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Density Results for Energy Spaces
on some Fractafolds
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Abstract. In this paper we prove density results for the domains of energy forms
defined on a scale irregular fractal surface S(ξ), as well as on the corresponding three-
dimensional bounded cylindrical domain Q(ξ), whose lateral boundary is S(ξ).
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1. Introduction

It is well known that industrial processes and natural phenomena take place
across irregular media, fractals turn out to be good tools to model these irregular
geometries.

Fractal curves are very often used in modeling physical phenomena (see
e.g. [21,22]) and there is a huge literature on this topic. Classical fractal curves
such as the Sierpiński gasket, the Koch curve and the snowflake are nice self
similar sets and energy forms on these sets can be obtained as limits of suitable
approximating energies by exploiting the self-similarity of the underlying set
(see e.g. [5]). On scale irregular (non self-similar) sets, known as fractal mixture
sets, energy forms can be defined too (see [2, 18]).

Recently there has been a recent increasing interest towards applications
involving fractal surfaces. To our knowledge the first examples of energies on
fractal surfaces can be found in [8–12,19], where the fractal surface is obtained
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by the Cartesian product of a fractal set and a one dimensional interval; suitable
Dirichlet energy forms are built taking into account the underlying geometry.
From the point of view of PDEs’ applications, in all those problems in which
the fractal set has both a static and a dynamical role, that is on one side is the
boundary of an Euclidean domain and on the other side supports the notion of
a Laplacian, as e.g. in transmission problems ([8]), or in Venttsel problems (see
e.g. [13]), it is a crucial point to be able to investigate the smoothness properties
of the functions in the corresponding energy spaces. In the two-dimensional case
one can prove a complete characterization of the energy space on the fractal
curve in terms of Lipschitz spaces, which in turn are subsets of Hölder continuous
functions on the fractal set (see [4, Theorem 4.6], [14, Theorem 3.1] for the case
of Koch curve and [6, Theorem 1] for the case of Sierpiński gasket). In the
three-dimensional case, as far as we know, this characterization does not hold.
Therefore it is of the utmost importance to approximate the functions in the
energy form domains by ”smooth” functions. These smoothness properties play
a key role in studying the convergence of suitable approximating energy forms
to the limit “fractal” one (see e.g. [13] for the two-dimensional case).

In this paper we consider a cylindrical-type fractal mixture surface S(ξ) =
F (ξ) × I, which is obtained by the Cartesian product of a snowflake-type mix-
ture F (ξ) and the unit interval [0, 1]. We define on S(ξ) an energy form ES(ξ)

with domain D(S(ξ)) (see (4.2)).
We denote byQ(ξ) the three-dimensional open bounded cylindrical set whose

lateral boundary is S(ξ). On Q(ξ) we introduce the Dirichlet form

E[u] =

∫
Q(ξ)

|Du|2dL3 + ES(ξ) [u|S(ξ) ] +

∫
S(ξ)

b|u|S(ξ)|2dg,

defined on the space

V (Q(ξ), S(ξ)) = {u ∈ H1(Q(ξ)), u|S(ξ) ∈ D(S(ξ))}

where L3 is the three-dimensional Lebesgue measure, ES(ξ) is the Dirichlet form
defined on S(ξ) (see Section 4), b is a continuous and strictly positive function
defined on S(ξ), g is the Hausdorff measure on S(ξ) (see Section 2) and u|S(ξ) is
the trace to S(ξ) to be properly defined (see Section 3).

Our aim is to state density results for the energy spaces D(S(ξ)) and
V (Q(ξ), S(ξ)). In Theorem 5.3 we prove that the space D(S(ξ)) has a core, that
is a subset dense in D(S(ξ)), with respect to the D(S(ξ)) norm; this in turn it
is a crucial tool together with Proposition 5.5, where we prove an extension
result for functions in D(S(ξ)), by using the Whitney decomposition. Finally,
in Theorem 5.4, we prove that there exists a subset of smooth functions dense
in V (Q(ξ), S(ξ)).

