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Asymptotic Almost Periodicity
to Some Evolution Equations
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Abstract. In this paper, we introduce a new notion of semi-Lipschitz continuity for
the class of asymptotically almost periodic functions and establish new existence the-
orems for asymptotically almost periodic mild solutions to some semilinear abstract
evolution equations upon making some suitable assumptions. As one would expect,
the results presented here would generalize and improve some recent results in this
area.
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1. Introduction

As a natural extension of almost periodicity, the notion of asymptotic almost pe-
riodicity was introduced in the works of Fréchet [9,10] in the early 1940s. Since
then, this notion has found several developments and has been generalized into
different directions. In particular, the study of the existence of asymptotically
almost periodic solutions is an attractive topic in the qualitative theory of dif-
ferential equations due to their significance and applications in physics, mathe-
matical biology, control theory, and so on. For significant works along this line,
we refer readers to Arendt and Batty [3] for inhomogeneous Cauchy problems
on R+, Agarwal et al. [1] for some evolution equations in Banach spaces, de
Andrade and Lizama [2] and Lizama et al. [11] for a class of nonlinear damped
wave equations and strongly damped semilinear wave equations respectively,
and Cushing [7] for predator-prey systems with or without hereditary effects.
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For more information concerning the motivations and relevant developments of
this study, please see Cheban [5], and Ruess and Phong [13] and the references
therein.

Stimulated by the works above, the main purpose of this paper is to study
asymptotically almost periodic solutions of semilinear evolution equations of
the form

u′(t) = Au(t) + f(t, u(t)), t ∈ R (1)

in the Banach space {X, ‖ · ‖} by introducing a new notion of semi-Lipschitz
continuity for the class of asymptotically almost periodic functions. Here, the
operator A : D(A) ⊂ X → X is the infinitesimal generator of a hyperbolic
C0-semigroup {T (t)}t≥0 on X and f : R × X → X is a given function to be
specified later.

Moreover, we extend this result to the semilinear neutral evolution equation
in the form

d

dt
[u(t)− h(t, u(t)] = Au(t) + f(t, u(t)), t ∈ R, (2)

where h : R × X → Y is a given function to be specified later (Y ⊂ X is a
Banach space).

Some new existence results of asymptotically periodic mild solutions to
equations (1) and (2) are established, without imposing (locally) Lipschitz con-
dition on the nonlinearity f with respect to the second variable. As can be seen,
the hypotheses in our result are reasonably weak.

In our main results, we require T (t) to satisfy a compactness assumption,
but do not require the Lipschitz condition of f as a whole with respect to
the second variable (see Remark 2.3, Theorem 2.8 and Theorem 3.5 below).
However, in many previous papers on asymptotically periodic solutions such as
[1, 17], the nonlinearity as a whole is assumed to satisfy a (locally) Lipschitz
condition and hence the Banach contraction principle becomes one of the key
tools in the study of the corresponding problems. So our results generalize
essentially those in [1,17] and related research and have more broad applications.

To begin with, we recall that a C0-semigroup {T (t)}t≥0 is said to be hyper-
bolic if there exists a projection P on X and constants M, δ > 0 such that T (t)
commutes with P , T (t)N(P) = N(P), T (t) : Im(Q) → Im(Q) is invertible
and for x ∈ X,

‖T (t)Px‖ ≤Me−δt‖x‖, t ≥ 0,

‖T (t)Qx‖ ≤Meδt‖x‖, t ≤ 0,

where N(P) is the kernel of P , Q := I −P and T (t) := T (−t)−1 for t < 0. We
would like to mention that {T (t)}t≥0 is hyperbolic if and only if

σ(T (t)) ∩ {λ ∈ C; |λ| = 1} = ∅ for one/all t > 0.
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Especially, if P = I, then {T (t)}t≥0 is said to be uniformly exponentially stable,
that is to say,

‖T (t)‖ ≤Me−δt for all t ≥ 0.

For more information on spectral characterizations of hyperbolicity, we refer
to the monograph of Engel and Nagel [8, Chapter V].

