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Existence of a Positive Solution to Kirchhoff
Problems Involving the Fractional Laplacian

Bin Ge and Chao Zhang

Abstract. The goal of this paper is to establish the existence of a positive solution
to the following fractional Kirchhoff-type problem(

1 + λ

∫
RN

(∣∣(−∆)
α
2 u(x)

∣∣2 + V (x)u2
)
dx

)[
(−∆)αu+ V (x)u

]
= f(u) in RN ,

where N ≥ 2, λ ≥ 0 is a parameter, α ∈ (0, 1), (−∆)α stands for the fractional
Laplacian, f ∈ C(R+,R+). Using a variational method combined with suitable trun-
cation techniques, we obtain the existence of at least one positive solution without
compactness conditions.

Keywords. Fractional-Laplacian, Variational method, Cut-off function, Pohozaev
type identity
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1. Introduction

In this paper, we are concerned with the existence of positive solutions for a
class of fractional Kirchhoff-type problem(

1+λ

∫
RN

(∣∣(−∆)
α
2 u(x)

∣∣2+V (x)u2
)
dx

)[
(−∆)αu+V (x)u

]
=f(u) in RN, (P)

where N ≥ 2, λ ≥ 0 is a parameter, α ∈ (0, 1), (−∆)α stands for the fractional
Laplacian, f ∈ C(R+,R+). The fractional Laplacian (−∆)α with α ∈ (0, 1) of
a function φ ∈ S is defined by

F (((−∆)α)φ) (ξ) = |ξ|2αF(φ)(ξ), ∀α ∈ (0, 1),
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where S denotes the Schwartz space of rapidly decreasing C∞-functions in RN ,
F is the Fourier transform, i.e.,

F(φ)(ξ) =
1

(2π)
N
2

∫
RN
e−2πiξ·xφ(x)dx.

If φ is smooth enough, it can also be computed by the following singular integral:

(−∆)αφ(x) = cN,α P.V.

∫
RN

φ(x)− φ(y)

|x− y|N+2α
dy.

Here P.V. is the principal value and cN,α is a normalization constant.
The fractional Kirchhoff equation was first studied by Fiscella and Valdi-

noci [10]. If λ = 0, then problem (P) becomes problem (P1) as follows:

(−∆)αu+ V (x)u = f(u) in RN , (P1)

which has been extensively studied in the past few years by many authors.
We just mention the earlier works by Autuori and Pucci [1], Chang [2], Chang
and Wang [3], Cheng [5], Dipierro, Palatucci and Valdinoci [6], Evéquoz and
Fall [8], Felmer, Quaas and Tan [9], Secchi [14], Shen and Gao [17], Shang and
Zhang [16] and the references therein. Here we just mention some results related
to our problems.

• For the case V ≡ 1, the authors in [9] studied the existence of positive so-
lutions of (P1) when f has subcritical growth and satisfies the Ambrosetti-
Rabinowitz condition.

• For the case V ≡ 0, Chang and Wang in [3] obtained the existence of
a positive ground state under the general Berestycki-Lions type assump-
tions.

• Moreover, for the general potential V that is allowed to vary, ground states
were found by imposing a coercivity assumption on V , i.e.,

lim
|x|→+∞

V (x) = +∞.

We refer the readers to [5,14] for details. Recently, when the potential V
satisfies the following conditions H(V)(1) and H(V)(3), Chang in [2]
proved the existence of ground state solutions under the assumption that
f(u) is asymptotically linear with respect to u.

Inspired by the above-mentioned papers, we are concerned with the ex-
istence of positive solutions of (P). The novelties in this paper are mainly
two parts. First, we just assume that the nonlinear term f(u) is superlin-
ear with respect to u at infinity instead of the asymptotically linear condition
or Ambrosetti-Rabinowitz condition, which is completely different from those
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appeared in the literatures. To compensate the lack of compactness, we em-
ploy the Pohozaev Identity and a cut-off functional to obtain the boundedness
of Palais-Smale sequence. Second, it is worth mentioning that in the present
paper we consider the existence of non-radial positive solutions of (P). We have
to prove a new compact embedding theorem by virtue of some assumptions
imposed on the potential V .