The plan of the paper is the following: in Section 2 we introduce the Koch
mixture F (ξ), the surface S(ξ) and the related measures; in Section 3 we in-
troduce the main relevant functional spaces and we state the trace theorem
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(Theorem 3.5); in Section 4 we introduce the energy form E[u] and its main
properties; in Section 5 we state and prove the main density results.

2. Fractal mixtures

In this section we recall the definition of scale irregular Koch curves (Koch
mixtures), following the construction described in [18].

Let A={1, 2}: for a∈A, we consider 2<la< 4, and for each a∈A we set

Ψ(a) = {ψ(a)
1 , ..., ψ

(a)
4 }

the family of contractive similitudes ψ
(a)
i : C → C, i = 1, ..., 4, with contraction

factor l−1
a

ψ
(a)
1 (z) =

z

la
, ψ

(a)
2 (z) =

z

la
eiθ(la) +

1

la
,

ψ
(a)
3 (z) =

z

la
eiθ(la) +

1

2
+ i

√
1

la
− 1

4
, ψ

(a)
4 (z) =

z − 1

la
+ 1

where

θ(la) = arcsin

(√
la(4− la)

2

)
.

Let Ξ = AN; we call ξ ∈ Ξ an environment. We define a left shift S on Ξ
such that if ξ = (ξ1, ξ2, ...), then Sξ = (ξ2, ξ3, ...). For O ⊂ R2, we set

Φ(a)(O) =
4∪

i=1

ψ
(a)
i (O) and Φ

(ξ)
h (O) = Φ(ξ1)(O) ◦ ... ◦ Φ(ξh)(O).

We consider the line segment of unit length K with endpoints B = (0, 0) and

C = (1, 0). We set, for each h ∈ N, K(ξ),h = Φ
(ξ)
h (K): K(ξ),h is the h-th

prefractal curve.

The fractal K(ξ) associated with the environment sequence ξ is defined by

K(ξ) =
∞∪
h=1

Φ
(ξ)
h (Γ)

where Γ = {B,C}. These fractals don’t have any exact self-similarity, but
K(ξ), ξ ∈ Ξ satisfies

K(ξ) = Φ(ξ1)(K(Sξ)).
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Figure 1: Prefractal mixture curve: l1 = 3, l2 = 2.5

For ξ ∈ Ξ, we set i|h = (i1, i2, ..., ih) and ψi|h = ψ
(ξ1)
i1

◦ ... ◦ψ(ξh)
ih

and for any

O ⊂ R2, ψi|h(O) = Oi|h. There exists a unique Radon measure µ(ξ) on K(ξ) such
that (see [2, Section 2])

µ(ξ)(ψi|h(K
(Shξ))) =

1

4h
.

The fractal setK(ξ) and the measure µ(ξ) depend on the structural constants
of the families and the asymptotic frequency of the occurrence of each family.
We denote by c

(ξ)
a (h) the frequency of the occurrence of a in the finite sequence

ξ|h, h ≥ 1:

c(ξ)a (h) =
1

h

h∑
i=1

1ξi=a, a = 1, 2

Let pa be a probability distribution on A and suppose that ξ satisfies

c(ξ)a (h) → pa, h→ ∞,

where 0 ≤ pa ≤ 1, p1 + p2 = 1; it also holds

|c(ξ)a (h)− pa| ≤
f(h)

h
,

a = 1, 2 (h ≥ 1), where f is an increasing function on the real line, f(0) = 1,
f(h) ≤ f0h

β0 , f0 > 1, 0 ≤ β0 < 1.
If β0 = 0, the measure µ(ξ) is a d(ξ)-measure in the sense of the Definition 3.1,

that is there exist two positive constants C1, C2, such that

C1r
d(ξ) ≤ µ(ξ)

(
B(P, r)

∩
K(ξ)

)
≤ C2r

d(ξ) , ∀P ∈ K(ξ)

with

d(ξ) =
ln 4

p1 ln l1 + p2 ln l2

where B(P, r) denotes the Euclidean ball with center in P and radius 0 < r ≤ 1
and pa is the probability distribution on A.
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If β0 > 0 instead

C1r
d(ξ)−i ≤ µ(ξ)