In the sequel, we fix some notations and definitions. By Cb(R;X) denote
the Banach space of all bounded, continuous functions from R to X, equipped
with the supreme norm ‖ · ‖∞ := supt∈R ‖ · (t)‖. Let C0(R;X) be the closed
subspace of Cb(R;X) consisting of functions vanishing at infinity. Additionally,
similar notations as above also apply to Cb(R;Y ) and C0(R;Y ), where Y ⊂ X
is a Banach space.

We present the following compactness criterion, which is a special case of
the general compactness result of [14, Theorem 2.1].

Lemma 1.1. A set D ⊂ C0(R;X) is relatively compact if

(1) D is equicontinuous;

(2) lim|t|→+∞ u(t) = 0 uniformly for u ∈ D;

(3) the set D(t) := {u(t);u ∈ D} is relatively compact in X for every t ∈ R.

Definition 1.2. A continuous function u : R→ X is said to be almost periodic
if for each ε > 0 there exists a positive number l = l(ε) such that every interval
[a, a+ l] (a ∈ R) of length l contains at least one number τ with the property

‖u(t+ τ)− u(t)‖ < ε for every t ∈ R.

The number τ is called an ε almost period of the function u. Denote by
AP (R;X) the set of such functions.

Definition 1.3. A continuous function u : R→ X is said to be asymptotically
almost periodic if it can be decomposed as

u = u1 + u2,

where u1 ∈ AP (R;X) and u2 ∈ C0(R;X). Denote by AAP (R;X) the set of
such functions.

Clearly, AP (R;X) and AAP (R;X), endowed with the supremum norm
‖ · ‖∞, turn out to be Banach spaces.

Let C0(R×X;X) be the set of all continuous functions g from R×X to X
vanishing at infinity uniformly in any compact subset of X, in other words,

lim
|t|→+∞

‖g(t, x)‖ = 0 uniformly for x ∈ K,

where K is an any compact subset of X.
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Definition 1.4. Let f : R×X → X be a continuous function.

(a) f is called almost periodic if f(t, x) is almost periodic in t ∈ R uniformly
for x in any compact subset of X. The class of such functions will be
denoted by AP (R×X;X).

(b) f is called asymptotically almost periodic if it can be decomposed as

f = f1 + f2,

where f1∈AP (R×X;X) and f2∈C0(R×X;X). Denote by AAP (R×X;X)
the set of such functions.

Concerning the composition of almost periodic functions, we have the fol-
lowing result.

Lemma 1.5. (see, e.g., [2,16]) Let f ∈ AP (R×X;X) and u ∈ AP (R;X), then
f(·, u(·)) belongs to AP (R;X).

2. Main results

Throughout this section, it is assumed that {T (t)}t≥0 is hyperbolic and compact.
In this section, we are going to derive some sufficient conditions under which
equation (1) has at least one asymptotically almost periodic mild solution.

We begin, by introducing a new notion of semi-Lipschitz continuity for the
class of almost periodic functions.

Definition 2.1. Given f = f1+f2 ∈AAP (R×X;X) with f1 ∈AP (R×X;X),
f2 ∈ C0(R×X;X). f is said to be semi-Lipschitz continuous if there exists a
constant L > 0 such that

‖f1(t, x)− f1(t, y)‖ ≤ L‖x− y‖

for all t ∈ R and x, y ∈ X.

Remark 2.2. Notice in particular that if f1 satisfies the Lipschitz condition
stated above and f1(t, x) is almost periodic on R for all x ∈ X, then f1 is
almost periodic uniformly for x ∈ X ranging over compact subsets of X (see
[6, Lemma 2.6] and [4, Theorem 3.12]), which means that the Lipschitz condition
of Definition 2.1 for f1 would work to reduce the almost periodic property of f1
to simply asking for f1(t, x) being almost periodic on R for all x ∈ X.

