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Abstract. We consider an optimal control problem governed by an evolution varia-
tional inequality arising in quasistatic plasticity with linear kinematic hardening. A
regularization of the time-discrete problem is derived. The regularized forward prob-
lem can be interpreted as system of coupled quasilinear PDEs whose principal parts
depend on the gradient of the state. We show the Fréchet differentiability of the
solution map of this quasilinear system. As a consequence, we obtain a first order
necessary optimality system. Moreover, we address certain convergence properties of
the regularization.
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1. Introduction

In this paper we consider an optimal control problem for the problem of small-
strain, quasistatic elastoplasticity. Since the forward problem is governed by a
time-dependent variational inequality (VI), see [8, Chapter 8], the control-to-
state map is not, in general, differentiable. Moreover, it is known from finite-
dimensional problems, that the associated Karush-Kuhn-Tucker system is not
a necessary optimality system for optimization problems constrained by a VI.

Due to these reasons, one considers regularizations of VIs, see [2]. Any rea-
sonable regularization has to possess two important properties: its control-to-
state map should be differentiable and the solutions of the regularized problems
should converge towards the solution of the unregularized problem. If both

G. Wachsmuth: Technische Universität Chemnitz, Faculty of Mathematics, Professor-
ship Numerical Methods (Partial Differential Equations), 09107 Chemnitz, Germany;
gerd.wachsmuth@mathematik.tu-chemnitz.de



392 G. Wachsmuth

properties are satisfied, one may be able to pass to the limit in the first order
necessary optimality system of the regularized problems in order to obtain a
optimality system for the unregularized problem, see, e.g., [2,12,14] for optimal
control of the obstacle problem, and [11] for optimal control of static plasticity.

The aim of this paper is to provide a regularization scheme for the time-
discrete system of quasistatic plasticity. We show the Fréchet differentiability of
the regularized solution map (Subsection 3.2) as well as the approximability of
unregularized optimal controls by solutions of the regularized control problems
(Subsection 4.2). The passage to the limit with the regularization parameter in
the full optimality system goes beyond the scope of this paper and is addressed
in a subsequent publication, see [19].

We will see in Subsection 3.1, see in particular (28), that the regularized
forward equation is a system of quasilinear PDEs whose principal parts depend
on the gradient of the state. This renders the analysis of the regularized optimal
control problem challenging. Note that in the simpler case of the obstacle
problem, regularization leads to a semilinear PDE, whose analysis is simpler
than it is here.

The paper is organized as follows. In the remainder of the introduction
we present the notation (Subsection 1.1), the time-discrete forward problem
(Subsection 1.2), and the optimal control problem (Subsection 1.3). Details on
the derivation of the time-discrete forward problem of quasistatic plasticity can
be found in [8, Chapter 8] and [17, Section 1]. The regularization is derived in
Section 2. By applying the abstract differentiability result of Appendix A, we
show the Fréchet differentiability of the solution map of the regularized forward
problem in Section 3. Finally, we address the convergence of the regularization
in Section 4.

1.1. Notation and standing assumptions. Our notation follows [8].

Function spaces. Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary
Γ = ∂Ω in dimension d = 3. The boundary consists of two disjoint parts ΓN
and ΓD. Concerning the assumptions on the regularity of Ω, we refer to As-
sumption 1.1. We point out that the presented analysis is not restricted to the
case d = 3, but for reasons of physical interpretation we focus on the three
dimensional case. In dimension d = 2, the interpretation of the forward equa-
tion has to be slightly modified, depending on whether one considers the plane
strain or plane stress formulation.

By S := Rd×d
sym we denote the space of symmetric d-by-d matrices, endowed

with the inner product σ : τ =
∑d

i,j=1 σijτij, and we define

V = H1
D(Ω;Rd) = {u ∈ H1(Ω;Rd) : u = 0 on ΓD}, S = L2(Ω;S)

as the spaces for the displacement u; and for the stress σ, and back stress χ,
respectively. The generalized stress Σ = (σ,χ) belongs to S2. The control g
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acts as a boundary force and belongs to the space

U = L2(ΓN ;Rd).

The control operator E : U → V ′, g 7→ `, which maps boundary forces (i.e.,
controls) g ∈ U to functionals (i.e., right-hand sides of the forward equation)
` ∈ V ′ is given by

〈v, Eg〉V,V ′ := −
∫

ΓN

v · g ds for all v ∈ V. (1)

Hence, E is the negative adjoint of the trace operator from V to U = L2(ΓN ;Rd).
Clearly, E : U → V ′ is compact.

Yield function and admissible stresses. We restrict our discussion to the
von Mises yield function. In the context of linear kinematic hardening, it reads

φ(Σ) =
1

2

(
|σD + χD|2 − σ̃2

0

)
(2)

for Σ = (σ,χ) ∈ S2, where |·| denotes the pointwise Frobenius norm of matrices
and

σD = σ − 1

d
(traceσ) I (3)

is the deviatoric part of σ. Here, I ∈ S is the identity matrix. The yield
function gives rise to the set of admissible generalized stresses

K = {Σ ∈ S2 : φ(Σ) ≤ 0 almost everywhere (a.e.) in Ω}.

Let us mention that the structure of the yield function φ given in (2) implies
the shift invariance

Σ ∈ K ⇔ Σ + (τ ,−τ ) ∈ K for all τ ∈ S. (4)

This property is exploited quite often in the analysis.
Due to the structure of the yield function φ, σD + χD appears frequently

and we abbreviate it and its adjoint by

DΣ = σD + χD and D?σ =

(
σD

σD

)
(5)

for matrices Σ ∈ S2 as well as for functions Σ ∈ S2 and tuples of functions
Σ ∈ (S2)N . When considered as an operator in function space, D maps S2

and (S2)N continuously into S and SN , respectively. For later reference, we
also remark that

D?DΣ =

(
σD + χD

σD + χD

)
and (D?D)2 = 2D?D
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holds. Due to the definition of the operator D, the constraint φ(Σ) ≤ 0 can be
formulated as ‖DΣ‖L∞(Ω;S) ≤ σ̃0. Hence, we obtain

Σ ∈ K ⇒ DΣ ∈ L∞(Ω;S).

Here and in the sequel we denote linear operators, e.g., D : S2 → S, and
the induced Nemytskii operators, e.g., D : S2 → S and D : (S2)N → SN , with
the same symbol. This will cause no confusion, since the meaning will be clear
from the context.

Operators. The linear operators A : S2 → S2 and B : S2 → V ′ are defined as
follows. For Σ = (σ,χ) ∈ S2 and T = (τ ,µ) ∈ S2, let AΣ be defined through

〈T , AΣ〉S2 =

∫
Ω

τ : C−1σ dx+

∫
Ω

µ : H−1χ dx.

The term 1
2
〈AΣ, Σ〉S2 corresponds to the energy associated with the stress

state Σ. Here C−1(x) and H−1(x) are linear maps from S to S (i.e., they
are fourth order tensors) which may depend on the spatial variable x. For
Σ = (σ,χ) ∈ S2 and v ∈ V , let

〈BΣ, v〉V ′,V = −
∫

Ω

σ : ε(v) dx.

We recall that ε(v) = 1
2

(
∇v + (∇v)>

)
∈ S denotes the (linearized) strain

tensor.
For the construction of the regularization we will also need the operator

B1 : S → V ′, defined by

〈B1σ, v〉V ′,V = −
∫

Ω

σ : ε(v) dx,

where σ ∈ S and v ∈ V . Note that B?v = (B?
1v,0) = −(ε(v),0) for all v ∈ V .

Standing assumptions. Throughout the paper, we require

Assumption 1.1.
(1) The domain Ω ⊂ Rd, d = 3 is a bounded Lipschitz domain in the sense

of [5, Chapter 1.2]. The boundary of Ω, denoted by Γ, consists of two
disjoint measurable parts ΓN and ΓD such that Γ = ΓN ∪ ΓD. While ΓN
is a relatively open subset, ΓD is a relatively closed subset of Γ. Further-
more ΓD is assumed to have positive measure. In addition, the set Ω∪ΓN
is regular in the sense of Gröger, cf. [6]. A characterization of regular
domains for the case d ∈ {2, 3} can be found in [7, Section 5]. This class
of domains covers a wide range of geometries.
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(2) The yield stress σ̃0 is assumed to be a positive constant. It equals
√

2
3
σ0,

where σ0 is the uni-axial yield stress.
(3) C−1 is a uniformly coercive element of L∞(Ω;L(S,S)), where L(S,S) de-

notes the space of linear operators S → S. Moreover, we assume that
C−1(x) is symmetric, i.e., τ : C−1(x)σ = σ : C−1(x) τ .

