (2010). Primary 26A45, 26A46, 26B30,
41A35, secondary 47G10

1. Introduction

Properties of convergence in variation for classical convolution integral opera-
tors play a fundamental role in order to establish characterizations of absolute
continuity. Indeed it can be proved (see [12]) that f ∈ AC(R) if and only if
limw→+∞ V [Twf − f ] = 0, where Twf are classical convolution integral oper-
ators with regular (AC) kernels, V denotes the (Jordan) variation functional
and AC(R) is the space of the absolutely continuous functions on R, i.e., the
functions which are absolutely continuous on every interval [a, b] ⊂ R and of
bounded variation on R. This result has been also extended to the multi-
dimensional case ([12]) using the Tonelli variation (see [28–30] for the defini-
tion). The problem has been studied also in the setting of the Musielak-Orlicz
ϕ-variation defined for g : [a, b]→R as V ϕ

[a,b][g] := supD
∑n

i=1 ϕ(|g(si)− g(si−1)|),
where the supremum is taken over all the divisions D = {s0 = a, s1, . . . , sn = b}
of [a, b] and ϕ is a ϕ-function, both in the one-dimensional (see [27]) and in
the multidimensional case (see [1, 4]). Similar results in the case of nonlinear
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convolution integral operators can be found in [2, 3, 15] and, in other settings,
in [5, 13,14,17,22,31].

In case of Mellin convolution integral operators, the convergence in variation
has been studied in [6–9] without giving a characterization in terms of absolute
continuity. This is the problem that we face in this paper for the classical
variation both in the one and in the multidimensional setting. The importance
of Mellin integral operators is well-known not only in approximation theory (see,
e.g., [18,26]), but also because of the several applications for example in optical
physics and engineering (see, e.g., [16,21]). Indeed they can be successfully used
in problems of signal reconstruction where the samples are not uniformly spaced,
as in the classical Shannon Sampling Theorem, but exponentially spaced, e.g.,
in situations in which information accumulates near time t = 0 (see, e.g., [19]).

Even if Mellin integral operators, defined as

(Twf)(s) =

∫
RN+
Kw(t)f(st)〈t〉−1dt, w > 0, s ∈ RN

+ , (I)

where st := (s1t1, . . . , sN tN) and 〈t〉 :=
∏N

i=1 ti, for s = (s1, . . . , sN),
t = (t1, . . . , tN) ∈ RN

+ , can be regarded as a kind of convolution integral
operators with respect to a different measure (the logarithmic Haar measure
µ(A) :=

∫
A

dt
〈t〉 , where A is a Borel subset of RN

+ , N ≥ 1), the group operation

(multiplication) becomes the problem of the characterization of absolutely con-
tinuous functions not suitable to be studied through a “direct” approach. In
particular it is not possible, for example, to prove directly via the definition of
absolute continuity that the above operators (I) are AC.

In this paper we will show that it is possible to overcome the problem us-
ing a notion of absolute continuity (log-absolute continuity), equivalent to the
classical one, which takes into account of the logarithmic measure µ. Indeed
the absolute continuity of the Mellin integral operators, in case of AC-kernels
(Propositions 3.7 and 4.4), together with the fact that the set of the absolutely
continuous functions is a closed subspace of the set of the BV -functions, al-
lows us to obtain the suitable characterizations for AC-functions (Theorems 3.8
and 4.6).

The paper is organized as follows: after a preliminary section (Section 2)
where we introduce the Mellin integral operators under consideration and we
present some examples, in Section 3 we give the characterization for AC-func-
tions in case of the classical Jordan variation, while in Section 4 we face the
problem in the multidimensional case using a concept of variation on RN

+ in the
sense of Tonelli introduced in [9].
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2. A class of Mellin operators

In this paper we will give results for a class of Mellin integral operators of the
form (I) for

f ∈ L̃1(RN
+ ) :=

{
f : RN

+ → R s.t.