(
B(P, r)

∩
K(ξ)

)
≤ C2r

d(ξ)−i, ∀P ∈ K(ξ)

We will confine ourselves to the case β0 = 0.
Following [4], we introduce the snowflake-type set F (ξ), obtained by the

union of three Koch mixtures K(ξ) with the same structural constants, that is

F (ξ) =
3∪

i=1

K
(ξ)
i

Figure 2: Koch mixture snowflake

and we define a finite Radon measure supported on F (ξ)

µ
(ξ)
F := µ

(ξ)
1 + µ

(ξ)
2 + µ

(ξ)
3 ,

where µ
(ξ)
i denotes the normalized d(ξ)-dimensional Hausdorff measure restricted

to K
(ξ)
i , i = 1, 2, 3.
The dimension of F (ξ) is

D
(ξ)
f = d(ξ).

Ω(ξ) denotes the open bounded two-dimensional domain with boundary F (ξ).
By S(ξ) we denote the cylindrical-type fractal surface

S(ξ) = F (ξ) × I, where I = [0, 1].
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Figure 3: Fractal surface

On S(ξ) we define the following measure

dg(ξ) = dµ
(ξ)
F × dL1

supported on S(ξ), where L1 is the one dimensional Lebesgue measure on I.
By Q(ξ) we denote the open cylindrical domain where S(ξ) = F (ξ) × I is the

“lateral surface” and where the sets Ω(ξ) × {0}, Ω(ξ) × {1} are the bases.
We denote by P ∈ S(ξ), the couple (x, y), where x = (x1, x2) are the

coordinates of the orthogonal projection of P on the plain containing F (ξ)

and y is the coordinate of the orthogonal projection of P on the interval [0, 1]:
(x1, x2) ∈ F (ξ), y ∈ I.

From now on we suppress all the superscripts ξ.

3. Functional spaces

By L2(·) we denote the Lebesgue space with respect to the Lebesgue measure L3

on subsets of R3, which will be left to the context whenever that does not
create ambiguity. Let T be a closed set of R3, by C(T ) we denote the space
of continuous functions on T and C0,β(T ) is the space of Hölder continuous
functions on T , 0 < β < 1. Let G be an open set of R3, by Hs(G), s ∈ R+ we
denote the Sobolev spaces, possibly fractional (see [20]). D(G) is the space of
infinitely differentiable functions with compact support on G.

Definition 3.1. A closed set M is a d-set in R3 (0 < d ≤ 3) if there exist a
Borel measure µ with suppµ =M and two positive constants C1, C2, such that

C1r
d ≤ µ

(
B(P, r)

∩
M
)
≤ C2r

d, ∀P ∈M.

Remark 3.2. F is aDf -set. The measure µF is aDf -measure. S is aDf+1-set.
The measure g is a Df + 1-measure.
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Definition 3.3. For f ∈ Hs(G) we put

γ0f(P ) = lim
r→0

1

|B(P, r)
∩
G|

∫
B(P,r)

∩
G

f(P)dL3

at every point P ∈ G where the limit exists.

We now define the Besov space on S: we recall here the definition which
best fits our aims and we restrict ourselves to the case p = q = 2 and β =

Df

2
;

for a general treatment see [7].

Definition 3.4. We say that f ∈ B2,2
Df
2

(S) if f ∈ L2(S, g) and it holds

∥f∥B2,2
Df
2

(S) < +∞,

where

∥f∥B2,2
Df
2

(S) = ∥f∥L2(S,g) +

(∫∫
|P−P ′|<1

|f(P )− f(P ′)|2

|P − P ′|2Df+1
dg(P )dg(P ′)

) 1
2

Theorem 3.5. B2,2
Df
2

(S) is the trace space of H1(Q) that is:

(1) There exists a linear and continuous operator γ0 : H
1(Q) → B2,2

Df
2

(S).

(2) There exists a linear and continuous operator Ext : B2,2
Df
2

(S) → H1(Q),

such that γ0 ◦ Ext is the identity operator on B2,2
Df
2

(S), that is

γ0 ◦ Ext = IdB2,2
Df
2

(S).