(4) The hardening modulus satisfies H−1(x) = k−1
1 (x) I, where the hardening

parameter k−1
1 ∈ L∞(Ω) is uniformly positive in Ω and I is the identity

map on S = Rd×d
sym.

Assumption 1.1(1) enables us to apply the regularity results in [10] pertain-
ing to systems of nonlinear elasticity. The latter appear in the time-discrete
forward problem and its regularizations. Additional regularity leads to a norm
gap, which is needed to prove the differentiability of the control-to-state map.

Moreover, Assumption 1.1(1) implies that Korn’s inequality holds on Ω, i.e.,

‖u‖2
H1(Ω;Rd) ≤ cK

(
‖u‖2

L2(ΓD;Rd) + ‖ε(u)‖2
S

)
(6)

for all u ∈ H1(Ω;Rd), see, e.g., [10, Lemma C.1]. Note that (6) entails in
particular that ‖ε(u)‖S is a norm on H1

D(Ω;Rd) equivalent to the standard
H1(Ω;Rd) norm. A further consequence is that B? satisfies the inf-sup condition

‖u‖V ≤
√
cK ‖B?u‖S2 for all u ∈ V. (7)

Assumption 1.1(3) is satisfied, e.g., for isotropic and homogeneous materials,
for which

C−1σ =
1

2µ
σ − λ

2µ (2µ+ d λ)
trace(σ) I

with the identity matrix I ∈ S and Lamé constants µ and λ, provided that
µ > 0 and d λ+ 2µ > 0 hold. These constants appear only here and there is no
risk of confusion with the plastic multiplier λ.

Clearly, Assumption 1.1(3),(4) show that 〈AΣ, Σ〉S2 ≥ α ‖Σ‖2
S2 for some

α > 0 and all Σ ∈ S2. Hence, the operator A is S2-elliptic.

1.2. The forward problem. The time-discrete problem of quasistatic plas-
ticity is defined as follows, see [8, p. 196] or [17, Section 3.1]: given `τ ∈ (V ′)N ,
find (Στ ,uτ ) ∈ (S2 × V )N such that Στ

i ∈ K and

〈A(Στ
i −Στ

i−1) +B?(uτi − uτi−1), T −Στ
i 〉S2 ≥ 0 for all T ∈ K, (8a)
BΣτ

i = `τi in V ′, (8b)

holds for all i ∈ {1, . . . , N}, where (Στ
0,u

τ
0) = 0. The time step size τ > 0 and

the number of time steps N are fixed throughout the paper. Since the time-
continuous problem is rate-independent, the time step size does not appear
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explicitly in (8). The VI (8a) is the time discretization of the plastic flow law,
whereas (8b) is the weak formulation of the balance of forces. Due to the
homogeneous initial conditions, (8b) could also be written in incremental form
B(Στ

i −Στ
i−1) = `τi − `τi−1, where `τ0 = 0.

The unique solvability of (8) is shown in [8, Proof of Theorem 8.12, p. 196].
We denote the solution operator of (8) by Gτ : (V ′)N → (S2 × V )N ,
`τ 7→ (Στ ,uτ ).

By introducing the plastic multiplier λτ ∈ L2(Ω)N , the system (8) can be
formulated equivalently as a complementarity system

A(Στ
i −Στ

i−1) +B?(uτi − uτi−1) + τ λτi D?DΣτ
i = 0 in S2, (9a)

BΣτ
i = `τi in V ′, (9b)

0 ≤ λτi ⊥ φ(Στ
i ) ≤ 0 a.e. in Ω, (9c)

see [17, Section 3.1] and [9, Section 2]. As usual, 0 ≤ λτi ⊥ φ(Στ
i ) ≤ 0 is short

for λτi ≥ 0, φ(Στ
i ) ≤ 0, and λτi φ(Στ

i ) = 0 a.e. in Ω.

1.3. The optimal control problem. It remains to specify the optimal con-
trol problem under consideration. The control acts as boundary force on the
Neumann boundary ΓN and belongs to UN = L2(ΓN ;Rd)N . The control oper-
ator E : U → V ′ maps controls gτ to right hand sides `τ of the state equation
(8), see (1). The optimal control problem is given by

Minimize F (uτ , gτ ) = ψτ (uτ ) +
ν

2
‖gτ‖2

UN

such that (Στ ,uτ ) = Gτ (Egτ )
and gτ ∈ U τ

ad,

 (Pτ )

see also [17, Section 3.4]. Here, ‖·‖UN can be any norm such that UN is a
Hilbert space. For simplicity of the presentation, the objective includes only
the displacements uτ and not the stresses Στ .

Throughout this paper we assume
Assumption 1.2.
(1) The function ψτ : V N → R is weakly lower semicontinuous, bounded from

below, and continuously Fréchet differentiable. We denote the partial
derivatives w.r.t. uτi by ψτi (uτ ) ∈ V ′.

(2) The cost parameter ν is a positive, real number.
(3) The admissible set U τ

ad is nonempty, convex and closed in UN .
Based on these assumptions, the existence of a solution of (Pτ ) can be

shown by standard arguments, see also [17, Lemma 3.7].
The most important examples for ψτ and U τ

ad are

ψτ (uτ ) =
1

2
‖uτN − ud‖2

L2(Ω;Rd) and U τ
ad = {gτ ∈ UN : gτN = 0},
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where ud ∈ L2(Ω;Rd) is a desired displacement field. Here, uτN and gτN refer
to the last value of the time-discrete variables uτ and gτ , respectively. The
constraint gτN = 0 implies that the body Ω is unloaded in the final time step,
i.e., BΣτ

N = 0. Due to the observation of the final displacement uτN in the
objective ψτ , this combination of objective and control constraints corresponds
to controlling the springback of the solid body. This is of great interest in
applications, e.g., deep-drawing of metal sheets.

2. Regularization of the time-discrete forward problem

Since the forward problem (8) consists of a system of VIs, the control-to-state
map Gτ ◦ E is not differentiable. Therefore, one considers regularizations of
the forward problem. A regularization of (8) which is adapted to the special
structure of this problem is presented in Subsection 2.1. By introducing the
regularized counterpart of the plastic multiplier, we will find that the regular-
ization relaxes the complementarity λτi φ(Στ

i ) = 0 whereas the sign constraints
λτi ≥ 0 and φ(Στ

i ) ≤ 0 are maintained, see Subsection 2.2.

2.1. Derivation of the regularization. In this section we derive a regu-
larized counterpart of the time-discrete system (8). We will employ Assump-
tion 1.1(4) to derive a regularization which is tailored to the problem (8). If
Assumption 1.1(4) does not hold, one may use a penalization strategy similar
to [11, Section 2.2].

Let K̄ = {τ ∈ S : (τ ,0) ∈ K} be the restriction of the admissible set K to
the first variable. Due to the shift-invariance (4), T = (τ ,µ) ∈ K is equivalent
to τ+µ ∈ K̄. As usual, the components of the generalized stress Στ

i are denoted
by στi and χτi , i.e., Στ

i = (στi ,χ
τ
i ). Given an arbitrary µ ∈ K̄ − στi − χτi−1, the

reasoning above shows that T = (στi ,µ+ χτi−1) ∈ K. Testing the time-discrete
forward problem (8a) with T yields

〈H−1(χτi − χτi−1), µ− (χτi − χτi−1)〉S ≥ 0 for all µ ∈ K̄ − στi − χτi−1.

This is equivalent to

χτi − χτi−1 = ProjH
−1

K̄−στi −χτi−1
(0) = ProjH

−1

K̄ (στi + χτi−1)− (στi + χτi−1),

where ProjH
−1

K̄ is the orthogonal projection in S onto the set K̄ ⊂ S with respect
to the norm induced by H−1. This observation gives rise to the definition of the
function ∆χ : S → S by

∆χ(τ ) := ProjH
−1

K̄ (τ )− τ . (10)

Using this definition, we find χτi −χτi−1 = ∆χ(στi +χτi−1) for all i ∈ {1, . . . , N}.
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By employing Assumption 1.1 we can derive an explicit formula of the
projection in the definition of the function ∆χ. Indeed, using H−1 = k−1

1 I,
where I is the identity map on S = Rd×d

sym, we obtain that the norm induced
by H−1 is a pointwise scaled variant of the usual norm in S. Since the restriction
in the admissible set K and in turn in K̄ is a pointwise restriction, the projection
in (10) can be evaluated pointwise. Using that the admissible set K̄ is a cylinder
in S, a straightforward computation shows

∆χ(τ ) = −max

{
0, 1− σ̃0

|τD|

}
τD. (11)

Obviously and expectedly, this function is not differentiable. A smoothed ver-
sion of this relation is given by

∆χε(τ ) := −maxε
(

1− σ̃0

|τD|

)
τD, (12)

where ε > 0 and maxε is a smooth regularization of max{0, ·}. We will not fix
a particular choice of maxε here, but use the following abstract assumption.