Throughout this paper, we assume the following conditions which are con-
siderably weaker than the ones in the previous works:

H(V) : (1) V ∈ C(RN ,RN), V0 := infx∈RN V (x) > 0;

(2) 〈∇V (x), x〉 ∈ L N
2α (RN) and |〈∇V (x), x〉|

L
N
2α (RN )

< 2αSα, where Sα

is the best Sobolev constant of the embedding Ḣα(RN) ↪→ L2∗α(RN),

i.e., Sα = infu∈Ḣα(RN )

∫
RN |(−∆)

α
2 u|2dx

|u|2
2∗α

, (see [4]);

(3) There exists r > 0 such that for any b > 0

lim
|y|→∞

µ({x ∈ RN : V (x) ≤ b} ∩Br(y)) = 0,

where µ is the Lebesgue measure on RN .

H(f) : (1) f : R+ → R+ is of class C1,γ for some γ > max{0, 1− 2α};
(2) |f(u)| ≤ C(|u| + |u|p−1) for all u ∈ R+ = [0,+∞) and p ∈ (2, 2∗α),

where 2∗α = 2N
N−2α

for N ≥ 2;

(3) limu→0
f(u)
u

= 0;

(4) limu→∞
f(u)
u

=∞.

Next, we state our main result.

Theorem 1.1. Assume that H(V) and H(f) hold. Then there exists λ0 > 0
such that for any λ ∈ [0, λ0), problem (P) has at least one positive solution.

The rest of this paper is organized as follows. In Section 2, we state and
prove some preliminary results that will be used later. We will finish the proof
of our main result (Theorem 1.1) in Section 3.

2. Preliminary

In this section we recall some results on Sobolev spaces of fractional order. A
very complete introduction to fractional Sobolev spaces can be found in [7].

Consider the fractional order Sobolev space

Hα(RN) =
{
u ∈ L2(RN) :

∫
RN

(
|ξ|2αû2 + û2

)
dξ < +∞

}
,
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where û
.
= F(u). The norm is defined by

‖u‖Hα(RN ) =

(∫
RN

(|ξ|2αû2 + û2)dξ

) 1
2

.

The homogeneous fractional Sobolev space Dα,2(RN), also denoted by
Ḣα(RN), is defined as the completion of C∞0 (RN) with respect to the norm

‖u‖Ḣα(RN ) =

(∫
RN
|ξ|2αû2dξ

) 1
2

=

(∫
RN
|(−∆)

α
2 u(x)|2dx

) 1
2

.

In this paper we consider its subspace:

E =

{
u ∈ Ḣα(RN) :

∫
RN
V (x)u2dx < +∞

}
with the norm

‖u‖E =

(∫
RN
|(−∆)

α
2 u(x)|2dx+

∫
RN
V (x)u2dx

) 1
2

.

Lemma 2.1. ([9, Lemma 2.1]) Hα(RN) continuously embedded into Lp(RN) for
p ∈ [2, 2∗α], and compactly embedded into Lploc(RN) for p ∈ [2, 2∗α).

Using the above lemma, we can obtain the following result.

Theorem 2.2. Assume that H(V)(1) and H(V)(3) hold. Then

(i) we have a compact embedding E ↪→ L2(RN);

(ii) for any p ∈ (2, 2∗α), we have a compact embedding E ↪→ Lp(RN).

Proof. (i) Assume un ⇀ 0 in E, and ‖un‖E ≤ c1. We need to show un → 0 in
L2(RN). By Lemma 2.1, we have un → 0 in L2

loc(RN). It suffices to show that
for every ε > 0, there exists R > 0 such that∫

BcR

|un|2dx ≤ ε forall n = 1, 2, . . . ,

where BR = {x ∈ RN : |x| < R}, Bc
R = {x ∈ RN : |x| ≥ R}.

