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Uniform Exponential Stability of Discrete
Semigroup and Space of Asymptotically

Almost Periodic Sequences
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Abstract. We prove that the discrete semigroup T = {T (n) : n ∈ Z+} is uniformly
exponentially stable if and only if for each z(n) ∈ AAP0(Z+,X ) the solution of the
Cauchy problem {

yn+1 = T (1)yn + z(n + 1),

y(0) = 0

belongs to AAP0(Z+,X ). Where T (1) is the algebraic generator of T, Z+ is the set
of all non-negative integers and X is a complex Banach space. Our proof uses the
approach of discrete evolution semigroups.
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1. Introduction

Let A be a bounded linear operator acting on a complex Banach space X . A
well known theorem of M. G. Krein [10, 13] says that the system ẋ(t) = Ax(t)
is uniformly exponentially stable if and only if for each µ ∈ R and each y0 ∈ X
the solution of the Cauchy problem{

ẏ(t) = Ay(t) + eiµty0,

y(0) = 0

is bounded. The proof of this classic result can be found in [1]. This result can
also be extended for strongly continuous bounded semigroups, see [17].
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Under a slightly different assumption the result on stability remains valid
for any strongly continuous semigroups acting on complex Hilbert spaces, see for
example [18,19] and references therein. See also, [11], for counter-examples. In
[7,21] the same result were extended for square size matrices in both continuous
and discrete cases.

Recently Zada et al. [22] proved that the system xn+1 = T (1)xn is uniformly
exponentially stable if and only if for each q-periodic bounded sequence z(n)
with z(0) = 0 the solution of the Cauchy problem{

yn+1 = T (1)yn + z(n+ 1),

y(0) = 0

is bounded.
In this article we extended the result of last quoted paper to the space of

asymptotically almost periodic sequences denoted by AAP0(Z+,X ). Similar
results in the continuous case can be found in [3,5,6,15] and in the discrete case
can be seen in [4,12,20,23]. For the periodic and almost periodic sequences we
recommend [2,9].

2. Notations and Preliminaries

Let X be a real or complex Banach space and B(X ) the Banach algebra of all
linear and bounded operators acting on X .

We denote by ‖·‖ the norms of operators and vectors. Denote by R+ the set
of real numbers, by Z the set of all integers and by Z+ the set of non-negative
integers. Let us consider the following spaces

• B(Z,X ) is the spaces of all X -valued bounded sequences with the supre-
mum norm.

• C0(Z,X ) is the sub space of B(Z,X ) consisting of all X -valued sequences
z(n) such that lim|n|→∞ |z(n)| = 0.

• Pq(Z,X ) is the space of q-periodic X -valued (with q ≥ 2) sequences z(n).

• Pq0(Z,X ) ⊆ Pq(Z,X ), with z(0) = 0.

• AP(Z,X ) is the space of all X -valued almost periodic sequences.

Throughout this paper, A ∈ B(X ), σ(A) denotes the spectrum of A, and
r(A) := sup{|λ| : λ∈ σ(A)} denotes the spectral radius of A. It is well known

that r(A)=limn→∞ ‖An‖
1
n . The resolvent set of A is defined as ρ(A) :=C\σ(A),

i.e., the set of all λ ∈ C for which A− λI is an invertible operator in B(X ).
We give some results in the framework of general Banach spaces and spaces

of sequences as defined above.
The operator A is said to be power bounded if there exists a positive con-

stant M such that ‖An‖ ≤M for all n ∈ Z+.
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We recall that the discrete semigroup is a family T = {T (n) : n ∈ Z+} of
bounded linear operators acting on X which satisfies the following conditions

(1) T (0) = I, the identity operator on X,

(2) T (n+m) = T (n)T (m) for all n,m ∈ Z+.

Let T (1) denote the algebraic generator of the semigroup T. Then it is clear
that T (n) = T n(1) for all n ∈ Z+. The growth bound of T is denoted by ω0(T)
and is defined as

ω0(T) := inf{ω ∈ R : ∃ Mω > 0 such that ‖T (n)‖ ≤Mωe
ωn for alln ∈ Z+}.

The family T is uniformly exponentially stable if ω0(T) is negative, or equiva-
lently, if there exist two positive constants M and ω such that ‖T (n)‖ ≤Me−ωn

for all n ∈ Z+.
We recall the following lemma without proof from [1], so that the paper will

be self contained.

Lemma 2.1. Let A ∈ L(X). If

sup
n∈Z+

∥∥ n∑
k=0

eiµkAk
∥∥ = Mµ <∞, for all µ ∈ R,

holds, then r(A) < 1.

Given T (1) ∈ B(X ) is the algebraic generator of T. Consider the discrete
system

xn+1 = T (1)xn, n ∈ Z+. (T (1))

The solution of the above system is xn = T (n)x0, i.e., there exists a bijec-
tion between the discrete semigroups T = {T (n) : n ∈ Z+} and the problem
xn+1 = T (1)xn.