In the following we denote by the symbol u|S the trace γ0u to S.

4. Energy forms

By proceeding as in [4] we construct an energy form on F , by defining a
Lagrangian measure LF on F , which has the role of Euclidean Lagrangian
dL(u, v) = ∇u∇vdx. The corresponding energy form on F is given by

EF (u, v) =

∫
F

dLF (u, v)

with domain D(F ) = {u ∈ L2(F, µF ) : EF [u] < +∞} dense in L2(F, µF ).
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Proposition 4.1. D(F ) is a Hilbert space equipped with the following norm

∥u∥D(F ) = (∥u∥2L2(F ) + EF [u])
1
2 .

As in [16] it can be proved that

Proposition 4.2. D(F ) is embedded in C0,β(F ), with β = ln 4
2 ln(min(l1,l2))

.

We now define the energy form on S and the fractal Laplacian ∆S.

ES[u] =

∫
I

EF [u]dL1 +

∫
F

∫
I

|Dyu|2dL1dµF ,

The form ES is defined for u ∈ D(S),

D(S) = C(S) ∩ L2([0, 1];D(F )) ∩H1([0, 1];L2(F ))
∥·∥D(S)

, (4.1)

where ∥ · ∥D(S) is the intrinsic norm

∥u∥D(S) = (ES[u] + ∥u∥2L2(S,g))
1
2 .

Proposition 4.3. ES(u, v) with domain D(S)×D(S) is a closed bilinear form
in L2(S, g) and D(S) is a Hilbert space equipped with the intrinsic norm.

From Proposition 4.3 we have

Theorem 4.4. There exists a unique non positive self-adjoint operator ∆S on
L2(S, g) with domain D(∆S) := {u ∈ L2(S, g) : ∆Su ∈ L2(S, g)} ⊆ D(S) dense
in L2(S, g) such that

ES(u, v) = −
∫
S

∆Su vdg, for each u ∈ D(∆s), v ∈ D(S).

We now give an embedding result for the domain D(S). Unlike the two
dimensional case where there is a characterization of the functions in D(F ) in
terms of the so-called Lipschitz spaces (see [14, Theorem 3.1]), for D(S) we do
not have a characterization, but the following result holds:

Proposition 4.5. D(S) is embedded in B2,2
β (S), for any 0 < β < 1.

Proof. We follow the proof in [8], adapted to the present case. We recall that

D(S) := C(S)
∩

L2([0, 1];D(F ))
∩

H1([0, 1];L2(F ))
∥·∥D(S)

Following [17] we define B2,2
Df−ε,1(S) := L2([0, 1];B2,2

Df−ε(F ))
∩
H1([0, 1];L2(F ))

for ε > 0.
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For any Banach space X and for any 0<β<1, H1([0, 1];X)⊂Hβ([0, 1];X),
moreover if p = q = 2 and β is not integer, it holds

Hβ([0, 1];X) ≡ B2,2
β ([0, 1];X).

Hence if 0 < β < 1

B2,2
Df−ε,1(S) ⊂ L2([0, 1];B2,2

Df−ε(F ))
∩

B2,2
β (0, 1;L2(F ))

⊂ L2([0, 1];B2,2
β (F ))

∩
B2,2

β ([0, 1];L2(F )) = B2,2
β (S),

the last equivalence can be proved following [17].

Now we introduce the energy form on Q. Let us consider the space

V (Q,S) =
{
u ∈ H1(Q) : u|S ∈ D(S)

}
Let b be a continuous and strictly positive function on S. We consider the
energy form E

E[u] =

∫
Q

|Du|2dL3 + ES[u|S] +
∫
S

b|u|S|2dg

defined on V (Q,S). From now on we denote by L2(Q,m) the Lebesgue space
with respect to the measure

dm = dL3 + dg.

By E(u, v) we denote the bilinear form

E(u, v) =

∫
Q

DuDvdL3 + ES(u|S, v|S) +
∫
S

bu|Sv|Sdg

defined on V (Q,S)× V (Q,S).