Firstly, choose {yi} ⊂ RN such that RN ⊂
⋃∞
i=1Br(yi) and each x ∈ RN is

covered by at most 2N such balls. So∫
BcR

|un|2dx ≤
∑

|yi|≥R−r

∫
Br(yi)

|un|2dx

=
∑

|yi|≥R−r

[∫
Br(yi)∩{x∈RN :V (x)>b}

|un|2dx+

∫
Ab(yi)

|un|2dx
]
,
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where Ab(yi) = Br(yi) ∩ {x ∈ RN : V (x) ≤ b}.
On the one hand,∫

Br(yi)∩{x∈RN :V (x)>b}
|un|2dx ≤

1

b

∫
Br(yi)

V (x)|un|2dx,

where Br(y) = {x ∈ RN : |x− y| < r}.
On the other hand, since the Sobolev embedding E ↪→ Hα(RN) ↪→ L2∗α(RN)

is continuous, there exists a constant c2 > 0 such that

|un|2∗α ≤ c2‖un‖E ≤ c1c2.

Applying Hölder’s inequality, we get∫
Ab(yi)

|un|2dx ≤
(∫

Ab(yi)

|un|
2N

N−2αdx

)N−2α
N
(∫

Ab(yi)

1
N
2αdx

) 2α
N

≤
(∫

Ab(yi)

|un|
2N

N−2αdx

)N−2α
N

sup
|yi|≥R−r

[
µ(Ab(yi))

] 2α
N .

Hence,∫
BcR

|un|2dx

≤
∑

|yi|≥R−r

[
1

b

∫
Br(yi)

V (x)|un|2dx+

(∫
Ab(yi)

|un|
2N

N−2αdx

)N−2α
N

sup
|yi|≥R−r

[
µ(Ab(yi))

] 2α
N

]

≤ 2N

b

∫
BcR−2r

V (x)|un|2dx+

(
2N
∫
BcR−2r

|un|
2N

N−2αdx

)N−2α
N

sup
|yi|≥R−r

[
µ(Ab(yi))

] 2α
N

≤ 2N

b

∫
RN
V (x)|un|2dx+ 2N−2α

(∫
RN
|un|

2N
N−2αdx

)N−2α
N

sup
|y|≥R−r

[
µ(Ab(y))

] 2α
N

≤ 2N

b

∫
RN

(
|(−∆)

α
2 un|2 + V (x)|un|2

)
dx+ 2N−2α|un|22∗α sup

|y|≥R−r

[
µ(Ab(y))

] 2α
N

≤ 2N

b
‖un‖2

E + 2N−2αc2
2‖un‖2

E sup
|y|≥R−r

[
µ(Ab(y))

] 2α
N

≤ 2N

b
c2

1 + 2N−2αc2
2c

2
1 sup
|y|≥R−r

[
µ(Ab(y))

] 2α
N .

Now, choose b > 0 such that

2N

b
c2

1 <
ε

2
. (1)
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For such a fixed b > 0, since sup|y|≥R−r
[
µ(Ab(y))

] 2α
N → 0, as R → +∞, there

exists R > 0 large enough such that

sup
|y|≥R−r

[
µ(Ab(y))

] 2α
N ≤ ε

2N−2α+1c2
2c

2
1

. (2)

It follows from (1) and (2) that∫
BcR

|un|2dx ≤ ε,

from which conclusion (i) of the lemma follows.

(ii) To prove the lemma for general exponent p ∈ (2, 2∗α), we use an in-
terpolation argument. Let un ⇀ 0 in E, we have just proved that un → 0
in L2(RN).

Moreover, since the embedding E ↪→ L2∗α(RN) is continuous and {un} is
bounded in E, we also have supn

∫
RN |un|

2∗αdx < +∞.
Since 2 < p < 2∗α, there exists λ ∈ (0, 1) such that 1

p
= λ

2
+ 1−λ

2∗α
. Then we

have

s =
2

pλ
> 1 and t =

2∗α
p(1− λ)

> 1.

Using Hölder’s inequality, we deduce that∫
RN
|un|pdx =

∫
RN
|un|

2
s |un|

2∗α
t dx ≤

∣∣|un| 2s ∣∣s∣∣|un| 2∗αt ∣∣t = |un|
2
s
2 |un|

2∗α
t

2∗α
→ 0,

as n→ +∞. This implies un → 0 in Lp(RN), and the proof of conclusion (ii) is
completed.