Remark 2.3. Assuming that f ∈ AAP (R×X;X) is semi-Lipschitz continuous,
it is noted that f as a whole does not necessarily verify the Lipschitz continuity
with respect to the second variable. Such class of functions is more complicated
than those with Lipschitz continuity with respect to the second variable and
little is known about them.
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Lemma 2.4. Given f = f1 +f2 ∈ AAP (R×X;X) with f1 ∈ AP (R×X;X),
f2∈C0(R×X;X). Then it yields that

sup
t∈R
‖f1(t, x)− f1(t, y)‖ ≤ sup

t∈R
‖f(t, x)− f(t, y)‖, x, y ∈ X,

which implies that f is semi-Lipschitz continuous when f is Lipschitz continuous
with respect to the second variable uniformly for t ∈ R.

Proof. To show our result, it suffices to verify that

{f1(t, x)− f1(t, y); t ∈ R} ⊂ {f(t, x)− f(t, y); t ∈ R}, x, y ∈ X.

In fact, if this is not the case, then for fixed x, y ∈ X, there exist some t0 ∈ R
and ε > 0 such that

‖(f1(t0, x)− f1(t0, y))− (f(t, x)− f(t, y))‖ ≥ 3ε for all t ∈ R.

We assume, without loss of generality, that t0 ≥ 0, since the case when t0 < 0
can be treated in a similar way.

It is clear that lim|t|→∞ ‖f2(t, x) − f2(t, y)‖ = 0, which implies that there
exists positive number T such that

‖f2(t, x)− f2(t, y)‖ < ε (3)

whenever t ≥ T . Since f1 ∈ AP (R×X;X) one can take l = l(ε) > 0 such that
[T, T + l] of length l contains at least a τ with the properties

‖f1(t0 + τ, x)− f1(t0, x)‖ < ε and ‖f1(t0 + τ, y)− f1(t0, y)‖ < ε,

which enables us to find that

‖f2(t0 + τ, x)− f2(t0 + τ, y)‖
≥ ‖f(t0 + τ, x)− f(t0 + τ, y)− f1(t0, x) + f1(t0, y)‖
− ‖f1(t0 + τ, x)− f1(t0, x)‖ − ‖f1(t0 + τ, y)− f1(t0, y)‖

> ε,

which contradicts (3) (noticing t0 + τ ≥ T ), completing the proof.

We also need the following composition result concerning asymptotically
almost periodic functions.

Lemma 2.5. Given f = f1 +f2 ∈ AAP (R×X;X) with f1 ∈ AP (R×X;X),
f2 ∈ C0(R×X;X) and u = u1 + u2 ∈ AAP (R;X) with u1 ∈ AP (R;X),
u2 ∈ C0(R;X). If f is semi-Lipschitz continuous, then f(·, u(·)) belongs to
AAP (R;X) with f1(·, u1(·)) ∈ AP (R;X), f1(·, u(·)) − f1(·, u1(·)) ∈ C0(R;X),
and f2(·, u(·)) ∈ C0(R;X).
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Proof. By the semi-Lipschitz continuity of f we observe that for all t ∈ R,
‖f1(t, u(t))−f1(t, u1(t)‖ ≤ L‖u2(t)‖, which implies that f1(·, u(·))−f1(·, u1(·) ∈
C0(R;X) due to u2 ∈ C0(R;X). Noticing this and Lemma 1.5, one can easily
find, along the same lines as in the proof of [2, Lemma 2.8], the assertion of the
lemma remains true. Here we omit the details.

Before stating the existence theorem, we first prove the following auxiliary
result.

Lemma 2.6. Given u1 ∈ AP (R;X) and u2 ∈ C0(R;X) . Write

G1(t) :=

∫ t

−∞
T (t− s)Pu1(s)ds−

∫ +∞

t

T (t− s)Qu1(s)ds, t ∈ R,

G2(t) :=

∫ t

−∞
T (t− s)Pu2(s)ds−

∫ +∞

t

T (t− s)Qu2(s)ds, t ∈ R.

Then G1 ∈ AP (R;X) and G2 ∈ C0(R;X).