∫
RN+
|f(t)|〈t〉−1 dt < +∞

}
,

where st := (s1t1, . . . , sN tN), for s = (s1, . . . , sN), t = (t1, . . . , tN) ∈ RN
+ . Since

we work with Mellin type operators, the most suitable setting is to consider RN
+

as a group with the multiplicative operation and equipped with the logarithmic
Haar measure µ(A) :=

∫
A

dt
〈t〉 , where 〈t〉 :=

∏N
i=1 ti. For the same reason, it

is natural to consider functions belonging to the space L̃1(RN
+ ), instead of the

usual Lebesgue space L1(RN
+ ).

Here {Kw}w>0 is a family of kernel functions which satisfy the following
assumptions:

Kw.1) Kw : RN
+ → R is a measurable essentially bounded function such

that Kw ∈ L̃1(RN
+ ), ‖Kw‖L̃1 ≤ A for an absolute constant A > 0 and∫

RN+
Kw(t)〈t〉−1dt = 1, for every w > 0,

Kw.2) for every fixed 0 < δ < 1,
∫
|1−t|>δ |Kw(t)|〈t〉−1dt→0, as w→+∞, where

1 := (1, . . . , 1) is the unit vector of RN
+ ,

i.e., {Kw}w>0 is a bounded approximate identity (see, e.g., [20]).
In the following we will say that {Kw}w>0 ⊂ Kw if Kw.1) and Kw.2) are

fulfilled.
We point out that, with the above assumptions, (Twf)(s) is well defined for

every s ∈ RN
+ and w > 0, for f ∈ L̃1(RN

+ ). Indeed, it is sufficient to notice that

|(Twf)(s)| ≤
∫
RN+
|Kw(t)||f(st)|〈t〉−1 dt ≤ ‖Kw‖L∞‖f‖L̃1 < +∞,

for every s ∈ RN
+ , w > 0. Note that, in the particular case N = 1, it is no more

necessary to assume that f ∈ L̃1(RN
+ ) in order to guarantee that the operators

are well defined (see Proposition 3.4).
It is not difficult to find examples of kernel functions which fulfill all the

previous assumptions. Among them there are, for example, the moment-type
kernels, defined as

Mw(t) := wN〈t〉wχ]0,1[N (t), t ∈ RN
+ , w > 0.

First of all, it is easy to see that they fulfill assumption Kw.1). Moreover, for
every fixed δ ∈]0, 1[, |1−t| > δ implies that |1−tj| > δ√

N
, for some j = 1, . . . , N ;
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hence

{
t∈]0, 1[N : |1−t|>δ

}
⊂

N⋃
j=1

{
t∈RN

+ : 0<tj<1− δ√
N
, 0<ti<1, ∀i 6=j

}

and therefore

Iw : =

∫
|1−t|>δ

|Mw(t)|〈t〉−1 dt

≤
N∑
j=1

{(∏
i 6=j

∫ 1

0

wtw−1i dti

)∫ 1− δ√
N

0

wtw−1j dtj

}

= N

(
1− δ√

N

)w
→0,

as w→+∞.

Other examples of kernel functions which satisfy our assumptions are the
Mellin-Gauss-Weierstrass kernels, defined as

Gw(t) :=
wN

π
N
2

e−w
2| log t|2 , t ∈ RN

+ , w > 0,

where log t := (log t1, . . . , log tN), or the Mellin-Picard kernels, defined as

Pw(t) :=
wN

2π
N
2

Γ(N
2

)

Γ(N)
e−w| log t|, t ∈ RN

+ , w > 0,

where Γ is the Gamma-Euler function. These last families are examples of
kernel functions of Fejér type, namely of the form

Kw(t) = wNK(tw), t ∈ RN
+ , w > 0,

where K ∈ L̃1(RN
+ ) is such that

∫
RN+
K(t)〈t〉−1 dt = 1. For Fejér type kernels

it can be proved (see [9]) that all the previous assumptions are implied by the

classical condition that their absolute moments of order α (α > 0), defined in

this setting as

m(K,α) :=

∫
RN+
| log t|α|K(t)|〈t〉−1 dt,

are finite. Therefore, since the absolute moments of order α of both the families
{Gw}w>0 and {Pw}w>0 are finite (see [9]), they satisfy the above assumptions.
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3. The one-dimensional case

Before treating the problem in the multidimensional frame, we study the one-
dimensional case since the multidimensional variation requires a different ap-
proach and, moreover, it lays on the one-dimensional setting.