Assumption 2.1. For all ε > 0, the function maxε : R → R is of class C1,1 and
satisfies
(1) maxε(x) ≥ max{0, x} for all x ∈ R,
(2) maxε is monotone increasing and convex,
(3) maxε(x) = max{0, x} for |x| ≥ ε.

Clearly, for all ε > 0 there are functions maxε satisfying this assumption,
e.g., the convolution of max{0, ·} with some differentiable function. Since the
term appearing inside maxε is smaller than 1, we will assume ε ∈ (0, 1).

The function ∆χε will be used to define the increment of χεi . In order to
find a formula for σεi , we test (8) by T = Στ

i + (τ ,−τ ), which is feasible for all
τ ∈ S due to the shift-invariance (4), and obtain

C−1(στi − στi−1)−H−1(χτi − χτi−1) +B?
1(uτi − uτi−1) = 0. (13)

The arguments above give rise to the following regularized version of (8):
given the loads `ε ∈ (V ′)N , find (Σε,uε) ∈ (S2 × V )N satisfying

C−1(σεi − σεi−1)−H−1∆χε(σεi + χεi−1) +B?
1(uεi − uεi−1) = 0 in S, (14a)

B1σ
ε
i = `εi in V ′, (14b)

χεi = χεi−1 + ∆χε(σεi + χεi−1) in S (14c)

for all i ∈ {1, . . . , N}, and with the initial condition (Σε
0,u

ε
0) = (0,0). In a

time-stepping scheme, we can first solve (14a) and (14b) for (σεi ,u
ε
i ), and χτi

can be evaluated afterwards.
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Using the Browder-Minty theorem, we infer the unique solvability of (14a)
and (14b) w.r.t. (σεi ,u

ε
i ), see, e.g., [11, Lemma A.1] for a proof. This implies

the unique solvability of the system (14). Let us denote the solution operator
of (14) mapping `ε ∈ (V ′)N to (σε,χε,uε) by Gε. Moreover, the Browder-Minty
theorem implies the global Lipschitz continuity of Gε : (V ′)N → (S2 × V )N .

By replacing the time-discrete solution map Gτ of (8) with its regularization
Gε, see (14), we obtain the regularized control problem

Minimize F (uε, gε) = ψτ (uε) +
ν

2
‖gε‖2

UN

such that (Σε,uε) = Gε(Egε),
and gε ∈ U τ

ad.

 (Pε)

Due to the Lipschitz continuity of Gε, we obtain

Lemma 2.2. There exists a global minimizer of (Pε).

2.2. Reformulation of the forward system involving the plastic multi-
plier. The aim of this section is the introduction of the regularized counterparts
of the plastic multiplier λτ in the forward problem.

Let us recall that the deviatoric part of a matrix σ ∈ S is given by
σD = σ − 1

d
trace(σ) I, see (3). By (12), (14c), and the initial datum χε0 = 0,

we infer χεi = (χεi )
D for all i = 0, . . . , N . Hence, we can omit the superscript D

on the variable χε. For convenience, we define

D̃Σε
i := (σεi )

D + χεi−1.

In contrast to DΣε
i = (σεi )

D + χεi , see (5), χε is taken from the previous time
step i− 1.

Moreover, we introduce an abbreviation for the scalar factor appearing in
∆χε(D̃Σε

i ), cf. (12),

αεi := maxε
(

1− σ̃0

|D̃Σε
i |

)
. (15)

By Assumption 2.1 we infer αεi ∈ [0, 1). Adding (σεi )
D on both sides of (14c)

yields
DΣε

i = D̃Σε
i − αεi D̃Σε

i = (1− αεi ) D̃Σε
i . (16)

Hence, the definition of ∆χε, see (12), implies

−H−1∆χε(σεi +χεi−1) = k−1
1 αεi ((σεi )

D +χεi−1) = k−1
1 αεi D̃Σε

i = k−1
1

αεi
1− αεi

DΣε
i .

Comparing (14a) and (14c) with (9a) gives rise to the definition of λεi by

λεi := τ−1 k−1
1

αεi
1− αεi

. (17)
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The L2(Ω)-regularity of λεi is shown in Corollary 4.4. Using the definition of λεi ,
the forward system (14) becomes

A(Σε
i −Σε

i−1) +B?(uεi − uεi−1) + τ λεi D?DΣε
i = 0, (18a)

BΣε
i = `εi . (18b)

In Assumption 2.1 we require maxε(x) = max{0, x} if x /∈ (−ε, ε). Hence it
is natural to split Ω into three disjoint sets in dependence whether the argument
of maxε in (12) is smaller than −ε, larger than ε or in (−ε, ε).

Aε,−i :=
{
x ∈ Ω : |D̃Σε

i | ≤
σ̃0

1 + ε

}
=
{
x ∈ Ω : 1− σ̃0

|D̃Σε
i |
≤ −ε

}
, (19a)

Aε,+i :=
{
x ∈ Ω : |D̃Σε

i | ≥
σ̃0

1− ε

}
=
{
x ∈ Ω : 1− σ̃0

|D̃Σε
i |
≥ ε
}
, (19b)

Aε,0i := Ω \ (Aε,−i ∪ A
ε,+
i ). (19c)

Using these definitions, the equations (15), (16) and (17) imply

0 = λεi , φ(Σε
i ) < 0 on Aε,−i ,(

0,
ε

1− ε
τ−1 k−1

1

)
3 λεi , φ(Σε

i ) ∈
( −2 ε

(1 + ε)2
, 0
)
σ̃2

0 on Aε,0i ,

0 < λεi , φ(Σε
i ) = 0 on Aε,+i .

Hence, the plastic multiplier λεi and the generalized stress Σε
i still satisfy the

sign conditions in (9c), but they do not satisfy the complementarity condition
in (9c). Thus our regularization approach can be viewed as a problem-tailored
version of the relaxation strategy given in [15].

3. Differentiability of the forward problem and optimality
conditions

This section is devoted to the proof of the Fréchet differentiability of the control-
to-state map Gε ◦ E. Since the forward system is equivalent to a system of
quasilinear PDEs, this is a novel result. In particular, it relies on the regularity
of solutions to quasilinear systems of infinitesimal elasticity proven in [10].

First, we address the differentiability of the solution of one time step in
Subsection 3.1 and conclude the differentiability of Gε ◦ E in Subsection 3.2.
Finally, we state the first order necessary conditions for (Pε) in Subsection 3.3.

Throughout this section, we consider a fixed regularization parameter
ε ∈ (0, 1).
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3.1. Differentiability of one time step. In order to simplify the notation,
we use an abstract notation. For all time steps i ∈ {1, . . . , N}, the system
(14a), (14b) has a common structure: given (L ,χ, `) ∈ S × S × V ′, find
(σ,∆u) ∈ S × V satisfying

C−1σ −H−1∆χε(σ + χ) +B?∆u = L in S, (20a)
Bσ = ` in V ′. (20b)

We denote the solution operator of this system by Gε : (L ,χ, `) 7→ (σ,∆u).
Then one time step of (14) is equivalent to

(σεi ,∆u
ε
i ) := (σεi ,u

ε
i − uεi−1) = Gε(C−1σεi−1,χ

ε
i−1, `

ε
i ), (21a)

χεi = χεi−1 + ∆χε(σεi + χεi−1). (21b)

By Hε : (σεi−1,χ
ε
i−1, `

ε
i ) 7→ (σεi ,χ

ε
i ,∆u

ε
i ) we denote the solution of a single time

step. The aim of this section is to show that

Hε : Lp2(Ω;S)2 ×W−1,p2(Ω;Rd)→ Lp1(Ω;S)2 × V

is Fréchet differentiable for any pair of exponents satisfying p2 > p1 ≥ 2. First,
we prove the differentiability of Gε, giving in turn the differentiability of Hε,
see Theorem 3.7. The differentiability of Gε will be proven by applying the
abstract result Theorem A.6 concerning nonlinear saddle-point problems with
the setting

X = S = L2(Ω;S), V = H1
D(Ω;Rd), A = C−1,

Y = Lp1(Ω;S), W ′ = W−1,p2(Ω;Rd), J = −H−1∆χε,

Z = Lp2(Ω;S).