Proof. From the hyperbolicity of C0-semigroup {T (t)}t≥0 it is clear that G1

and G2 are well-defined and continuous on R.
Given ε > 0. Since u1 ∈ AP (R;X), one can take l(ε) > 0 involved in

Definition 1.2 such that every interval of length l(ε) contains a number τ with
the property that ‖u1(t+ τ)− u1(t)‖ < ε for every t ∈ R. The estimate

‖G1(t+ τ)−G1(t)‖ ≤
∥∥∥∥∫ t

−∞
T (t− s)P (u1(s+ τ)− u1(s)) ds

∥∥∥∥
+

∥∥∥∥∫ +∞

t

T (t− s)Q (u1(s+ τ)− u1(s)) ds

∥∥∥∥
≤M

∫ t

−∞
e−δ(t−s)‖u1(τ + s)− u1(s)‖ds

+M

∫ +∞

t

eδ(t−s)‖u1(τ + s)− u1(s)‖ds

≤ 2Mδ−1ε

is responsible for the fact that G1 ∈ AP (R;X).
Since u2 vanishes at infinity, one can choose an N > 0 such that ‖u2(t)‖ < ε

for all t > N . This enables us to conclude that for each t > N ,∥∥∥∥∫ t

−∞
T (t− s)Pu2(s)ds

∥∥∥∥ ≤ ∥∥∥∥∫ N

−∞
T (t− s)Pu2(s)ds

∥∥∥∥+

∥∥∥∥∫ t

N

T (t− s)Pu2(s)ds
∥∥∥∥

≤Mδ−1e−δ(t−N)‖u2‖∞ +Mδ−1ε,
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from which we see ‖
∫ t
−∞ T (t − s)Pu2(s)ds‖ → 0 as t → +∞. Also, for each

t ∈ R, ∥∥∥∥∫ +∞

t

T (t− s)Qu2(s)ds
∥∥∥∥ ≤Mδ−1 sup

s≥t
‖u2(s)‖,

which together with u2 ∈ C0(R;X) implies that
∫ +∞
t

T (t−s)Qu2(s)ds→ 0 in X
as t→ +∞. From this, we obtain limt→+∞ ‖G2(t)‖ = 0. By a similar argument
it follows readily that limt→−∞ ‖G2(t)‖ = 0. The proof is then completed.

To prove our main results, let us introduce the following assumption:

(H) f=f1+f2∈AAP (R×X;X) with f1∈AP (R×X;X) and f2∈C0(R×X;X)
is semi-Lipschitz continuous with the Lipschitz constant L. Moreover,
there exists a function β ∈ C0(R,R+) and a nondecreasing function Φ :
R+ → R+ such that for all t ∈ R and x ∈ X satisfying ‖x‖ ≤ r,

‖f2(t, x)‖ ≤ β(t)Φ(r), and lim inf
r→+∞

Φ(r)

r
= ρ1. (4)

Let β be the function involved in assumption (H). Write

σ1(t) :=

∫ t

−∞
e−δ(t−s)β(s)ds, t ∈ R,

σ(t) :=

∫ t

−∞
e−δ(t−s)β(s)ds +

∫ +∞

t

eδ(t−s)β(s)ds, t ∈ R.

Then an analogue argument used in Lemma 2.6 yields that σ1, σ ∈ C0(R,R+).
Put

ρ2 := sup
t∈R

σ(t), ρ3 := sup
t∈R

σ1(t).

Definition 2.7. A continuous function u : R→ X is called an asymptotically
almost periodic mild solution to equation (1) on R if u ∈ AAP (R;X) and it
satisfies the integral equation of the form

u(t) = T (t− τ)u(τ) +

∫ t

τ

T (t− s)f(s, u(s))ds for all t > τ.

Now we are in a position to present our existence result:

Theorem 2.8. Under the hypothesis (H), equation (1) has at least one asymp-
totically almost periodic mild solution provided that

2MLδ−1 +Mρ2ρ1 < 1. (5)
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Proof. As in the hypothesis (H), f = f1 + f2 ∈ AAP (R × X;X) with
f1 ∈ AP (R×X;X) and f2 ∈ C0(R×X;X) is semi-Lipschitz continuous.