Next, we state the following version of Pohozaev identity, which will be
used to obtain the boundedness of ‖un‖E. Similar results can be found in
[3, 7, 13, 15]. Its proof is a mixture of many ingredients that are scattered
through the literature. We refer the readers to [15, Proposition 4.1] (see also
[3, Proposition 4.1] for the case that V (x) ≡ 0) for the details.

Lemma 2.3. Let N ≥ 2. Assume that H(f)(1) and H(f)(2) hold. If u ∈ E is
a weak solution (P), then the following Pohozaev type identity holds:

N − 2α

2

∫
RN
|(−∆)

α
2 u|2dx+

N

2

∫
RN
V (x)|u|2dx+

1

2

∫
RN
〈∇V (x), x〉|u(x)|2dx

= N

∫
RN
F (u(x))dx.

Remark 2.4. We would like to mention that the regularity condition H(f)(1)
is necessary to prove the Pohozaev identity. The smoothness of f will only be
used here.
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In order to discuss the problem (P), we need to define a functional in E:

ϕλ(u) =
1

2
‖u‖2

E +
λ

4
‖u‖4

E −
∫
RN
F (u(x))dx, ∀u ∈ E.

Then we have from H(f)(1) and H(f)(2) that ϕ is well defined on E and is
of C1 for all λ ≥ 0, and

〈ϕ′λ(u), v〉

= (1 + λ‖u‖2
E)

∫
RN

(
(−∆)

α
2 u(−∆)

α
2 v + V (x)uv

)
dx−

∫
RN
f(u)vdx, ∀u, v∈E.

It is standard to verify that the weak solutions of (P) correspond to the critical
points of the functional ϕ.

To overcome the difficulty of finding bounded Palais-Smale (PS)-sequences
for the associated functional ϕλ, following [12], we use a cut-off function
η ∈ C∞(R+) satisfying 

η(t) = 1, t ∈ [0, 1],
0 ≤ η(t) ≤ 1, t ∈ (1, 2),

η(t) = 0, t ∈ [2,+∞),
|η|∞ ≤ 2,

(3)

and study the following modified functional ϕMλ : E → R defined by

ϕMλ (u) =
1

2
‖u‖2

E +
λ

4
hM(u)‖u‖4

E −
∫
RN
F (u(x))dx, ∀u ∈ E,

where for every M > 0, hM(u) = η
(
‖u‖2E
M2

)
. With this penalization, for M > 0

sufficiently large and for λ sufficiently small, we are able to find a critical point

u of ϕMλ such that ‖u‖E ≤M and so u is also a critical point of ϕλ.

Next we recall a monotonicity method due to Struwe [18] and Jeanjean [11],
which will be used in our proof. The version here is from [11].

Theorem 2.5. Let (X, ‖ · ‖) be a Banach space and I ⊂ R+ an interval. Con-
sider the family of C1-functionals on X

ϕµ(u) = A(u)− µB(u), µ ∈ I,

with B nonnegative and either A(u)→∞ or B(u)→∞ as ‖u‖ → ∞ and such
that ϕµ(0) = 0.

For any µ ∈ I we set Tµ = {γ ∈ C([0, 1], X) : γ(0) = 0, ϕµ(γ(1)) < 0}. If
for every µ ∈ I, the set Tµ is nonempty and

cµ = inf
γ∈Tµ

max
t∈[0,1]

ϕµ(γ(t)) > 0,

then for almost every µ ∈ I there is a sequence {un} ⊂ X such that
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(1) {un} is bounded;

(2) ϕµ(un)→ cµ as n→∞;

(3) ϕ′µ(un)→ 0 as n→∞, in the dual space X−1 of X.

In our case, X = E,

A(u) =
1

2
‖u‖2

E +
λ

4
hM(u)‖u‖4

E and B(u) =

∫
RN
F (u)dx.