 (22)

Here,

W
1,p′2
D (Ω;Rd) := {u ∈ W 1,p′2(Ω;Rd) : u = 0 on ΓD} and

W−1,p2(Ω;Rd) :=
(
W

1,p′2
D (Ω;Rd)

)′
,

where p′2 < 2 is the exponent conjugate to p2 > 2. Due to V ↪→ W =

W
1,p′2
D (Ω;Rd) we obtain the embedding W ′ ↪→ V ′.
Let us comment on the prerequisites of Theorem A.6. Surely, Assump-

tion A.1 is satisfied, in particular the monotonicity of −H−1∆χε follows easily
from Assumption 2.1. Assumption A.3, which concerns the differentiability of
the nonlinear term, follows from standard results on the differentiability of Ne-
mytskii operators, see Lemma 3.1. In order to satisfy Assumption A.5, we have
to prove the local Lipschitz continuity of the solution operator of (20) and its
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linearization w.r.t. stronger norms. This is the main work of this section and
it is done in Proposition 3.5 and Proposition 3.6. Finally, the application of
Theorem A.6 yields the Fréchet differentiability of Hε, see Theorem 3.7.

As announced, we start by addressing the Fréchet differentiability of the
Nemytskii operator ∆χε.

Lemma 3.1. The operator ∆χε is Fréchet differentiable from Lp2(Ω;S) to
Lp1(Ω;S) for all p2>p1≥2. The derivative at τ in direction δτ is given by

(∆χε)′(τ )δτ =−(maxε)′
(
1− σ̃0

|τD|

)
σ̃0

|τD|3
(τD:δτD)τD−maxε

(
1− σ̃0

|τD|

)
δτD. (23)

The operator (∆χε)′(τ ) : Lp2(Ω;S) → Lp1(Ω;S) can be extended to a bounded
linear and positive semi-definite operator S → S, i.e., 〈δτ , (∆χε)′(τ ) δτ 〉S ≥ 0
holds for all δτ ∈ S.

Proof. The result follows from general differentiability results for nonlinear Ne-
mytskii operators, e.g., [4, Theorem 7], [16, Section 4.3.3], see also [11, Propo-
sition 2.11].

The linearized version of (20) reads, cf. (45),

C−1σ −H−1(∆χε)′(σ̂)σ +B?
1∆u = L in S (24a)
B1σ = ` in V ′ (24b)

We denote its solution operator by G̃ε : (L , `) 7→ (σ,u).
Now we are going to prove the Lipschitz continuity of the solution maps

of (20) (w.r.t. L , χ and `) and of (24) (w.r.t. L and `) in the norms of
Z = Lp2(Ω;S) and Y = Lp1(Ω;S), see Assumption A.5. Standard regularity
theory using the Browder-Minty theorem yields only the Lipschitz continuity
with respect to the norm in X = S = L2(Ω;S). We are going to apply the
regularity result [10, Proposition 1.2].

To allow for a uniform treatment of both systems, we define a set Q of those
mappings acting on σ which appear on the left hand sides of (20a) and (24a).
To be precise, we define Q to contain all operators mapping Ω× S→ S,

(x,σ) 7→ C−1(x)σ −H−1(x)∆χε(σ + χ(x)) for all χ ∈ S, (25a)

and (x,σ) 7→ C−1(x)σ −H−1(x)(∆χε)′(σ̂(x))σ for all σ̂ ∈ S. (25b)

For every Q∈Q we will denote the induced Nemytskii operator with the same
symbol. Due to the definition ofQ, both systems (20) and (24) can be written as

Q(σ) +B?
1u = L , (26a)

B1σ = `, (26b)
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with the corresponding Q ∈ Q. We show, that the solution mapping of (26)
is Lipschitz continuous with respect to L and `. For the system (20), the
Lipschitz dependence on χ is proven afterwards.

First, we state the Lipschitz continuity and strong monotonicity of Q ∈ Q.

Lemma 3.2. For all Q ∈ Q, the inequalities

(Q(x, ε)−Q(x, ε̂)) : (ε− ε̂) ≥ α |ε− ε̂|2,
|Q(x, ε)−Q(x, ε̂)| ≤ (α + 2h) |ε− ε̂|

are satisfied for almost all x ∈ Ω and all ε, ε̂ ∈ S. Here α is the uniform coer-
civity constant of C−1 and α, h are the uniform boundedness constants of C−1

and H−1, respectively.

Proof. Due to the uniform coercivity of C−1, the first assertion follows easily
by the monotonicity of ∆χε and (∆χε)′. The Lipschitz continuity of ∆χε and
(∆χε)′ can be proved easily, starting from (12) and (23), respectively.

By the Browder-Minty theorem, we infer that for all Q ∈ Q and almost
all x ∈ Ω, the operator Q(x, ·) : S → S is invertible. We define the pointwise
inverse Q−1 : Ω × S → S, Q−1(x, ·) = Q(x, ·)−1. We obtain for all Q ∈ Q and
almost all x ∈ Ω

(Q−1(x, ε)−Q−1(x, ε̂)) : (ε− ε̂) ≥ m |ε− ε̂|2, (27a)

|Q−1(x, ε)−Q−1(x, ε̂)| ≤M |ε− ε̂|, (27b)

where m, M > 0 are constants. This implies that the Nemytskii operator Q−1

maps Lp(Ω;S) → Lp(Ω;S) for all p ≥ 2, provided that Q−1(·,0) ∈ Lp(Ω;S).
If Q is of the form (25a), this requires χ ∈ Lp(Ω;S). For Q defined by (25b)
this imposes no restriction, since Q(·,0) = 0 holds independently of σ̂.

By applying Q−1 to (26), we obtain that u solves

B1Q
−1 (−B?

1u+ L ) = `. (28)

This is a quasilinear system of infinitesimal elasticity. Higher integrability of
solutions to such systems is the topic of [10].

Lemma 3.3. There exists an exponent p̄ > 2 such that for all p ∈ [2, p̄] and
all Q ∈ Q satisfying Q−1(·,0) ∈ Lp(Ω;S), the solution map of (28) is Lipschitz
continuous w.r.t. ` ∈ W−1,p(Ω;Rd) = W 1,p′

D (Ω;Rd)′ for fixed L ∈ Lp(Ω;S). The
Lipschitz constant does not depend on the particular choice of Q.

Proof. In order to apply [10, Proposition 1.2], we define the family of nonlin-
earities



404 G. Wachsmuth

Fp := {b : Ω× S→ S : ∃L ∈ Lp(Ω;S) and Q ∈ Q with Q−1(·,0) ∈ Lp(Ω;S),

s.t. b(x, ε) = Q−1(x, ε+ L (x)) f.a.a. x ∈ Ω and all ε ∈ S}.

By (27), we obtain that [10, Assumption 1.5(2)] is fulfilled uniformly for all
Q ∈ Q. Note that by [10, Remark 1.6 (2)] it is sufficient to ensure Q−1(·,0) ∈
Lp(Ω;S).

According to the regularity result [10, Proposition 1.2], there exists an expo-
nent p̄ such that for all p ∈ [2, p̄], the solution map of (28) is Lipschitz continuous
from W−1,p(Ω;Rd) = W 1,p′

D (Ω;Rd)′ to W 1,p
D (Ω;Rd), for all L ∈ Lp(Ω;S) and all

Q ∈ Q with Q−1(·,0) ∈ Lp(Ω;S). All these solution maps share a common
Lipschitz constant, i.e., we obtain

‖u1 − u2‖W 1,p
D (Ω;Rd) ≤ L ‖`1 − `2‖W−1,p(Ω;Rd),

where ui solves `i = B1Q
−1(−B?

1ui + L ). The constant L does not depend on
`i, L , Q and p, but only on Ω, ΓD, C−1, H−1, and p̄.

In the sequel, p̄ always refers to the regularity exponent given in Lemma 3.3.
In the next proposition, we show that u in (28) depends also Lipschitz continu-
ously on the data L . We also show the Lipschitz dependence of σ in (26) on `
and L .