Proposition 4.6. The form E is a Dirichlet form on L2(Q,m) and V (Q,S) is
a Hilbert space equipped with the scalar product

(u, v)V (Q,S) = (u, v)H1(Q) + ES(u, v) + (u, v)L2(S,g)

with norm

∥u∥V (Q,S) = (∥u∥2H1(Q) + ∥u∥2D(S))
1
2 .
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5. Density theorems

5.1. Density theorem for D(S). In the notations of [17, p. 8], by W (0, 1) we
denote the following space:

W (0, 1) := L2([0, 1];D(F ))
∩

H1([0, 1];L2(F )).

This is a Hilbert space equipped with the norm

∥u∥W (0,1) = (∥u∥2L2([0,1];D(F )) + ∥Dyu∥2L2([0,1];L2(F )))
1
2 .

From [17, p. 11, Theorem 2.1], the following result holds

Proposition 5.1. The space D([0, 1];D(F )) is densely embedded in W (0, 1),
that is

D([0, 1];D(F ))
∥·∥W (0,1)

=W (0, 1).

We now prove that

Proposition 5.2. D([0, 1];D(F )) is embedded in C(S).

Proof. From Proposition 4.2 it holds that D(F )⊂C0,β(F ), in particular D(F )⊂
C(F ), then

D([0, 1];D(F )) ⊂ C([0, 1];D(F )) ⊂ C([0, 1];C(F )).

It remains to be proved

C([0, 1];C(F )) ≡ C(S).

Following [3, pp. 68–70], if u∈C(S), this implies that u(·, y)∈C(F ) for every
y∈ [0, 1], u(x, ·)∈C([0, 1]) for every x∈F, and that supy∈[0,1]supx∈F |u(x, y)|<∞,
then

C(S) ⊆ C([0, 1];C(F )).

If u ∈ C([0, 1];C(F )), then u(·, y) ∈ C(F ) for every fixed y ∈ [0, 1], and from
the continuity of u in [0, 1], for every x ∈ F, it follows that

sup
x∈F

|u(x, y)− u(x, yn)| → 0

for every {yn}⊂I, yn → y when n→ ∞. Therefore C([0, 1];C(F ))≡C(S).

Theorem 5.3. The space D([0, 1];D(F )) is dense in D(S) with respect to the
intrinsic norm ∥ · ∥D(S).
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Proof. From Proposition 5.2 and (4.1) it holds that

D([0, 1];D(F )) ⊂ C(S)
∩

L2([0, 1];D(F ))
∩

H1([0, 1];L2(F ))

which amounts to say that D([0, 1];D(F )) ⊂ C(S)
∩
W (0, 1); from the defini-

tion of D(S) we have

C(S)
∩

W (0, 1) ⊂ D(S).

It follows that

D([0, 1];D(F )) ⊂ D(S).

Now let f be a function in D(S), then from the definition of D(S) it follows
that there exists {φn} ⊂ W (0, 1)

∩
C(S) such that

∥φn − f∥D(S) → 0 for n→ ∞.

On the other hand φn ∈ W (0, 1), and from [17, p. 11, Theorem 2.1] , there
exists {ψm,n}m∈N ⊂ D([0, 1];D(F )) such that, for every fixed n

∥ψm,n − φn∥W (0,1) → 0 when m→ ∞.

From Fubini Theorem for measure valued functions it follows that ∥ · ∥D(S) =
∥ · ∥W (0,1) and hence for every fixed n

∥ψm,n − φn∥D(S) → 0 for m→ ∞.

We now use a diagonalization argument. From [1, Corollary 1.16] there
exists an increasing mapping

m→ n(m),

that tends to ∞ for m→ ∞, such that

lim sup
m→∞

∥ψm,n(m) − φn(m)∥D(S) ≤ lim sup
n→∞

lim
m→∞

∥ψm,n − φn∥D(S). (5.1)

The right hand side of (5.1) tends to zero when m → ∞ and from this it follows
that lim supm→∞ ∥ψm,n(m) − φn(m)∥D(S) = 0. Hence also

lim inf
m→∞

∥ψm,n(m) − φn(m)∥D(S) = 0.