So the perturbed functional which we study is

ϕMλ,µ(u) =
1

2
‖u‖2

E +
λ

4
hM(u)‖u‖4

E − µ
∫
RN
F (u(x))dx, ∀u ∈ E,

and

〈(ϕMλ,µ)′(u), v〉

=

(
1+λhM(u)‖u‖2

E +
λ

2M2
η′
(
‖u‖2

E

M2

)
‖u‖4

E

)∫
RN

(
(−∆)

α
2 u(−∆)

α
2 v+V (x)uv

)
dx

− µ
∫
RN
f(u)vdx, ∀u, v∈E.

3. Some lemmas and proof of main result

In this section, to overcome the lack of compactness, we need to consider the
functional ϕMλ,µ in the functions space E. We shall prove that ϕMλ,µ satisfies the
conditions of Theorem 2.2 in the next several lemmas.

Lemma 3.1. Let Tµ be the set of paths defined in Theorem 2.2. Then Tµ 6= ∅
for any µ ∈ I = [δ, 1], where δ ∈ (0, 1) is a positive constant.

Proof. We choose ξ ∈ C∞0 (RN) with ‖ξ‖E = 1 and sup ξ ⊂ Br(0) for some
r > 0. From H(f)(4), we know that for any c3 > 0 with c3δ

∫
Br(0)

ξ2dx > 1
2
,

there exists c4 > 0 such that

F (u) ≥ c3|u|2 − c4, u ∈ R+. (4)

Then for t2 > 2M2 we have

ϕMλ,µ(tξ) =
1

2
‖tξ‖2

E +
λ

4
hM(tξ)‖tξ‖4

E − µ
∫
RN
F (tξ)dx

=
t2

2
+
λ

4
η
(t2‖ξ‖2

E

M2

)
t4 − µ

∫
RN
F (tη)dx

≤ t2

2
− δc3t

2

∫
Br(0)

η2dx+ c4|Br(0)|

= t2
(

1

2
− δc3

∫
Br(0)

η2dx

)
+ c4|Br(0)|.
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Therefore, we can choose t > 0 large such that ϕMλ,µ(tξ) < 0. The proof is
completed.

Lemma 3.2. Let cµ be the set of paths defined in Theorem 2.2. Then there
exists a constant c > 0 such that cµ ≥ c for µ ∈ [δ, 1].

Proof. By H(f)(2) and H(f)(3), for any ε ∈ (0, 1
2
), there exists cε > 0 such that

|F (u)| ≤ εV0

2
|u|2 + cε|u|p, u ∈ R+. (5)

Furthermore, by Lemma 2.1, we have E ↪→ Lp(RN) is continuous. Then
there exists c5 > 0 such that |u|p ≤ c5‖u‖E. Hence, for any u ∈ E and µ ∈ [δ, 1],
using (5) it follows that

ϕMλ,µ(u) =
1

2
‖u‖2

E +
λ

4
hM(tξ)‖u‖4

E − µ
∫
RN
F (u)dx

≥ 1

2
‖u‖2

E −
∫
RN

(εV0

2
|u|2 + cε|u|p

)
dx

≥ 1

2
‖u‖2

E −
ε

2

∫
RN
V (x)|u|2dx− cε

∫
RN
|u|pdx

≥ 1

2
‖u‖2

E −
ε

2

∫
RN

(
|(−∆)

α
2 u|2 + V (x)|u|2

)
dx− cε

∫
RN
|u|pdx

≥ 1

4
‖u‖2

E − cε|u|pp

≥ 1

4
‖u‖2

E − cεc
p
5‖u‖

p
E,

which implies that there exists ρ > 0 such that ϕMλ,µ(u) > 0 for every u ∈ E
and ‖u‖E ∈ (0, ρ]. In particular, for ‖u‖E = ρ, we have ϕMλ,µ(u) ≥ c > 0. Fix
µ ∈ [δ, 1] and γ ∈ Tµ. By the definition of Tµ we can see that ‖γ(1)‖E > ρ.
By continuity, we deduce that there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖E = ρ.
Thus, for any µ ∈ [δ, 1],

cµ ≥ inf
γ∈Tµ

ϕMλ,µ(γ(tγ)) ≥ c > 0.