To prove the existence of asymptotically almost periodic mild solution to
equation (1), let us consider the coupled system of integral equations of form

v(t)=

∫ t

−∞
T (t− s)Pf1(s, v(s))ds−

∫ +∞

t

T (t− s)Qf1(s, v(s))ds, t∈R,

w(t)=

∫ t

−∞
T (t− s)P [f1(s, v(s) + w(s))− f1(s, v(s))] ds

−
∫ +∞

t

T (t− s)Q [f1(s, v(s) + w(s))− f1(s, v(s))] ds

+

∫ t

−∞
T (t− s)Pf2(s, v(s) + w(s))ds

−
∫ +∞

t

T (t− s)Qf2(s, v(s) + w(s))ds, t∈R.

(6)

Note that if (v, w) ∈ AP (R;X) × C0(R;X) is a solution to the coupled sys-
tem (6), then u := v + w belongs to AAP (R;X) and it is a solution to the
integral equation in the form

u(τ) =

∫ τ

−∞
T (τ − s)Pf(s, u(s))ds−

∫ +∞

τ

T (τ − s)Qf(s, u(s))ds, τ ∈ R.

Multiplying the both sides above by T (t − τ) with t > τ , one finds that u is
an asymptotically almost periodic mild solution to equation (1). Hence the
beginning matters for the end is to show that the coupled system (6) has at
least a solution in AP (R;X)× C0(R;X).

We start by defining a mapping Λ on AP (R;X) as follows:

(Λv)(t) =

∫ t

−∞
T (t− s)Pf1(s, v(s))ds−

∫ +∞

t

T (t− s)Qf1(s, v(s))ds, t ∈ R.

From our hypotheses on f1 and Lemma 2.5 it follows that f1(·, v(·)) ∈ AP (R;X)
for every v ∈ AP (R;X). This, together with Lemma 2.6, implies that Λ is well-
defined and maps AP (R;X) into itself. Moreover, for any v1, v2 ∈ AP (R;X)
we obtain by the semi-Lipschitz continuity of f ,

‖(Λv1)(t)− (Λv2)(t)‖

≤ML

(∫ t

−∞
e−δ(t−s)‖v1(s)−v2(s)‖ds+

∫ +∞

t

eδ(t−s)‖v1(s)−v2(s)‖ds
)

≤ 2MLδ−1‖v1 − v2‖∞.
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Together with (5), this proves that Λ is a contraction on AP (R;X). Thus,
applying the Banach’s fixed point theorem, one finds that Λ has an unique
fixed point v ∈ AP (R;X).

For such v, we define a mapping Γ := Γ1 + Γ2 on C0(R;X) as

(Γ1w)(t) =

∫ t

−∞
T (t− s)PJ ′v(s, w(s))ds−

∫ +∞

t

T (t− s)QJ ′v(s, w(s))ds, t∈R,

(Γ2w)(t) =

∫ t

−∞
T (t− s)PJ ′′v (s, w(s))ds−

∫ +∞

t

T (t− s)QJ ′′v (s, w(s))ds, t∈R,

where the mappings J ′v, J
′′
v : R×X → X are defined by J ′v(t, x)=f1(t, v(t)+x)−

f1(t, v(t)) and J ′′v (t, x) = f2(t, v(t) + x) (t ∈ R, x ∈ X). From (H) we observe

‖J ′v(t, x)‖ ≤ L‖x‖, ‖J ′v(t, x)− J ′v(t, y)‖ ≤ L‖x− y‖ for x, y∈X, t∈R,
‖J ′′v (t, x)‖ ≤ β(t)Φ(r + sup

t∈R
‖v(t)‖) for all t∈R, x∈X with ‖x‖≤r, (7)

which imply that J ′v(·, w(·)) and J ′′v (·, w(·)) belong to C0(R;X) for every w ∈
C0(R;X). Therefore, employing Lemma 2.6 one finds that Γ is well-defined and
maps C0(R;X) into itself. To the end, it suffices to prove that Γ possesses at
least one fixed point in C0(R;X). Set Ωr := {w ∈ C0(R;X); ‖w‖∞ ≤ r} for
simplicity.