3.1. Definitions. In this section we study the problem in the one-dimensional
case, namely in the frame of BV (R+), the space of functions with bounded
(Jordan) variation on R+. In particular we will give a characterization of the
absolute continuity for the class of Mellin integral operators (I) in the one-
dimensional case, i.e.,

(Twf)(s) =

∫
R+

Kw(t)f(st)t−1 dt, w > 0, s > 0,

for f ∈ L̃1(R+) and where the family of kernels {Kw}w>0 is a bounded approx-
imate identity.

We first recall some well-known definitions about the BV -spaces.

Definition 3.1. The (Jordan) variation of a function f : [a, b] → R on
[a, b] ⊂ R+ is defined as

V[a,b][f ] := sup
D

m∑
i=1

|f(xi)− f(xi−1)|,

where the supremum is taken over all the possible divisions D = {a=x0, x1, . . . ,
xm=b} of the interval [a, b] and f is said to be of bounded variation on [a, b] if
V[a,b][f ] < ∞. If f : R+ → R, V [f ] := sup[a,b]⊂R+

V[a,b][f ] is the variation of f
over the whole space R+ and by

BV (R+) := {f : R+ → R : V [f ] < +∞}

we denote the space of functions of bounded variation on R+.

Definition 3.2. A function f : [a, b] → R is absolutely continuous if for every
ε > 0 there exists δ > 0 such that, for every collection of non-overlapping
intervals [αν , βν ], ν = 1, . . . , n in [a, b] such that

∑n
ν=1 |βν − αν | < δ, then

n∑
ν=1

|f(βν)− f(αν)| < ε.

By AC(R+) (space of absolutely continuous functions) we will denote the space
of functions f : R+→R which are of bounded variation on R+ and absolutely
continuous on every [a, b] ⊂ R+.
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Since we work with Mellin integral operators, in order to reach our results,
we have to deal with the logarithmic Haar measure. Therefore, for the sake
of simplicity, we use the following notion of absolute continuity (logarithmic
or log-absolute continuity), compatible with the multiplicative structure of RN

+ ,
which is equivalent to the classical one (see Proposition 3.5).

Definition 3.3. We say that f : R+→R is log-absolutely continuous on
[a, b] ⊂ R+ (f ∈ AClog([a, b])) if for every ε > 0 there exists δ > 0 such
that, for every collection of nonoverlapping intervals {[αν , βν ]}nν=1 in [a, b] such
that

n∑
ν=1

| log(βν)− log(αν)| < δ,

then
n∑
ν=1

|f(βν)− f(αν)| < ε.

By AClog(R+) (space of log-absolutely continuous functions) we will denote the
space of functions which are of bounded variation on R+ and log-absolutely
continuous on every [a, b] ⊂ R+.

3.2. Results. We first prove that the operators (I) map BV (R+) into itself:
this obviously also implies that, if f ∈ BV (R+), then (Twf)(s) < +∞, for every
s, w > 0.

Proposition 3.4. If f ∈ BV (R+) and {Kw}w>0 satisfy assumption Kw.1),
then V [Twf ] ≤ AV [f ], for every w > 0, where A is the constant in Kw.1), i.e.,
{Twf}w>0 are equibounded in variation.