Proposition 3.4. For all p ∈ [2, p̄] and Q ∈ Q satisfying Q−1(·,0) ∈ Lp(Ω;S),
the solution mapping of (26) is Lipschitz continuous w.r.t. L ∈ Lp(Ω;S) and
` ∈ W−1,p(Ω;Rd). The Lipschitz constant does not depend on Q.

Proof. Let p ∈ [2, p̄] be given. The Lipschitz dependence of u on ` has been
shown in Lemma 3.3.

Step (1): We consider the Lipschitz dependence of u on L . For i ∈ {1, 2},
let `i ∈ W−1,p(Ω;Rd) and Li ∈ Lp(Ω;S) be given. Define ui as the solution of
`i = B1Q

−1(−B?
1ui + Li).

Using τ = Q−1(−B?
1u2 + L2) − Q−1(−B?

1u2 + L1) we obtain `2 − B1τ =
B1Q

−1(−B?
1u2 + L1). This shows that u1 and u2 solve the systems

B1Q
−1(−B?

1u1 + L1) = `1 and B1Q
−1(−B?

1u2 + L1) = `2 −B1τ .

An application of Lemma 3.3 yields

‖u1 − u2‖W 1,p
D (Ω;Rd) ≤ L ‖`1 − (`2 −B1τ )‖W−1,p(Ω;Rd).

By definition of τ and (27b) we obtain ‖τ‖Lp(Ω;S) ≤ M ‖L1 −L2‖Lp(Ω;S). This
implies

‖u1 − u2‖W 1,p
D (Ω;Rd) ≤ C

(
‖L1 −L2‖Lp(Ω;S) + ‖`1 − `2‖W−1,p(Ω;Rd)

)
.
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Step (2): We consider the Lipschitz dependence of σ. By (26) we infer

σ = Q−1(−B?
1u+ L ).

Since Q−1 maps Lp(Ω;S) Lipschitz continuously into itself by (27b), and since u
depends Lipschitz continuously on ` and L , we obtain

‖σ1 − σ2‖Lp(Ω;S) ≤ C
(
‖L1 −L2‖Lp(Ω;S) + ‖`1 − `2‖W−1,p(Ω;Rd)

)
.

The next proposition translates the abstract result of Proposition 3.4 to the
systems (20) and (24). It is an immediate consequence using the definition of Q
in (25).

Proposition 3.5. Let p ∈ [2, p̄] be given. The solution maps of
(i) (20), i.e., Gε, for fixed χ ∈ Lp(Ω;S) and
(ii) (24), i.e., G̃ε, for fixed σ̂ ∈ S

are Lipschitz continuous w.r.t. L ∈ Lp(Ω;S) and ` ∈ W−1,p(Ω;Rd). They share
a common Lipschitz constant, i.e.,

‖σ1 − σ2‖Lp(Ω;S) + ‖∆u1 −∆u2‖W 1,p
D (Ω;Rd)

≤ C
(
‖L1 −L2‖Lp(Ω;S) + ‖`1 − `2‖W−1,p(Ω;Rd)

)
,

where (σi,∆ui) are the solutions of (20) or (24) respectively with the data
(`i,Li), i = 1, 2.

It remains to prove the Lipschitz dependence of the solution of (20) on χ.

Proposition 3.6. Let p ∈ [2, p̄] be given. Then, in addition to Proposition 3.5,
Gε is also Lipschitz continuous w.r.t. χ ∈ Lp(Ω;S), i.e.,

‖σ1 − σ2‖Lp(Ω;S) + ‖∆u1 −∆u2‖W 1,p
D (Ω;Rd)

≤ C
(
‖L1 −L2‖Lp(Ω;S) + ‖χ1 − χ2‖Lp(Ω;S) + ‖`1 − `2‖W−1,p(Ω;Rd)

)
,

where (σi,∆ui) is the solution of (20) with the data (Li,χi, `i), i = 1, 2.

Proof. For i∈{1, 2}, let `i∈W−1,p(Ω;Rd) and χi,Li∈Lp(Ω;S) be given. Define
(σi,∆ui) = Gε(Li,χi, `i) as the solutions of (20). We define δχ = χ2−χ1. We
infer from (20)

C−1(σ2 + δχ)−H−1∆χε((σ2 + δχ) + χ1) +B?
1∆u2 = L2 + C−1δχ,

B1(σ2 + δχ) = `2 +B1δχ.

Therefore, (σ2 + δχ,∆u2) solves the same system (i.e., with the same χ = χ1)
as (σ1,∆u1), but with a different right hand side. Thus, the Lipschitz estimate
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from Proposition 3.5 yields

‖σ1 − σ2 − δχ‖Lp(Ω;S) + ‖∆u1 −∆u2‖W 1,p
D (Ω;Rd)

≤ C
(
‖L1 −L2 − C−1δχ‖Lp(Ω;S) + ‖`1 − `2 −B1δχ‖W−1,p(Ω;Rd)

)
.

Using the triangle inequality and the boundedness of the operators B1 and C−1

we infer

‖σ1 − σ2‖Lp(Ω;S) + ‖∆u1 −∆u2‖W 1,p
D (Ω;Rd)

≤ C
(
‖L1 −L2‖Lp(Ω;S) + ‖χ1 − χ2‖Lp(Ω;S) + ‖`1 − `2‖W−1,p(Ω;Rd)

)
.

As announced in the beginning of this section, we use Theorem A.6 with
the setting (22) to infer the Fréchet differentiability of Hε.

Theorem 3.7. Let p1, p2 be given such that 2 ≤ p1 < p2 ≤ p̄. Then the opera-
tor Hε defined in (21) is Fréchet differentiable from Lp2(Ω;S)2×W−1,p2(Ω;Rd)
to Lp1(Ω;S)2 × V .

At the point (σεi ,χ
ε
i ,∆u

ε
i ) = Hε(σεi−1,χ

ε
i−1, `

ε
i ) the directional derivative

of Hε in direction (δσεi−1, δχ
ε
i−1, δ`

ε
i ) is denoted by (δσεi , δχ

ε
i , δ∆u

ε
i ). The di-

rectional derivative (δσεi , δ∆u
ε
i ) solves the system

(C−1 −H−1(∆χε)′(σεi + χεi−1))δσεi +B?
1δ∆u

ε
i = δLi, (29a)

B1δσ
ε
i = δ`εi , (29b)

where
δLi = C−1δσεi−1 + H−1(∆χε)′(σεi + χεi−1)δχεi−1. (29c)

The directional derivative δχεi is given by

δχεi = δχεi−1 + H (C−1(δσεi − δσεi−1) +B?
1δ∆u

ε
i ). (29d)

Proof. Invoking Theorem A.6 with the setting (22) yields that Gε is differen-
tiable from Lp2(Ω;S)2×W−1,p2(Ω;Rd) to Lp1(Ω;S)×V , i.e., (σεi ,∆u

ε
i ) depends

differentiably on (σεi−1,χ
ε
i−1, `

ε
i ) and the derivative solves (29a)–(29b).

Rewriting (21b) we obtain

χεi = χεi−1 + H (C−1(σεi − σεi−1) +B?
1∆uεi )

= χεi−1 + H (C−1(Gε,σ(σεi−1,χ
ε
i−1, `

ε
i )− σεi−1) +B?

1G
ε,∆u(σεi−1,χ

ε
i−1, `

ε
i )).

This implies that also χεi depends differentiably on (σεi−1,χ
ε
i−1, `

ε
i ). Thus, Hε :

Lp2(Ω;S)2×W−1,p2(Ω;Rd)→ Lp1(Ω;S)2×V is differentiable and the derivative
is given by the solution of (29).
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3.2. Differentiability of the regularized problem. In this section we ad-
dress the differentiability of the solution map of the entire system (14). To
be precise, we show that Gε ◦ E : UN → (S2 × V )N is Fréchet differentiable,
where E : U = L2(ΓN ;Rd) → V ′ is the control operator given by (1). Due
to the trace theorem, the operator E maps U = L2(ΓN ;Rd) continuously into
W−1,p(Ω;Rd) =

(
W 1,p′

D (Ω;Rd)
)′ for all p ∈ [2, 2 d

d−1

]
.