Firstly, by (4) and (5) it is not difficult to see that there exists a k0 > 0 such
that 2MLδ−1k0 +MΦ(k0 + supt∈R ‖v(t)‖)ρ2 ≤ k0. This enables us to conclude
that for any t ∈ R and w1, w2 ∈ Ωk0 ,

‖(Γ1w1)(t) + (Γ2w2)(t)‖

≤M

∫ t

−∞
e−δ(t−s)‖J ′v(s, w1(s))‖ds+M

∫ +∞

t

eδ(t−s)‖J ′v(s, w1(s))‖ds

+M

∫ t

−∞
e−δ(t−s)‖J ′′v (s, w2(s))‖ds+M

∫ +∞

t

eδ(t−s)‖J ′′v (s, w2(s))‖ds

≤ 2MLδ−1k0 +MΦ(k0 + sup
t∈R
‖v(t)‖)ρ2

≤ k0,

which implies that Γ1w1 + Γ2w2 belongs to Ωk0 for every pair w1, w2 ∈ Ωk0 .
In the sequel, we show that Γ1 is a contraction on Ωk0 . For w1, w2 ∈ Ωk0

and t ∈ R, by (7) we have∥∥(Γ1w1)(t)− (Γ1w2)(t)
∥∥ ≤M

∫ t

−∞
e−δ(t−s)‖J ′v(s, w1(s))− J ′v(s, w2(s))‖ds

+M

∫ +∞

t

eδ(t−s)‖J ′v(s, w1(s))− J ′v(s, w2(s))‖ds

≤ 2MLδ−1‖w1 − w2‖∞.
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Thus, by virtue of (5), we obtain the conclusion.
From our assumptions it is clear that Γ2 is a continuous mapping from Ωk0

to Ωk0 . Thus, to be able to apply a well known fixed point theorem of Kras-
noselskii (see, e.g., [15]) to obtain a fixed point of Γ, we need to verify that Γ2

is compact on Ωk0 .
Firstly, as

‖(Γ2w)(t)‖ ≤MΦ(k0 + sup
t∈R
‖v(t)‖)σ(t) for all w ∈ Ωk0 and t ∈ R,

in view of (7), we conclude that lim|t|→+∞(Γ2w)(t) = 0 uniformly for w ∈ Ωk0 .
Let t ∈ R be fixed. For each ε0 > 0, from (7) it follows that

(Γ2
ε0
w)(t) :=

∫ t−ε0

−∞
T (t−ε0−s)PJ ′′v (s, w(s))ds−

∫ +∞

t−ε0
T (t−ε0−s)QJ ′′v (s, w(s))ds

is uniformly bounded for w ∈ Ωk0 in X. This, together with the fact that T (ε0)
is compact, yields that the set {T (ε0)(Γ

2
ε0
w)(t);w ∈ Ωk0} is relatively compact

in X. Now, noticing

‖(Γ2w)(t)− T (ε0)(Γ
2
ε0
w)(t)‖

≤
∥∥∥∥∫ t

t−ε0
T (t− s)PJ ′′v (s, w(s))ds

∥∥∥∥+

∥∥∥∥∫ t

t−ε0
T (t− s)QJ ′′v (s, w(s))ds

∥∥∥∥
→ 0 as ε0 → 0+,

by (7), one finds, using the total boundedness, that the set {(Γ2w)(t);w ∈ Ωk0}
is relatively compact in X for each t ∈ R.

Next, we consider the equicontinuity of the set {Γ2w;w ∈ Ωk0}. Given
ε1 > 0. In view of (7) there exists an η > 0 such that∥∥∥∥∫ t

τ

T (t− s)PJ ′′v (s, w(s))ds

∥∥∥∥ < ε1
5
,∥∥∥∥∫ τ

τ−η
(T (t− s)− T (τ − s))PJ ′′v (s, w(s))ds

∥∥∥∥ < 2ε1
5

are valid for all w ∈ Ωk0 and t ≥ τ with t− τ < η. Also, one can choose a κ > 0
such that 2Mδ−1Φ(k0 + supt∈R ‖v(t)‖)e−δκ sups∈R β(s) < ε1

5
, which yields that

for all w ∈ Ωk0 and t ≥ τ ,∥∥∥∥∫ τ−κ

−∞
(T (t− s)− T (τ − s))PJ ′′v (s, w(s))ds

∥∥∥∥ < ε1
5
.