This proves that limm→∞ ∥ψm,n(m) − φn(m)∥D(S) = 0.

Finally ∥ψn(m),m − f∥D(S) ≤ ∥ψn(m),m − φn(m)∥D(S) + ∥φn(m) − f∥D(S) → 0
for m→ ∞.
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5.2. Density theorem for V (Q,S). We now state the main theorem of the
section. Let Q, S and V (Q,S) be defined as in Section 2 and Section 4 respec-
tively.

Theorem 5.4. For every u ∈ V (Q,S), there exists {ψn} ⊂ V (Q,S)
∩
C(Q)

such that:

(1) ∥ψn − u∥H1(Q) → 0, for n→ ∞
(2) ∥ψn − u∥L2(Q,m) → 0, for n→ ∞
(3) ES[ψn − u] → 0, for n→ ∞.

In order to prove this theorem, we need a preliminary proposition on trace
and extension operators.

Proposition 5.5. Let β =
Df

2
. Let γ0 and Ext be the trace and the extension

operator defined in Theorem 3.5, respectively . Then

(1) If u ∈ C(R3)
∩
H1(R3) then γ0u ∈ C(S)

∩
B2,2

β (S).

(2) If u ∈ C(S)
∩
B2,2

β (S) then Ext(u) ∈ C(R3)
∩
H1(R3).

Proof. We start proving (1). Since u ∈ H1(R3), then for P ∈ S, γ0u(P ) exists

and, from Theorem 3.5, γ0u belongs to B2,2
β (S) with β =

Df

2
; since u is also in

C(R3), in particular u is in C(S). By the Mean Value Theorem there exists
ξ ∈ B(P, r)

∩
S such that

1

m(B(P, r)
∩
S)

∫
B(P,r)

∩
S

u(P)dL3 = u(ξ).

Hence when r → 0
u(ξ) → u(P ).

In order to prove (2) we make use of Whitney decomposition. We refer to
[7, p. 23] for details. Let Qi be the cubes in R3 \ S such that

∪
iQi = R3 \ S,

with centers Pi, li = diam Qi and {ϕi} the associated unity partition. From
[7, p. 109], we define for P ∈ R3 \ S

Ext(u)(P ) =
∑
i∈I

ϕi(P )ci

∫
|t−Pi|≤6li

u(t)dg(t),

where ci =
(
g(|t− Pi| ≤ 6li)

)−1
.

In our assumptions u ∈ B2,2
β (S), then from Theorem 3.5, Ext(u) ∈ H1(R3)

and γ0(Ext(u)) = u on S. It results, by construction, that Ext(u) is in particular
continuous in R3 \ S. Since u ∈ C(S)

∩
B2,2

β (S), it remains to prove that for
every P0 ∈ S

|Ext(u)(P )− u(P0)| → 0 when P → P0,

that is for every ε > 0 ∃δε: |P − P0| < δε, then |Ext(u)(P )− u(P0)| < ε.
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We now estimate |Ext(u)(P )− u(P0)|.

|Ext(u)(P )− u(P0)| =

∣∣∣∣∣∑
i∈I

ϕi(P )ci

∫
|t−Pi|≤6li

u(t)dg − u(P0)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈I

ϕi(P )ci

∫
|t−Pi|≤6li

(u(t)− u(P0))dg

∣∣∣∣∣
≤ c(li)

−(Df+1)

2

(∫
|t−Pi|≤6li

|u(t)− u(P0)|2dg
) 1

2

where the last inequality is obtained from Hölder inequality and from now c will
denote possibly different constants. Since g is a (Df + 1)−measure supported
on S and since |P − P0| ≤ δ, we obtain

c(li)
−(Df+1)

2

(∫
|t−Pi|≤6li

|u(t)− u(P0)|2dg
) 1

2

= c(li)
−(Df+1)

2

(∫
{|t−Pi|≤6li}

∩
{|t−P0|≤δ}

|u(t)− u(P0)|2dg
) 1

2

.