Every solution of a time step of the system (14) is equivalent to an appli-
cation of Hε, see (21). In Theorem 3.7 the differentiability of

Hε : Lpi−1(Ω;S)2 ×W−1,pi−1(Ω;Rd) 3 (σεi−1,χ
ε
i−1, Eg

ε
i )

7→ (σεi ,χ
ε
i ,∆u

ε
i ) ∈ Lpi(Ω;S)2 × V

is proven, provided that 2 ≤ pi < pi−1 ≤ p̄. The requisite Egεi ∈ W−1,pi−1(Ω;Rd)
would be implied by pi−1 ≤ 2 d

d−1
. Therefore, we choose a strictly decreasing

sequence {pi}Ni=1 such that

2 ≤ pN < pN−1 < · · · < p2 < p1 ≤ min

{
p̄, 2

d

d− 1

}
(30)

and we define

S̃N := Lp1(Ω;S)× Lp2(Ω;S)× · · · × LpN−1(Ω;S)× LpN (Ω;S).

This yields the Fréchet differentiability of Gε ◦E : UN → S̃N × S̃N ×V N . Since
S̃N ↪→ SN holds by (30), Gε ◦E is Fréchet differentiable from UN to (S2×V )N .

The directional derivative (δσε, δχε, δuε) = (Gε)′(Egε)Eδgε is given by the
solution of the system

C−1(δσεi−δσεi−1) +B?
1(δuεi−δuεi−1) + Jεi (δσεi+δχ

ε
i−1) = 0, (31a)

H−1(δχεi−δχεi−1) + Jεi (δσεi+δχ
ε
i−1) = 0, (31b)

B1(δσεi−δσεi−1) = E(δgεi−δgεi−1), (31c)

where (δσε0, δχ
ε
0, δu

ε
0) = 0 and

Jεi := −H−1(∆χε)′(σεi (g
ε) + χεi−1(gε)). (32)

3.3. Regularized upper level problem: Optimality conditions. Using
the control-to-state map Gε, we define the reduced objective

f ε(gε) = F (Gε,u(Egε), gε).

Here, uε = Gε,u(Egε) refers to the second component of (Σε,uε) = Gε(Egε).
Due to the differentiability of the objective F and the control-to-state map
Gε ◦ E, the reduced objective f ε is differentiable. Since the admissible set
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U τ
ad is convex, we obtain for a local optimum gε with associated displacements
uε = Gε,u(Egε) the necessary optimality condition

N∑
i=1

〈ψτi (uε), δuεi 〉V ′,V + ν 〈gε, g̃τ − gε〉UN ≥ 0 for all g̃τ ∈ U τ
ad. (33)

where (δuε1, . . . , δu
ε
N) is the solution of the linearized state equation (31) with

right hand side δgε = g̃τ − gε, and ψτi are the partial derivatives of ψ, see
Assumption 1.1(2). We compute the adjoint of (31) and define the adjoint
state (Υε,wε) = (υε, ζε,wε) ∈ SN × SN × V N as the solution of the system

C−1(υεi − υεi+1) +B?
1(wε

i −wε
i+1) + Jεi (υεi + ζεi+1) = 0, (34a)

H−1 (ζεi − ζεi+1) + Jεi (υεi + ζεi+1) = 0, (34b)
B1(υεi − υεi+1) = ψτi (uε), (34c)

for i = N, . . . , 1, where (υεN+1, ζ
ε
N+1,w

ε
N+1) = 0 and Jεi is given by (32). Testing

(31a) with υεi , (31b) with ζεi+1, (31c) with wε
i ,

(34a) with δσεi , (34b) with δχεi−1, (34c) with δuεi ,

and summing everything over i = 1, . . . , N yields
N∑
i=1

〈ψτi (uε), δuεi 〉V ′,V =
N∑
i=1

〈
E?wε

i , g̃
τ
i − g̃τi−1 − (ḡεi − ḡεi−1)

〉
L2(ΓN ;Rd)

.

Hence, the variational inequality (33) becomes
N∑
i=1

〈
E?wε

i , g̃
τ
i − g̃τi−1 − (gεi − gεi−1)

〉
L2(ΓN ;Rd)

+ 〈ν gε, g̃τ − gε〉UN ≥ 0 (35)

for all g̃τ ∈ U τ
ad. This proves the following necessary optimality condition of

first order.
Theorem 3.8. Let (Σε,uε, gε) ∈ (S2)N ×V N ×U τ

ad be a local solution of (Pε).
Then (35) is satisfied, where the adjoint state wε is defined as the unique solu-
tion of (34).

This theorem will be the starting point in [19] to prove necessary conditions
for the time-discrete, unregularized problem (Pτ ).

4. Convergence of the regularization

In this section we show that the regularization given in Section 2 approximates
the original problem. First, we address the convergence of the regularized states
in Subsection 4.1. Afterwards, we show that every local solution of the time-
discrete optimal control problem (Pτ ) can be approximated by local solutions
of regularized problems, see Subsection 4.2. This will be a main ingredient for
showing a necessary optimality system for (Pτ ) in the subsequent work [19].
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4.1. Convergence of the forward problem. This section is devoted to the
proof of convergence of the regularized solutions (Σε,uε, λε) of (14) to the
unregularized solutions (Στ ,uτ , λτ ) as ε↘ 0 for any fixed number of time steps.
We consider a sequence of regularization parameters {εk}∞k=1 and a sequence of
loads {`εk}∞k=1. For simplicity of the presentation, we drop the index k and refer
to the convergence `εk → `τ by “`ε → `τ as ε↘ 0”.

We start by considering the system of one time step

C−1στ −H−1∆χ(στ + χτ ) +B?
1∆uτ = L τ in S, (36a)
B1σ

τ = `τ in V ′, (36b)

cf. (13), and its regularization

C−1σε −H−1∆χε(σε + χε) +B?
1∆uε = L ε in S, (37a)
B1σ

ε = `ε in V ′, (37b)

cf. (14a), (14b).
First, we prove a convergence estimate of the nonlinear term ∆χε(·).

Corollary 4.1. For matrices σ, τ ∈ S we have

|∆χ(σ)−∆χε(τ )|S ≤ L |σ − τ |S + ε |τ |S, (38)

where L is the Lipschitz constant of ∆χ, see (10). Similarly, we obtain the
estimate

‖∆χ(σ)−∆χε(τ )‖S ≤ L ‖σ − τ‖S + ε ‖τ‖S (39)

for matrix functions σ, τ ∈ S.

Proof. The triangle inequality implies

|∆χ(σ)−∆χε(τ )|S ≤ |∆χ(σ)−∆χ(τ )|S + |∆χ(τ )−∆χε(τ )|S.

Using the Lipschitz continuity of ∆χ we obtain

|∆χ(σ)−∆χ(τ )|S ≤ L |σ − τ |S.

Assumption 2.1 implies |max(0, x) − maxε(x)| ≤ ε for all x ∈ R. By defini-
tion (12) of ∆χε this yields

|∆χ(τ )−∆χε(τ )|S ≤ ε |τ |S.

Altogether we obtain (38). For σ, τ ∈ S, we achieve (38) pointwise. Taking the
L2(Ω) norm yields (39).

Using this result, we obtain the convergence of the solution operator of (37)
towards the solution operator of (36) as ε↘ 0.
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Lemma 4.2. Let a sequence {(χε,L ε, `ε)}ε>0⊂S×S×V ′ be given. We denote
the solutions of (37) by {(σε,∆uε)}ε>0⊂S×V . Moreover, let (στ ,∆uτ )∈S×V
be the solution of (36) with given data (χτ ,L τ , `τ ) ∈ S×S×V ′. For all ε > 0
we obtain

‖στ − σε‖2
S ≤ c

(
‖L τ −L ε‖2

S + ‖χτ − χε‖2
S + ε2 ‖σε + χε‖2

S

+ ‖∆uτ −∆uε‖V ‖`τ − `ε‖V ′
)
,

‖∆uτ −∆uε‖V ≤ c
(
‖L τ −L ε‖S + ‖στ − σε‖S

+ ‖χτ − χε‖S + ε ‖σε + χε‖S
)
.

The constant c > 0 depends only on the operators A and B1.
In particular, the convergence of the data (χε,L ε, `ε) → (χτ ,L τ , `τ ) as

ε↘ 0 implies the convergence of the solutions (σε,∆uε)→ (στ ,∆uτ ) as ε↘ 0.

Proof. Testing (36a) and (37a) with στ − σε and taking differences yields

α ‖στ − σε‖2
S ≤ ‖στ − σε‖S ‖L τ −L ε‖S − 〈στ − σε, B?

1∆uτ −B?
1∆uε〉S

− 〈στ − σε, −H−1∆χτ (στ + χτ ) + H−1∆χε(σε + χε)〉S,

where α > 0 is the coercivity constant of C−1. Using (36b) and (37b) we obtain

α ‖στ − σε‖2
S ≤ ‖στ − σε‖S ‖L τ −L ε‖S + ‖∆uτ −∆uε‖V ‖`τ − `ε‖V ′
− 〈στ − σε, −H−1∆χτ (στ + χτ ) + H−1∆χε(σε + χε)〉S.