Also consider the following discrete Cauchy problem:{
yn+1 = T (1)yn + z(n+ 1), n ∈ Z+,

y0 = 0,
(T (1), 0)

The solution of the above Cauchy problem is given by

yn =
n∑
k=0

T (n− k)z(k).

In [22], the exponential stability of the system (T (1)) in terms of the bound-
edness of the solution of the Cauchy problem (T (1), 0) on space Pq(Z+,X ),
where q ≥ 2 is a fixed integer, are given as follows.

Theorem 2.2 ([22, Corollary 3.3]). The system xn+1 = T (1)xn is uniformly
exponentially stable if and only if for each q-periodic bounded sequence z(n) with
z(0) = 0 the unique solution of the Cauchy problem (T (1), 0) is bounded.
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3. Evolution semigroups and uniform exponential stabil-
ity of T on space AAP0(Z+,X )

Let T = {T (n); n ∈ Z+} is an exponentially bounded discrete semigroup of
bounded linear operators on Banach space X . For every n ∈ Z+ and each
F ∈ C0(Z,X ) the sequence

(
K(n)F

)
, given by

s→ (K(n)F )(s) := T (n)F (s− n) : Z→ X

belongs to C0(Z,X ) and the family K = {K(n) : n ∈ Z} is a discrete semi group
on C0(Z,X ), for similar results in continuous case we recommend [14].

If T = {T (n); n ∈ Z+} is a q-periodic discrete semigroup, n ∈ Z+ and
G ∈ AP(Z+,X ) then the sequence

(
S(n)G

)
given by

s→ (S(n)G)(s) := T (n)G(s− n) : Z→ X ,

belongs to AP(Z,X ) and the one parameter discrete family S = {S(n) : n ∈ Z}
is discrete semigroup on AP(Z,X ), for continuous case we recommend [16]. K
and S are called evolution semigroups on C0(Z,X ) and AP(Z,X ), respectively.

Let us consider the spaces C0(Z+,X ) and AP(Z+,X ) consisting of sequences
f, g : Z+ → X for which there exists F ∈ C0(Z,X ) such that F (n) = f(n) for
all n ∈ Z+ and there exists G ∈ AP(Z,X ) such that G(n) = g(n) for all n ∈ Z+.
Also consider the subspaces of above spaces as:

• C00(Z+,X ) ⊆ C0(Z+,X ), consisting of all X -valued sequences f such that
f(0) = 0.

• AP0(Z+,X ) ⊆ AP(Z+,X ), consisting of all X -valued sequences g such
that g(0) = 0.

• AAP0(Z+,X ) = C00(Z+,X ) ⊕ AP0(Z+,X ), i.e., AAP0(Z+,X ) consisting
of all X -valued sequences h such that there exists f ∈ C00(Z+,X ) and
g ∈ AP0(Z+,X ) with the condition that h = f + g. Clearly h(0) = 0.

For each h ∈ AAP0(Z+,X ) and every n ∈ Z+ consider the sequence V(n)h
given by (

V(n)h
)
(m) =

{
T (n)h(m− n), if m ≥ n,
0, if 0 ≤ m < n.

(1)

The semigroup V = {V(n) : n ∈ Z+} is called the evolution semigroup associ-
ated to T = {T (n) : n ∈ Z+} on the space AAP0(Z+,X ).

Lemma 3.1. The discrete semigroup V := {V(n) : n ∈ Z+} leave the space
AAP0(Z+,X ) invariant.

Proof. Let h = f + g with f ∈ C00(Z+,X ) and g ∈ AP0(Z+,X ) such that
h(0) = 0 and let F ∈ C0(Z,X ) and G ∈ AP(Z,X ) such that F (m) = f(m) and
G(m) = g(m) for all m ∈ Z+. It can be seen that for all n ∈ Z+ we have

V(n)h = (1{0,1,2... }S(n)G) +
(
1{n,n+1,... }K(n)F − 1{0,1,...,n−1}S(n)G

)
.
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As {S(n)}n∈Z is the evolution semigroup on AP(Z,X ) and 1A is the char-
acteristic function on the set A. If we put g1 := 1{0,1,2... }S(n)G and f1 :=
1{n,n+1,... }K(n)F − 1{0,1,2...n}S(n)G then g1 ∈ AAP0(Z+,X ), f1 ∈ C00(Z+,X )
and (f1 + g1)(0) = 0, thus V acts on AAP0(Z+,X ).

Before going to next lemma we mention here the following remark.

Remark 3.2. Let A := V(1)−I, where V(1) is called the algebraic generator of
the discrete evolution semigroup V. Then For discrete semigroups, the Taylor
formula of order one is

V(n)f − f =
n−1∑
k=0

V(k)Af, n ∈ Z+ with n ≥ 1, (2)

for all f ∈ X .

With the help of the above remark, in the following lemma the discrete
version of [15, Lemma 1.1] and [5, Lemma 3.6] is obtain.