As u ∈ C(S) we get

c(li)
−(Df+1)

2

(∫
{|t−Pi|≤6li}

∩
{|t−P0|≤δ}

|u(t)−u(P0)|2dg
)1

2

≤c(li)
−(Df+1)

2 sup
{|(x,y)−Pi|≤6li}

∩
{|(x,y)−P0|≤δ}

|u(x, y)−u(P0)|
(∫

{|t−Pi|≤6li}
∩
{|t−P0|≤δ}

dg

)1
2

≤cl
−(Df+1)

2
i l

Df+1

2
i ε = cε

where the last inequality follows from the continuity of u on S.

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. We start proving (1). Let us consider u ∈ V (Q,S), then
u|S ∈ D(S). From Theorem 5.3 there exists {φn} ⊂ D([0, 1];D(F )) such that

∥φn − u|S∥D(S) → 0, when n→ ∞.

Let φ̂n be the function defined as Ext(φn) and let û be the function defined
as Ext(u|S). Then from Proposition 5.5 φ̂n ∈ H1(Q)

∩
C(Q) and û ∈ H1(Q)

(see [7]).
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We prove that ∥φ̂n−û∥H1(Q) → 0; in fact from Theorem 3.5 and the inclusion

of D(S) in B2,2
Df
2

(S) (see Proposition 4.5),

∥φ̂n − û∥H1(Q) ≤ c∥φn − u|S∥B2,2
Df
2

(S) ≤ c∥φn − u|S∥D(S)

From the density Theorem 5.3, ∥φ̂n − û∥H1(Q) → 0.
Now let us consider u − û: this is a function in H1(Q) and (u − û)|S = 0,

then u − û ∈ H1
0 (Q), (see [23, Theorem 3] ); there exists {ηm}m∈N ⊂ C1

0(Q)
such that

∥ηm − (u− û)∥H1(Q) → 0.

Let {ψn,m} denote the doubly indexed sequence of function {φ̂n − ηm}. The
sequence {ψn,m} ⊂ H1(Q)

∩
C(Q). From [1, Corollary 1.16] we deduce that

{ψm,n} converges to u in H1(Q) as n → ∞. In fact there exists an increasing
mapping n→ m(n), tending to ∞ as n→ ∞, such that

lim sup
n→∞

∥u− ψn,m(n)∥H1(Q) = lim sup
n→∞

∥u− φ̂n − ηm(n)∥H1(Q)

≤ lim sup
n→∞

(∥u− û− ηm(n)∥H1(Q) + ∥φ̂n − û∥H1(Q)),

then by applying [1, Corollary 1.16] to the right hand side of the above inequality
it follows that

lim sup
n→∞

∥u− ψn,m(n)∥H1(Q) ≤ lim
m→∞

lim
n→∞

{∥u− û− ηm∥H1(Q) + ∥φ̂n − û∥H1(Q)}.

The two terms in the sum tend to 0 when m,n→ ∞, then

lim sup
n→∞

∥ψn,m(n) − u∥H1(Q) = 0,

and also lim infn→∞ ∥ψn,m(n) − u∥H1(Q) = 0, hence we conclude that

∥ψn,m(n) − u∥H1(Q) → 0, n→ ∞.

From now on we use the abbreviation

ψn = ψn,m(n).

Now we prove (2), that is

∥ψn − u∥L2(Q,m) = ∥ψn − u∥L2(Q) + ∥ψn − u∥L2(S) → 0. (5.2)

The first term in (5.2) tends to 0 when n→ ∞ since

∥ψn − u∥L2(Q) ≤ ∥ψn − u∥H1(Q).
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We now prove that the second term in (5.10) tends to 0.

∥ψn − u∥L2(S) = ∥φ̂n|S − ηn|S − u|S∥L2(S) ≡ ∥φn − u|S∥L2(S) ≤ ∥φn − u|S∥D(S),

and the last quantity tends to zero from the density of D([0, 1];D(F )) in D(S).
This proves that ψn → u in L2(Q,m).

Now we prove (3):

ES[(u− ψn)|S] = ES[u|S − ψn|S] ≡ ES[u|S − φn] ≤ ∥u|S − φn∥D(S) → 0.
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