Therefore, we complete the proof.

Next we prove that the functional ϕMλ,µ can achieve the critical value at cµ
for any µ ∈ [δ, 1].

Lemma 3.3. For any µ ∈ [δ, 1] and λM2 < 1
8
, each bounded (PS)-sequence of

the functional ϕMλ,µ admits a convergent subsequence.
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Proof. Let µ ∈ [δ, 1]. Suppose that {un} ⊂ E is a (PS)-sequence for ϕMλ,µ, that
is, {un} and ϕMλ,µ(un) are bounded, (ϕMλ,µ)′(un)→ 0 in E ′, where E ′ is the dual
space of E. Then there exists u ∈ E such that un ⇀ u in E. Thus, Theorem 2.1
implies that

un → u in Lp(RN) and un → u a.e. in RN .

By virtue of hypothesis H(f)(2) and H(f)(3), for any ε ∈ (0,min{1
2
, V0

2N
}), there

exists cε > 0 such that

|f(u)| ≤ ε|u|+ cε|u|p−1, u ∈ R+. (6)

So it follows from (6) that∣∣∣∣ ∫
RN
f(un)(un − u)dx

∣∣∣∣ ≤ ∫
RN
|f(un)||un − u|dx

≤
∫
RN

(ε|un|+ cε|un|p−1)|un − u|dx

≤ ε|un|2|un − u|2 + cε
∣∣|un|p−1

∣∣
p′
|un − u|p

≤ ε|un|2|un − u|2 + cε|un|p−1
p |un − u|p

≤ εc5‖un‖E|un − u|2 + cεc
p−1
5 ‖un‖p−1

E |un − u|p,

which implies that
∫
RN f(un)(un − u)dx→ 0 as n→∞. Thus

〈(ϕMλ,µ)′(un), un − u〉

=

(
1 + λhM(un)‖un‖2

E +
λ

2M2
η′
(
‖un‖2

E

M2

)
‖un‖4

E

)
×
∫
RN

(
(−∆)

α
2 un(−∆)

α
2 (un − u) + V (x)un(un − u)

)
dx

− λ
∫
RN
f(un)(un − u)dx

=

(
1 + λhM(un)‖un‖2

E +
λ

2M2
η′
(
‖un‖2

E

M2

)
‖un‖4

E

)
×
∫
RN

(
(−∆)

α
2 un(−∆)

α
2 (un − u) + V (x)un(un − u)

)
dx+ o(1)

and(
1 + λhM(un)‖un‖2

E +
λ

2M2
η′
(
‖un‖2

E

M2

)
‖un‖4

E

)
×
∫
RN

(
(−∆)

α
2 un(−∆)

α
2 (un − u) + V (x)un(un − u)

)
dx→ 0, as n→∞.
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Note that
∣∣∣η′(‖un‖2EM2

)
‖un‖4

E

∣∣∣ ≤ 8M4 and λM2 < 1
8
. Therefore we conclude

that ‖un‖2
E → ‖u‖2

E. This together with un ⇀ u in E shows that un → u in E.

The proof is completed.

Now we are in the position to show that the modified functional ϕMλ,µ has a
nontrivial critical point.

Lemma 3.4. Assume λM2 < 1
8
. Then for almost every µ ∈ [δ, 1], there exists

uµ ∈ E\{0} such that (ϕMλ,µ)′λ(uµ) = 0 and ϕMλ,µ(uµ) = cµ.

Proof. By virtue of Theorem 2.2, for almost every µ ∈ [δ, 1], there exists a
bounded sequence {unµ} ⊂ E such that

ϕMλ,µ(unµ)→ cµ and (ϕMλ,µ)′(unµ)→ 0 as n→∞.

According to Lemma 3.3, we may assume that there exists uµ ∈ E such that
unµ → uµ in E. Then it follows that ϕMλ,µ(uµ) = cµ and (ϕMλ,µ)′(uµ) = 0 and
uµ 6= 0 from Lemma 3.2.