Proof. If f ∈ BV (R+) and {s0 = a, s1, . . . , sn = b} is a partition of [a, b] ⊂ R+,
then
n∑
i=1

|(Twf)(si)− (Twf)(si−1)| =
n∑
i=1

∣∣∣∣∫
R+

Kw(t)f(sit)
dt

t
−
∫
R+

Kw(t)f(si−1t)
dt

t

∣∣∣∣
≤
∫
R+

|Kw(t)|
n∑
i=1

|f(sit)− f(si−1t)|
dt

t

≤
∫
R+

|Kw(t)|V[a,b][f(t·)]dt
t

≤
∫
R+

|Kw(t)|V [f ]
dt

t
,

and hence, passing to the supremum over all the partitions of [a, b], and by
Kw.1), V[a,b][Twf ] ≤ AV [f ]. Therefore, by the arbitrariness of [a, b] ⊂ R+,

V [Twf ] ≤ AV [f ]. (1)

This finishes the proof.
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We now prove that the concept of log-absolute continuity is equivalent to
the classical absolute continuity.

Proposition 3.5. A function f : R+ → R is absolutely continuous (f ∈
AC(R+)) if and only if f is log-absolutely continuous (f ∈ AClog(R+)).

Proof. We have to prove that f is absolutely continuous on [a, b] ⊂ R+ if and
only if f is log-absolutely continuous on [a, b]. Let us fix ε > 0. If f is absolutely
continuous on [a, b], it is easy to see that, if η : [c, d]→[a, b] is absolutely continu-
ous and strictly increasing, then (f ◦η) is absolutely continuous on [c, d]. Hence,
if we take η(x) := ex and a collection {[αν , βν ]}nν=1 of nonoverlapping intervals in
[a, b] such that

∑n
ν=1 | log(βν)−log(αν)| < δ, where δ is the constant of the abso-

lute continuity of (f ◦η) on [log a, log b], then {[aν := log(αν), bν := log(βν)]}nν=1

is a collection of nonoverlapping intervals in [log a, log b] and therefore

n∑
ν=1

|f(βν)− f(αν)| =
n∑
ν=1

|(f ◦ η)(aν)− (f ◦ η)(bν)| < ε,

that is, f is log-absolutely continuous on [a, b].

For the converse, let δ̃ > 0 be the constant of the log-absolute continu-
ity of f on [a, b] and δ the constant of the absolute continuity of the function

log x on [a, b] in correspondence to ε̄ := δ̃. Then, if {[αν , βν ]}nν=1 is a collec-
tion of nonoverlapping intervals in [a, b] such that

∑n
ν=1(β

ν − αν) < δ, then∑n
ν=1

(
log(βν)− log(αν)

)
< δ̃ and hence, by the log-absolute continuity of f ,

n∑
ν=1

|f(βν)− f(αν)| < ε.

We can now prove that Mellin integral operators, as the classical convolution
operators, preserve absolute continuity both of the function and of the kernel
functions.

Proposition 3.6. If f ∈ AC(R+) and {Kw}w>0 satisfies assumption Kw.1),
then Twf ∈ AC(R+).

Proof. Let us fix ε > 0 and [a, b] ⊂ R+. By Proposition 3.5, we know that f
is log-absolutely continuous on [a, b]: let us consider a collection {[αν , βν ]}mν=1

of nonoverlapping intervals in [a, b] such that
∑m

ν=1(log(βν) − log(αν)) < δ,
where δ is the number of the logarithmic absolute continuity of f on [a, b] in
correspondence to ε

A
and A is the constant of assumption Kw.1). Then there

holds

m∑
ν=1

|(Twf)(βν)− (Twf)(αν)| ≤
∫
R+

|Kw(t)|
m∑
ν=1

|f(βνt)− f(ανt)|dt
t
.
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Since
∑m

ν=1(log(βνt) − log(ανt)) < δ, by the logarithmic absolute continuity
of f on [a, b],

∑m
ν=1 |f(βνt)− f(ανt)| < ε

A
, and hence

m∑
ν=1

|(Twf)(βν)− (Twf)(αν)| < ε

A

∫
R+

|Kw(t)|dt
t
≤ ε.