Thus, we see from the fact that the compactness of {T (t)}t>0 implies its norm
continuity that there exists an η′ ∈ (0, η) such that
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∥∥∥∥∫ t

−∞
T (t− s)PJ ′′v (s, w(s))ds−

∫ τ

−∞
T (τ − s)PJ ′′v (s, w(s))ds

∥∥∥∥
≤
∥∥∥∥∫ t

τ

T (t− s)PJ ′′v (s, w(s))ds

∥∥∥∥+

∥∥∥∥∫ τ

τ−η
(T (t− s)− T (τ − s))PJ ′′v (s, w(s))ds

∥∥∥∥
+

∥∥∥∥∫ τ−κ

−∞
(T (t− s)− T (τ − s))PJ ′′v (s, w(s))ds

∥∥∥∥
+

∥∥∥∥∫ τ−η

τ−κ
(T (t− s)− T (τ − s))PJ ′′v (s, w(s))ds

∥∥∥∥
< ε1

for every w ∈ Ωk0 and t ≥ τ with t − τ < η′, that is, the family of func-

tions {
∫ ·
−∞ T (· − s)PJ ′′v (s, w(s))ds;w ∈ Ωk0} is equicontinuous. A similar argu-

ment proves that {
∫ +∞
· T (·−s)PJ ′′v (s, w(s))ds;w ∈ Ωk0} is also equicontinuous.

Hence, we obtain the equicontinuity of the set {Γ2w;w ∈ Ωk0}. An application

of Lemma 1.1 justifies the compactness of Γ2 on Ωk0 .

Finally, applying the Krasnoselskii’s fixed point theorem yields that Γ has
at least one fixed point in Ωk0 . This proves that the coupled system (6) has at
least one solution in AP (R;X)× C0(R;X). This completes this proof.

Remark 2.9. Given f = f1 +f2 ∈ AAP (R×X;X) with f1 ∈ AP (R×X;X),
f2 ∈ C0(R×X;X). f is said to be locally semi-Lipschitz continuous if there
exists a nondecreasing function L : R+ → R+ such that

‖f1(t, x)− f1(t, y)‖ ≤ L(r)‖x− y‖

for all t ∈ R and x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ r. Let us note that Theorem 2.8
can be easily extended to the case of f being locally semi-Lipschitz continuous.

3. Neutral evolution equation

In this section, we extend the result obtained in Section 2 to evolution equation
of neutral type (2).

Throughout this section, A is assumed to be the infinitesimal generator
of a compact analytic semigroup {T (t)}t≥0 and 0 ∈ ρ(A), which implies that
{T (t)}t≥0 is uniformly exponentially stable and allows us to define the fractional
power (−A)α for 0 ≤ α < 1, as a closed linear operator on its domain D((−A)α)
with inverse (−A)−α. Let Xα denote the Banach space D((−A)α) endowed with
the graph norm ‖u‖α = ‖(−A)αu‖ for u ∈ Xα.
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Proposition 3.1 ([12, pp. 69–75]). We have

(1) T (t) : X → Xα for each t > 0, and (−A)αT (t)x = T (t)(−A)αx for each
x ∈ Xα and t ≥ 0,

(2) (−A)αT (t) is bounded on X for every t > 0 and there exists a Mα > 0
such that ‖(−A)αT (t)‖ ≤ Mα

tα
e−δt,

(3) (−A)−α is a bounded linear operator in X with D((−A)α) = Im((−A)−α),

where the parameters M0(= M) and δ are those of uniform exponential stability
of the semigroup.

Definition 3.2. A continuous function u : R → X is said to be an asymp-
totically almost periodic mild solution of equation (2), if u ∈ AAP (R;X), the
function s → AT (t − s)h(s, u(s)) is integrable on [τ, t) for all t > τ and it
satisfies the following integral equation

u(t) = T (t− τ)
[
u(τ)− h(τ, u(τ))

]
+ h(t, u(t))

+

∫ t

τ

AT (t− s)h(s, u(s))ds+

∫ t

τ

T (t− s)f(s, u(s))ds for all t > τ.