From Lemma 3.4 we know that there exist a sequence µn ∈ [δ, 1] with
µn → 1− and an associated sequence {un} ⊂ E such that

ϕMλ,µn(un) = cµn and (ϕMλ,µn)′(un) = 0. (7)

Next, we will show that the sequence {un} is bounded, which is a key
ingredient in this paper.

Lemma 3.5. Let un be a critical point of ϕMλ,µn at the level cµn as defined in (7).

Then for M > 0 sufficiently large, there exists λ0 = λ0(M) with λ0M
2 < 1

8
such

that for any λ ∈ [0, λ0), we have ‖un‖E ≤M for all n.

Proof. We argue by contradiction. Firstly, if we set

g(un) =
f(un)

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

,

then from Lemma 2.2 and (7), we infer that un satisfies the following Pohozaev
identity

N−2α

2

∫
RN
|(−∆)

α
2 un|2dx+

N

2

∫
RN
V (x)|un|2dx+

1

2

∫
RN
〈∇V (x), x〉|un|2dx

= µnN

∫
RN
G(un)dx,

(8)

where G(t) =
∫ t

0
g(s)ds.
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Recall that ϕMλ,µn(un) = cµn . So we have

N

2
‖un‖2

E +
λN

4
hM(un)‖un‖4

E − µnN
∫
RN
F (un)dx = cµnN. (9)

Then from (8), (9) and hypothesis H(f)(2), it follows that

α

∫
RN
|(−∆)

α
2 un|2dx

=
N

2
‖un‖2

E +
1

2

∫
RN
〈∇V (x), x〉|un|2dx− µnN

∫
RN
G(un)dx

=
N

2
‖un‖2

E +
1

2

∫
RN
〈∇V (x), x〉|un|2dx

−
µnN

∫
RN F (un)dx

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

=
N

2
‖un‖2

E +
1

2

∫
RN
〈∇V (x), x〉|un|2dx

+
CµnN − N

2
‖un‖2

E − λN
4
hM(un)‖un‖4

E

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

=
1

2

∫
RN
〈∇V (x), x〉|un|2dx

+
CµnN + λN

4
hM(un)‖un‖2

E + λN
4M2η

′
(
‖un‖2E
M2

)
‖un‖6

E

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

≤1

2
|〈∇V (x), x〉|

L
N
2α (RN )

|un|22∗α

+
CµnN + λN

4
hM(un)‖un‖2

E + λN
4M2η

′
(
‖un‖2E
M2

)
‖un‖6

E

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

≤ 1

2Sα
|〈∇V (x), x〉|

L
N
2α (RN )

∫
RN
|(−∆)

α
2 un|2dx

+
CµnN + λN

4
hM(un)‖un‖2

E + λN
4M2η

′
(
‖un‖2E
M2

)
‖un‖6

E

1 + λhM(un)‖un‖2
E + λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

.

Set M0 = α− 1
2Sα
|〈∇V (x), x〉|

L
N
2α (RN )

. Then

M0

∫
RN
|(−∆)

α
2 un|2dx≤

CµnN+ λN
4
hM(un)‖un‖2

E+ λN
4M2η

′
(
‖un‖2E
M2

)
‖un‖6

E

1+λhM(un)‖un‖2
E+ λ

2M2η′
(
‖un‖2E
M2

)
‖un‖4

E

. (10)
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We estimate the right hand side of (10). By the min-max definition of the
mountain pass level cλn , Lemma 3.1 and (4), we have

cµn ≤ max
t
ϕMλ,µn(tη)

≤ max
t

{
t2

2
− µn

∫
RN
F (tη)dx

}
+
λ

4
max
t
η
( t2

M2

)
t4

≤ max
t

{
t2
(

1

2
− δc3

∫
Br(0)

η2dx

)
+ c4|Br(0)|

}
+ λM4

≤ c4|Br(0)|+ λM4.

(11)

On the other hand, from (3), we infer that

λN

4
hM(un)‖un‖4

E ≤ λNM4,

λN

4M2
η′
(‖un‖2

E

M2

)
‖un‖6

E ≤ 4λNM4.