This proves that Twf is log-absolutely continuous and so, again by Proposi-
tion 3.5, Twf is absolutely continuous on [a, b]. Hence the result is proved taking
into account that, by Proposition 3.4, Twf ∈ BV (R+), since f ∈ BV (R+).

Proposition 3.7. If f ∈ L̃1(R+) ∩ BV (R+) and Kw ∈ AC(R+), then Twf ∈
AC(R+).

Proof. We will first prove that Twf is log-absolutely continuous on every interval
[a, b] ⊂ R+, since this implies, by Proposition 3.5, that Twf is absolutely con-
tinuous on [a, b]. Let us fix ε > 0, [a, b] ⊂ R+, and a collection {[αν , βν ]}nν=1 of
nonoverlapping intervals in [a, b] such that

∑n
ν=1(log(βν)−log(αν)) < δ, where δ

is the number of the logarithmic absolute continuity of Kw on [a, b] in corre-
spondence to ε

‖f‖
L̃1

(without any loss of generality we assume that ‖f‖L̃1 6= 0,

since the other case is trivial). Taking into account that

(Twf)(s) =

∫
R+

Kw(t)f(st)
dt

t
=

∫
R+

Kw

(
t

s

)
f(t)

dt

t
,

there holds

n∑
ν=1

|(Twf)(βν)− (Twf)(αν)| ≤
∫
R+

n∑
ν=1

∣∣∣∣Kw

(
t

βν

)
−Kw

(
t

αν

)∣∣∣∣ |f(t)|dt
t
. (2)

Now, since
∑n

ν=1

∣∣∣log
(

t
βν

)
− log

(
t
αν

)∣∣∣ < δ, by the logarithmic absolute conti-

nuity of Kw on [a, b],

n∑
ν=1

∣∣∣∣Kw

(
t

βν

)
−Kw

(
t

αν

)∣∣∣∣ < ε

‖f‖L̃1

,

and hence
∑n

ν=1 |(Twf)(βν)− (Twf)(αν)| ≤ ε. Finally, by (1), Twf ∈ BV (R+),
since f ∈ BV (R+), and therefore Twf ∈ AC(R+).

The previous results show that Mellin integral operators have some impor-
tant properties of the classical convolution integral operators, i.e., they preserve
absolute continuity. By means of this property we are now able to prove that
the absolute continuity of the function is a necessary and sufficient condition
for the convergence in variation of Mellin integral operators. In other words, as
it happens for the convolution operators (see, e.g., [12]), the absolute continuity
is a characterization of the convergence in variation.
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Theorem 3.8. Let {Kw}w>0 ⊂ Kw ∩ AC(R+) and f ∈ L̃1(R+) ∩ BV (R+).
Then f ∈ AC(R+) if and only if limw→+∞ V [Twf − f ] = 0.

Proof. By Proposition 3.7, the Mellin integral operators {Twf}w>0 turn out to
be AC on R+ and hence, since AC(R+) is a closed subspace of BV (R+) with
respect to the variation functional, the convergence in variation of Twf to f
implies the absolute continuity of f . The converse implication is a particular
case (for N = 1) of [9, Theorem 2].

4. The multidimensional case

In this section we will show that the results of Section 3 can be extended to the
multidimensional setting, using the concepts of multidimensional variation and
absolute continuity in the sense of Tonelli introduced in [9]. We now recall the
definitions.

4.1. Definitions. Let f : RN
+→R and x = (x1, . . . , xN) ∈ RN

+ , N ∈ N. We
put x′j = (x1, . . . , xj−1, xj+1, . . . , xN) ∈ RN−1

+ , so that x = (x′j, xj) and f(x) =

f(x′j, xj). If I =
∏N

i=1[ai, bi] ⊂ RN
+ , [a′j, b

′
j] denotes the (N − 1)-dimensional

interval obtained deleting by I the j-th coordinate, so that

I = [a′j, b
′
j]× [aj, bj].