The monotonicity of −∆χ implies

− 〈στ − σε, −H−1∆χτ (στ + χτ ) + H−1∆χε(σε + χε)〉S
= −〈στ − σε, −H−1∆χτ (στ + χτ ) + H−1∆χτ (σε + χτ )〉S
− 〈στ − σε, −H−1∆χτ (σε + χτ ) + H−1∆χε(σε + χε)〉S
≤ −〈στ − σε, −H−1∆χτ (σε + χτ ) + H−1∆χε(σε + χε)〉S.

Using Corollary 4.1 yields∥∥−H−1∆χτ (σε + χτ ) + H−1∆χε(σε + χε)
∥∥
S
≤ L ‖χτ − χε‖S + ε ‖σε + χε‖S.

This implies

α ‖στ − σε‖2
S ≤‖στ − σε‖S

(
‖L τ −L ε‖S + L ‖χτ − χε‖S + ε ‖σε + χε‖S

)
+ ‖∆uτ −∆uε‖V ‖`τ − `ε‖V ′ .

Young’s inequality completes the estimate of στ − σε.
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It remains to verify the estimate of ∆uτ − ∆uε. Testing (36a) and (37a)
with τ ∈ S, ‖τ‖S ≤ 1, and taking differences yields

〈B1τ , ∆uτ−∆uε〉V ′,V

≤c
(
‖L τ−L ε‖S + ‖στ−σε‖S + ‖−H−1∆χτ (στ+χτ ) + H−1∆χε(σε+χε)‖S

)
.

Invoking Corollary 4.1 and the inf-sup condition (7) implies

‖∆uτ−∆uε‖V ≤c
(
‖L τ−L ε‖S + ‖στ−σε‖S + ‖χτ−χε‖S + ε‖σε+χε‖S

)
.

Easily this result carries over to the entire problem (14) for any fixed num-
ber N of time steps.

Theorem 4.3. Let a sequence {`ε}ε>0 ⊂ (V ′)N be given, such that `ε → `τ ∈
(V ′)N as ε↘ 0. Denote by (Στ ,uτ ) and (Σε,uε) the solutions of (8) and (14),
i.e.,

(Στ ,uτ ) = Gτ (`τ ) and (Σε,uε) = Gε(`ε).

Then (Σε,uε)→ (Στ ,uτ ) ∈ (S2 × V )N as ε↘ 0.

Finally, we show the convergence of the plastic multiplier.

Corollary 4.4. Let a sequence {`ε}ε>0 ⊂ (V ′)N be given, such that `ε → `τ ∈
(V ′)N as ε → 0. We denote by λε the associated plastic multipliers according
to (17) and by λτ the multiplier given by (9). Then λε ∈ L2(Ω)N and λε → λτ

in L2(Ω)N .

Proof. Step (1): From (9a) and (18a) we infer

τ λτi D?DΣτ
i = −A(Στ

i −Στ
i−1)−B?(uτi − uτi−1),

and τ λεi D?DΣε
i = −A(Σε

i −Σε
i−1)−B?(uεi − uεi−1),

for all i = 1, . . . , N . By Theorem 4.3 we obtain

τ λεi D?DΣε
i → τ λτi D?DΣτ

i in S2 for all i = 1, . . . , N. (40)

Step (2): By using Assumption 2.1 and the definition of Aε,−i in (19a) we
obtain λεi = 0 on Aε,−i . Moreover, the definition of αεi in (15) implies αεi ∈
[0, ε] on Aε,0i and αεi = 1 − σ̃0

|D̃Σεi |
on Aε,+i . Altogether we obtain ‖λεi DΣε

i‖2
S =∫

Ω\Aε,−i
|λεi |2|DΣε

i |2 dx =
∫

Ω\Aε,−i
|λεi |2(1−αεi )2|D̃Σε

i |2 dx ≥
(1−ε)2σ̃2

0

(1+ε)2

∫
Aε,0i
|λεi |2 dx+∫

Aε,+i
|λεi |2σ̃2

0 dx ≥
(

1−ε
1+ε

)2
σ̃2

0‖λεi‖2
L2(Ω). Using (40) we obtain the boundedness

of λεi in L2(Ω) as ε ↘ 0. Therefore, a subsequence (denoted by the same
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symbol) converges weakly towards some λ̃i ∈ L2(Ω). By Σε
i → Στ

i in S2 we
infer λεi DΣε

i ⇀ λ̃iDΣτ
i in L1(Ω;S). Hence, (40) implies

λ̃i = λτi on {x ∈ Ω : |DΣτ
i | 6= 0}. (41)

Step (3): We have

‖λ̃i‖L2(Ω) ≤ lim inf‖λεi‖L2(Ω)

≤ lim inf
(1 + ε

1− ε

) 1

σ̃0

‖λεi DΣε
i‖S =

1

σ̃0

‖λτi DΣτ
i ‖S = ‖λτi ‖L2(Ω), (42)

in particular ‖λ̃i‖L2(Ω) ≤ ‖λτi ‖L2(Ω). By (41) and λτi = 0 on {x ∈ Ω : |DΣτ
i | = 0},

we infer λτi = λ̃i. Now, (40) and (42) imply the convergence of norms

‖λεi‖L2(Ω) → ‖λτi ‖L2(Ω)

and hence λεi → λτi in L2(Ω). Since the limit of λεi is independent of the subse-
quence chosen in the second step, the whole sequence λεi converges towards λτi
strongly in L2(Ω).

4.2. Approximability of solutions. In this section we will study which op-
tima of the time-discrete problem (Pτ ) can be approximated by optima of its
regularized counterparts (Pε). Let us recall that by Assumption 1.2
(1) the admissible set U τ

ad is nonempty, convex and closed in UN , and
(2) the objective F : (V × U)N is weakly lower semicontinuous.

Lemma 4.5. Let {gε}ε>0 be a sequence of global solutions to (Pε).
(i) There exists an accumulation point gτ of {gε}ε>0.
(ii) Every weak accumulation point of {gε}ε>0 is a strong accumulation point

and a global solution of (Pτ ).

We are going to use standard arguments. For convenience, we included the
proof.

Proof. By assumption, U τ
ad is nonempty. Hence, there exists some g̃τ ∈ U τ

ad.
Hence, by Proposition 3.5 the corresponding displacements ũε = Gε,u(g̃τ ) con-
verges in V N . Since gε is a global optimum of (Pε), we have F (uε, gε) ≤
F (ũε, g̃τ ). This implies the boundedness of {gε}ε>0 in UN . Hence, there exists
a weakly convergent subsequence. Therefore, assertion (1) follows by asser-
tion (2).

To prove assertion (2), suppose that {gε}ε>0 converges weakly towards g.
We denote by (Σε,uε) = Gε(Egε) the (regularized and time-discrete) solution
to (14) and by (Στ ,uτ ) = Gτ (Eg) the solution to (8). Since E embeds UN

compactly into (V ′)N , Theorem 4.3 implies uε → uτ in V N .
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Let g̃τ ∈ U τ
ad with corresponding unregularized displacement ũτ = Gτ,u(g̃τ )

be arbitrary. We denote the corresponding regularized displacements by ũε =
Gε,u(g̃τ ). By Theorem 4.3 we infer ũε → ũτ . We have

F (uτ , gτ ) ≤ lim inf F (uε, gε) (by lower semicontinuity of F )
≤ lim inf F (ũε, g̃τ ) (by global optimality of (uε, gε))
= F (ũτ , g̃τ ). (by convergence of ũε)

This shows that gτ is a global optimal solution of (Pτ ). Inserting g̃τ = gτ

yields the convergence of the norms of gε and hence the strong convergence
of gε in UN .

Lemma 4.6. Let gτ be a strict local optimum of (Pτ ) w.r.t. the topology of UN .
Then, for every sequence {εk}k∈N tending to 0, there is a sequence {gεk} of local
solutions to (Pεk) such that gεk → gτ strongly in UN .

Proof. Since gτ is the only global minimum w.r.t. the feasible set Uad ∩Bδ(g
τ )

for some δ > 0, this result can be proven similarly to Lemma 4.5.