(12)

Using (11) and (12) in (10), we obtain

M0

∫
RN
|(−∆)

α
2 un|2dx ≤

CµnN + λN
2
M2 + 4λM4

1− 4λM2
.

Note that E ⊂ Ḣα(RN) and the embedding Ḣα(RN) ↪→ L2∗α(RN) is contin-
uous. Then we have

|u|22∗α ≤
1

Sα

∫
RN
|(−∆)

α
2 u|2dx, ∀u ∈ E,

where Sα is the best Sobolev constant of the embedding Ḣα(RN) ↪→ L2∗α(RN),

i.e., Sα = infu∈Ḣα(RN )

∫
RN |(−∆)

α
2 u|2dx

|u|2
2∗α

, (see [4]).

Recall from (7)

(
1+λhM(un)‖un‖2

E+
λ

2M2
η′
(
‖un‖2

E

M2

)
‖un‖4

E

)
‖un‖2

E =Nµn

∫
RN
f(un)undx. (13)
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Using (6) in (13), we obtain

1

2
‖un‖2

E ≤
(

1 + λhM(un)‖un‖2
E +

λ

2M2
η′
(
‖un‖2

E

M2

)
‖un‖4

E

)
‖un‖2

E

≤N
∫
RN

(
ε|un|2 + cε|un|p

)
dx

≤N
∫
RN

(
ε
V (x)

V0

|un|2 + cε|un|2
∗
α

)
dx

≤Nε
V0

∫
RN

(
|(−∆)

α
2 un|2 + V (x)|un|2

)
dx+ cεN

∫
RN
|un|2

∗
αdx

≤Nε
V0

‖un‖2
E + cεN

[
1

Sα

∫
RN
|(−∆)

α
2 un|2dx

] N
N−2α

,

which implies that(
1

2
− Nε

V0

)
‖un‖2

E ≤cεN

[
1

Sα

∫
RN
|(−∆)

α
2 un|2dx

] N
N−2α

≤cεN

[
1

SαM0

CµnN + λN
2
M2 + 4λM4

1− 4λM2

] N
N−2α

≤cεN

[
2

SαM0

(
c4|Br(0)|+ λM4 +

λN

2
M2 + 4λM4

)] N
N−2α

.

We suppose by contradiction that there exists no subsequence of {un}∞n=1

which is uniformly bounded by M . Then we can assume that ‖un‖E > M ,
n ∈ N . This means that

M < ‖un‖E

≤ cεN

[
2

SαM0

(
c4|Br(0)|+ λM4 +

λN

2
M2 + 4λM4

)] N
N−2α

2V0

(V0 − 2Nε)

≤ cεN

[
2

SαM0

(
c4|Br(0)|+ λM4 +

λN

2
M4 + 4λM4

)] N
N−2α

2V0

(V0 − 2Nε)
,

which is not true for M large and λM4 < 1
8
. So by setting λ0 <

1
8M4 , we obtain

the conclusion.

Finally, we are ready to prove our main theorem.

Proof of Theorem 1.1. Let M , λ0 be defined as in Lemma 3.5. Let un be a
critical point for ϕMλ,µn at the level cµn . Then from Lemma 3.5 we may assume
that ‖un‖E ≤ c5.
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Note that µn → 1, we can show that {un} is a (PS)-sequence of ϕλ. Indeed,
the boundedness of {un} implies that {ϕλ(un)} is bounded. Also

〈ϕ′λ(un), v〉 = 〈(ϕMλ,µn)′(un), v〉+ (µn − 1)

∫
RN
f(un)vdx, ∀v ∈ E.

Hence, ϕ′λ(un) → 0, and consequently {un} is a bounded (PS)-sequence of ϕλ.
By Lemma 3.3, {un} has a convergent subsequence, hence without loss of gen-
erality we may assume that un → u. Therefore, ϕ′λ(u) = 0. By virtue of
Lemma 3.2, we have

ϕλ(u) = lim
n→∞

ϕλ(un) = lim
n→∞

ϕMλ,λn(un) ≥ c > 0,

and u is a positive solution by the condition H(f)(1). The proof is comple-
ted.
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