In order to compute the variation of a function f ∈ L̃1(RN
+ ), we first consider

the euclidean norm of (Φ1(f, I), . . . ,ΦN(f, I)), namely

Φ(f, I) :=

{
N∑
j=1

[Φj(f, I)]2

} 1
2

,

where

Φj(f, I) :=

∫ b′j

a′j

V[aj ,bj ][f(x′j, ·)]
dx′j
〈x′j〉

,

and 〈x′j〉 denotes the product
∏N

i=1,i 6=j xi. We put Φ(f, I)=+∞ if Φj(f, I)=+∞
for some j = 1, . . . , N .

The multidimensional variation of f on an interval I ⊂ RN
+ is defined as

VI [f ] := sup
m∑
i=1

Φ(f, Ji),

where the supremum is taken over all the finite families of N -dimensional in-
tervals {J1, . . . , Jm} which form partitions of I.
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The variation of f over RN
+ is defined as

V [f ] := sup
I⊂RN+

VI [f ],

where the supremum is taken over all the intervals I ⊂ RN
+ .

Definition 4.1. By BV (RN
+ ) = {f ∈ L̃1(RN

+ ) : V [f ] < +∞} we denote the
space of functions of bounded variation on RN

+ .

Definition 4.2. A function f : RN
+ → R is absolutely continuous on I =∏N

i=1[ai, bi] ⊂ RN
+ if for every j = 1, 2, . . . , N , the j-th sections of f , f(x′j, ·) :

[aj, bj]→R, are (uniformly) absolutely continuous for almost every x′j ∈ RN−1
+

(see [11, 23]). This means that the following property holds:

for every ε > 0, there exists δ > 0 such that

n∑
ν=1

|f(x′j, β
ν)− f(x′j, α

ν)| < ε,

for a.e. x′j ∈ RN−1
+ and for all finite collections of non-overlapping inter-

vals [αν , βν ] ⊂ [aj, bj], ν = 1, . . . , n, for which
∑n

ν=1(β
ν − αν) < δ.

Now, by AC(RN
+ ) (space of absolutely continuous functions on RN

+ ) we denote

the space of functions f : RN
+→R which are of bounded variation and absolutely

continuous on every I =
∏N

i=1[ai, bi] ⊂ RN
+ .

As in Section 3, we now introduce the multidimensional version of the log-
absolute continuity.

Definition 4.3. We say that f : RN
+→R is log-absolutely continuous on I =∏N

i=1[ai, bi] ⊂ RN
+ if for every j = 1, 2, . . . , N , the j-th sections of f , f(x′j, ·) :

[aj, bj]→R, are (uniformly) log-absolutely continuous for almost every x′j∈RN−1
+ .

4.2. Results. First of all let us point out that, as an immediate consequence
of the one-dimensional case, the absolute continuity is equivalent to the log-
absolute continuity: indeed it is sufficient to apply Proposition 3.5 to the sec-
tions of the function f . This fact will be important in order to prove the next
results.

Proposition 4.4. If f ∈ BV (RN
+ ) and Kw ∈ AC(RN

+ ), then Twf ∈ AC(RN
+ ).

Proof. First of all, by [9, Proposition 1], Twf ∈BV (RN
+ ), since f ∈BV (RN

+ ). In

order to prove that Twf is absolutely continuous on every I=
∏N

i=1[ai, bi]⊂RN
+ ,

let us fix ε > 0, and a collection {[αν , βν ]}nν=1 of nonoverlapping intervals in
[ai, bi] such that

∑n
ν=1(log(βν) − log(αν)) < δ, where δ is the number of the
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log-absolute continuity of Kw(x′i, ·) in correspondence to ε
‖f‖