Finally, we address the approximability of a (not necessarily strict) local
minimum. Let gτ be a local optimum of (Pτ ) w.r.t. the topology of UN . We
define the modified problem, see also [1, 3],

Minimize Fgτ (u
τ , g̃τ ) = F (uτ , g̃τ ) +

1

2
‖g̃τ − gτ‖2

UN

such that (Στ ,uτ ) = Gτ (Eg̃τ ),
and g̃τ ∈ U τ

ad.

 (Pτ
gτ )

Clearly, gτ becomes a strict local optimum of (Pτ
gτ ). This enable us to approx-

imate gτ by solutions to regularized problems. Analogously to (Pε) we define
the regularized approximation (Pε

gτ ).
Corollary 4.7. Let gτ be a local optimum of (Pτ ) w.r.t. the topology of UN .
Then, for every sequence {εk}k∈N tending to 0, there is a sequence {gεk} of local
solutions to the modified problems (Pεk

gτ ), such that gεk → gτ strongly in UN .

Proof. Since the additional term ‖g̃τ − gτ‖2
UN is weakly lower semicontinuous,

this result follows analogously to Lemma 4.6.

Similar to the necessary optimality condition of (Pε) we find for a local
optimum gε ∈ U τ

ad of the modified problem (Pε
gτ )

N∑
i=1

〈
E?wε

i , g̃
τ
i−g̃τi−1−(gεi−gεi−1)

〉
L2(ΓN ;Rd)

+〈ν gε+gε−gτ , g̃τ−gε〉UN ≥ 0 (43)

holds for all g̃τ ∈ U τ
ad, where the adjoint displacementwε is given by the solution

of (34).
Corollary 4.7 will be the starting point for showing a necessary optimality

system for (Pτ ). This is addressed in a subsequent publication [19].
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A. Differentiability of an abstract saddle point problem

In this section we derive a differentiability result for an abstract, nonlinear
saddle point problem. We generalize the results given in [11, Appendix A]. We
mention that the results of this appendix could also be obtained by invoking
[18, Theorem 2.1]. However, it is simpler to prove the result of Theorem A.6
directly than to rephrase [18, Theorem 2.1] in our saddle-point notation.

Throughout this section we consider the abstract system

Aσ + J(σ + L2) +B?u = L1, (44a)
B σ = `, (44b)

where (L1,L2, `) is the data and (σ,u) is the solution. We will show in The-
orem A.6 that the solution map of (44) is Fréchet differentiable under certain
assumptions. The functional analytic setting is made precise in the following
assumption.

Assumption A.1 (Basic functional analytic setting). The space X is a Hilbert
space and V is a reflexive Banach space. The linear operators A : X → X
and B : X → V ′ are bounded. Furthermore, A is coercive and B? satisfies the
inf-sup condition, i.e.,

‖B?u‖X ≥ β ‖u‖V for all u ∈ V.

The (possibly nonlinear) operator J : X → X is monotone and continuous.

It is a standard result that the system (44) admits a unique solution (σ,u) ∈
X × V for all L1,L2 ∈ X and ` ∈ V ′, if Assumption A.1 is satisfied. A proof
can be found in [11, Lemma A.1].

Lemma A.2 (Nonlinear saddle point problem). Let Assumption A.1 be satis-
fied. Then, for all (L1,L2, `) ∈ X × X × V ′, the system (44) has a unique
solution (σ,u) ∈ X×V . Moreover, the solution map G : X×X×V ′ → X×V
is Lipschitz continuous.

Next, we assume J to be differentiable and state a linearization of (44).
We consider the case that J is only differentiable with a norm gap, i.e., we
have to choose a weaker norm in the image space or a stronger norm in the
domain of J . This is the typical case if J is a nonlinear Nemytskii operator, see
[16, Section 4.3.2] or [13].

Assumption A.3 (Fréchet differentiability of J). In addition to Assumption A.1,
Y and Z are normed linear spaces with continuous embeddings Z ↪→ Y ↪→ X.
Moreover, J is Fréchet differentiable as a mapping Z → Y . At any σ ∈ Z,
the derivative J ′(σ) possesses a positive semi-definite extension which maps
X → X, i.e., 〈J ′(σ) δσ, δσ〉X ≥ 0 holds for all δσ ∈ X.
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Using Assumption A.3, we state the linearization of (44),

(A+ J ′(σ + L2)) δσ +B?δu = δL , (45a)
B δσ = δ`. (45b)

Here, (δL , δ`) is the data and (δσ, δu) is the solution.

Lemma A.4 (Solvability of the linearized problem). Let Assumption A.3 be
satisfied. Then, for all (σ,L2) ∈ Z×Z and (δL , δ`) ∈ X×V ′ the system (45)
has a unique solution (δσ, δu) ∈ X×V . Moreover, the solution map G̃(σ,L2) :
X × V ′ → X × V is Lipschitz continuous.

Proof. Follows by standard arguments for linear saddle point problems.

The last ingredient for the proof of Theorem A.6 is the assumption that G
and G̃ are also Lipschitz continuous w.r.t. stronger norms, both in the domain
and in the image space.
Assumption A.5 (Lipschitz continuity in stronger norms). In addition to As-
sumption A.3,W is a normed linear space with continuous embeddingW ′ ↪→ V ′.
The partial solution map Gσ : (L1,L2, `)→ σ of (44) is locally Lipschitz as a
function Z×Z×W ′ → Z. Moreover, the solution map G̃(σ,L2) of (45) which
maps (δL , δ`) to (δσ, δu) maps Y ×W ′ → Y × V .

Under this assumption, we show that the solution mapping of (44) is Fréchet
differentiable and the derivative (δσ, δu) in direction (δL1, δL2, δ`) is given by
the solution of the linearization (45) with δL = δL1 − J ′(σ + L2) δL2.

Theorem A.6 (Differentiability). Let Assumption A.5 be satisfied. Then G
is Fréchet differentiable as a function Z × Z ×W ′ → Y × V . The derivative
(δσ, δu) at (L1,L2, `) in the direction (δL1, δL2, δ`) is given by the unique
solution of (45), with δL = δL1 − J ′(σ + L2)δL2.

Proof. Let Li, δLi ∈ Z (i = 1, 2) and `, δ` ∈ W ′ be given and set L ′
i = Li+δLi

(i = 1, 2), `′ = `+ δ` as well as

(σ,u) = G(L1,L2, `),

(σ′,u′) = G(L ′
1,L

′
2, `
′),

(δσ, δu) = G̃(σ,L2)(δL , δ`),

with δL = δL1 − J ′(σ + L2)δL2. The remainder is given by(
σr
ur

)
=G(L ′

1,L
′
2, `
′)−G(L1,L2, `)−G̃(σ,L2)(δL , δ`)=

(
σ′

u′

)
−
(
σ
u

)
−
(
δσ
δu

)
.

We have to verify the estimate of the remainder

‖σr‖Y + ‖ur‖V = o (‖δL1‖Z + ‖δL2‖Z + ‖δ`‖W ′).
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A simple calculation shows that the remainder (σr,ur) satisfies

(A+ J ′(σ + L2))σr +B?ur = −
(
J(σ′ + L ′

2)− J(σ + L2)

− J ′(σ + L2)(σ′ − σ + δL2)
)
,

Bσr = 0.

By definition of G̃(σ,L2), see Lemma A.4, this can be expressed as

(σr,ur) = −G̃(σ,L2)
(
J(σ′+L ′

2)−J(σ+L2)−J ′(σ+L2)(σ′−σ+ δL2),0
)
.

The assumption on G̃ yields

‖σr‖Y + ‖ur‖V ≤ C ‖J(σ′ + L ′
2)− J(σ + L2)− J ′(σ + L2)(σ′ −σ + δL2)‖Y .

Since J : Z → Y is assumed to be Fréchet differentiable, we obtain

‖J(σ′ + L ′
2)− J(σ + L2)− J ′(σ + L2)(σ′ − σ + δL2)‖Y = o (‖σ′ − σ‖Z).

Due to the local Lipschitz continuity of Gσ : Z ×Z ×W ′ → Z, the term on the
right hand side is of order o (‖δL1‖Z + ‖δL2‖Z + ‖δ`‖W ′), and the combination
of all estimates leads to

‖σr‖Y + ‖ur‖V = o (‖δL1‖Z + ‖δL2‖Z + ‖δ`‖W ′),

which concludes the proof.

We remark that the result of Theorem A.6 does not simply follow from
the implicit function theorem. In order to apply the implicit function theorem
to (44), we would need the assumption that G̃ maps Y × V ′ to Z × V . This
is, however, not satisfied for the situation in which we apply Theorem A.6 in
Subsection 3.1.
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