Lemma 3.3. Let T = {T (n); n ∈ Z+} be a q-periodic discrete semigroup of
bounded linear operators on X , V = {V(n) : n ∈ Z+} is the evolution semigroup
associated to T on the space AAP0(Z+,X ), given in (1), and A = V(1)− I. Let
u, f ∈ AAP0(Z+,X ). Then the following two statements are equivalent.

(1) Au(n) = −f(n).

(2) u(n) =
∑n

k=0 T (n− k)f(k) for all n ∈ Z+.

Proof. (1)⇒ (2): Using the Taylor formula (2), we have

V(n)u− u =
n−1∑
m=0

V(m)Au = −
n−1∑
m=0

V(m)f.

Hence, for every n ∈ Z+, u(n) = (V(n)u)(n) +
∑n−1

m=0(V(m)f)(n) = T (n)u(0) +∑n−1
m=0 T (m)f(n−m) =

∑n
k=0 T (n− k)f(k).

(2)⇒ (1): For the converse implication as A = V(1)− I, thus

Au(n) = (V(1)− I)u(n)

= V(1)u(n)− u(n)

= T (1)
n−1∑
k=0

T (n− 1− k)f(k)− u(n)

=
n−1∑
k=0

T (n− k)f(k)−
n∑
k=0

T (n− k)f(k)

= −f(n)

The proof is complete.
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The following theorem gives a characterization of the uniform exponen-
tial stability for the discrete semigroup T = {T (n) : n ∈ Z+} on the space
AAP0(Z+,X ), the space of all X -valued asymptotically almost periodic se-
quences.

Theorem 3.4. Let T, V and A be as in Lemma 3.3. The following statements
are equivalent:

(1) T is uniformly exponentially stable.

(2) The evolution semigroup V associated to T on AAP0(Z+,X ) is uniformly
exponentially stable.

(3) A is an invertible operator.

(4) For every f ∈ AAP0(Z+,X ) the sequence
∑n

k=0 T (n − k)f(k) belongs to
AAP0(Z+,X ).

(5) For every f ∈ AAP0(Z+,X ) the sequence
∑n

k=0 T (n− k)f(k) is bounded
on Z+.

(6) For any f ∈ Pq0(Z+,X ) the sequence t 7→
∑n

k=0 T (n − k)f(k) is bounded
on Z+.

Proof. (1) ⇒ (2): Let N and ν be two positive constants such that ||T (n)|| ≤
Ne−νn for all n ∈ Z+. Let f ∈ AAP0(Z+,X ) then for any n ∈ Z+, we have

‖T (n)f‖AAP0 = sup
m≥n
‖T (n)f(m−n)‖ ≤ Ne−νn‖f(m−n)‖AAP0 = Ne−νn‖f‖AAP0 .

Thus the evolution semigroup V associated to T on AAP0(Z+,X ) is uniformly
exponentially stable.

(2) ⇒ (3): It is well known that the evolution semigroup V is uniformly
exponentially stable if and only if r(V(1)) < 1. Then the assumption assure us
that 1 ∈ ρ(V(1)) and so V(1)− I is invertible, i.e., A is invertible.

(3) ⇒ (4): As V(1) − I is invertible thus for every f ∈ AAP0(Z+,X )
there exists a unique u ∈ AAP0(Z+,X ) such that [V(1) − I]u = −f . Thus by
Lemma 3.3 we get that u(n) =

∑n
k=0 T (n − k)f(k) and by Lemma 3.1 u(n)

belongs to AAP0(Z+,X ), i.e.,
∑n

k=0 T (n− k)f(k) ∈ AAP0(Z+,X ).

(4)⇒ (5) and (4)⇒ (6) are obvious.

(6)⇒ (1): This is a direct consequence of Theorem 2.2.

The proof is complete.

Remark 3.5. A similar result in the continuous case was stated in [5, Theo-
rem 3.7]. There the authors did not closed the chain with (5) ⇒ (1). But in
our case with the help of Theorem 2.2, we close the chain, i.e., (6)⇒ (1), as a
consequence we can state the following corollary.
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Corollary 3.6. The system ζn+1 = T (1)ζ(n) is uniformly exponentially stable
if and only if for every z(n) ∈ AAP0(Z+,X ) the unique solution of the Cauchy
problem {

ζn+1 = T (1)ζn + z(n+ 1), n ∈ Z+,

ζ0 = 0,

belongs to AAP0(Z+,X ).
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[4] Buşe, C., Khan, A., Rahmat, G. and Tabassum, A., Uniform exponen-
tial stability for nonautonomous system via discrete evolution semigroups.
Bull. Math. Soc. Sci. Math. Roumanie 57 (2014)(2), 193 – 205.
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[6] Buşe, C. and Lupulescu, V., Exponential stability of linear and almost periodic
systems on Banach spaces. Electron. J. Diff. Equ. 125 (2003), 1 – 7.
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