L̃1
(again without

any loss of generality we assume that ‖f‖L̃1 6= 0, since the other case is trivial),

a.e. x′i ∈ RN−1
+ . Similarly to (2) of Proposition 3.7 we can write

n∑
ν=1

|(Twf)(x′i, β
ν)−(Twf)(x′i, α

ν)|≤
∫
RN+
|f(t)|

n∑
ν=1

∣∣∣∣Kw

(
t′i
x′i
,
ti
βν

)
−Kw

(
t′i
x′i
,
ti
αν

)∣∣∣∣ dt〈t〉 .
Since

∑n
ν=1

∣∣∣log
(
ti
βν

)
− log

(
ti
αν

)∣∣∣ < δ, by the logarithmic absolute continuity

of Kw on I,
n∑
ν=1

∣∣∣∣Kw

(
t′i
x′i
,
ti
βν

)
−Kw

(
t′i
x′i
,
ti
αν

)∣∣∣∣ < ε

‖f‖L̃1

,

which implies that
∑n

ν=1 |(Twf)(x′i, β
ν) − (Twf)(x′i, α

ν)| < ε, a.e. x′i ∈ RN−1
+ ,

namely, (Twf)(x′i, ·) is log-absolutely continuous on I, and hence, by Proposi-
tion 3.5, absolutely continuous.

In an analogous way, the proof of Proposition 3.6 can be extended to the
multidimensional case; hence we have the following:

Proposition 4.5. If f ∈ AC(RN
+ ) and {Kw}w>0 satisfies assumption Kw.1),

then Twf ∈ AC(RN
+ ).

Exactly as in the one-dimensional case, Proposition 4.4 guarantees that, also
in RN

+ , the absolute continuity of the function is equivalent to the convergence
in variation of the Mellin integral operators.

Theorem 4.6. Let {Kw}w>0 ⊂ Kw ∩ AC(RN
+ ) and f ∈ BV (RN

+ ). Then f ∈
AC(RN

+ ) if and only if limw→+∞ V [Twf − f ] = 0.

Proof. The proof is analogous to the one-dimensional case, taking into account
of [9, Theorem 2] for the sufficient part and, for the necessary one, of Propo-
sition 4.4 and of the fact that AC(RN

+ ) is a closed subspace of BV (RN
+ ) (see

[10, Proposition 5.3]).

Remark 4.7. We point out that the assumption that f ∈ L̃1(RN
+ ) is needed in

order to prove Proposition 4.4 (and also Proposition 3.7 in the one-dimensional
case) and therefore to furnish the characterization of AC(RN

+ ). In general, in
order to obtain just the convergence in variation for the operators (I) or to
define the multidimensional variation, alternatively, one could denote by

D := {f : RN
+→R : f is measurable and (Twf)(s) < +∞, ∀s ∈ RN

+ , w > 0}

the domain of {Tw}w>0, and define the space BV as

BV (RN
+ ) := {f ∈ D : V [f ] < +∞}.
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We notice that, in this case, it is not necessary to assume that the kernels are
essentially bounded. We finally point out that the domain D is not trivial: as
an example, it contains all the essentially bounded functions. Nevertheless, we
remark that the space of the functions with bounded multidimensional varia-
tion is in general defined as a subspace of L1, also taking into account of the
distributional variation (see, e.g., [24, 25]).
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[26] Mamedov, R. G., The Mellin Transform and Approximation Theory (in Rus-
sian). Baku: Elm 1991.

[27] Musielak, J. and Orlicz, W., On generalized variations (I). Studia Math. 18
(1959), 11 – 41.

[28] Radò, T., Length and Area. Amer. Math. Soc. Colloq. Publ. 30. New York:
Amer. Math. Soc. 1948.

[29] Tonelli, L., Su alcuni concetti dell’analisi moderna (in Italian). Ann. Scuola
Norm. Sup. Pisa (2) 11 (1942), 107 – 118.

[30] Vinti, C., Perimetro – variazione (in Italian). Ann. Scuola Norm. Sup. Pisa (3)
18 (1964), 201 – 231.

[31] Vinti, G. and Zampogni, L., A unifying approach to convergence of linear
sampling type operators in Orlicz spaces. Adv. Diff. Equ. 16 (2011)(5–6),
573 – 600.

Received June 11, 2014; revised January 12, 2015