Let us introduce the following assumption:

(H’) There exists an α ∈ (0, 1) such that h : R × X → Xα is continuous and
(−A)αh ∈ AP (R×X;X). Moreover, for all x, y ∈ X and t ∈ R,

‖h(t, x)− h(t, y)‖α ≤ Lα‖x− y‖,

where Lα > 0 is a constant.

We also need the following composition results, which can be obtained using
similar arguments as in the proofs of Lemma 2.5 and Lemma 2.6.

Lemma 3.3. Let the hypothesis (H′) be satisfied. Given u1 ∈ AP (R;X) and
u2 ∈ C0(R;X), then h(·, u1(·)) ∈ AP (R;Xα) and h(·, u1(·)+u2(·))−h(·, u1(·)) ∈
C0(R;Xα).

Lemma 3.4. Let α ∈ (0, 1), u1 ∈ AP (R;Xα) and u2 ∈ C0(R;Xα). Set

H1(t) :=

∫ t

−∞
AT (t− s)u1(s)ds, H2(t) :=

∫ t

−∞
AT (t− s)u2(s)ds.

Then H1 and H2 belong to AP (R;X) and C0(R;X), respectively.

Our main result in this section is the following.

Theorem 3.5. Under the assumptions (H) and (H’), equation (2) has at least
one asymptotically almost periodic mild solution provided that

Lα‖(−A)−α‖+M1−αδ
−αΓ(α)Lα +Mδ−1L+Mρ1ρ3 < 1. (8)
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Proof. We consider the coupled system of integral equations in the form

v(t) = h(t, v(t)) +

∫ t

−∞
AT (t−s)h(s, v(s))ds+

∫ t

−∞
T (t−s)f1(s, v(s))ds,

w(t) = h(t, v(t) + w(t))− h(t, v(t)) +

∫ t

−∞
T (t− s)f2(s, v(s) + w(s))ds

+

∫ t

−∞
T (t− s)[f1(s, v(s) + w(s))− f1(s, v(s))]ds

+

∫ t

−∞
AT (t− s)[h(s, v(s) + w(s))− h(s, v(s))]ds

(9)

for t ∈ R. Arguing as in the proof of Theorem 2.8, we observe that if (v, w) ∈
AP (R;X)× C0(R;X) is a solution to the coupled system (9), then u := v + w
belongs to AAP (R;X) and it is a solution to the following integral equation

u(t) = h(t, u(t))+

∫ t

−∞
AT (t−s)h(s, u(s))ds+

∫ t

−∞
T (t−s)f(s, u(s))ds, t ∈ R,

which implies that u is an asymptotically almost periodic mild solution to equa-
tion (2). Hence, the solvability of asymptotically almost periodic mild solutions
to equation (2) is transformed into the existence problem of solutions to coupled
system (9) in AP (R;X)× C0(R;X).

On AP (R;X) let us define a mapping Λ′ as

(Λ′v)(t) :=h(t, v(t))+

∫ t

−∞
AT (t−s)h(s, v(s))ds+

∫ t

−∞
T (t−s)f1(s, v(s))ds, t∈R.

Then it is easy to see that Λ′ is well defined and Λ′ maps AP (R;X) into itself in
view of our hypotheses with Lemma 2.5, Lemma 2.6, Lemma 3.3 and Lemma 3.4.
Moreover, for all v1, v2 ∈ AP (R;X), one has

‖(Λ′v1)(t)− (Λ′v2)(t)‖
≤ ‖(−A)−α‖ ‖h(t, v1(t))− h(t, v2(t))‖α

+

∫ t

−∞
‖(−A)1−αT (t−s)‖‖h(s, v1(s))− h(s, v2(s))‖αds

+

∫ t

−∞
‖T (t−s)‖‖f1(s, v1(s))− f1(s, v2(s))‖ds

≤ Lα‖(−A)−α‖‖v1(t)− v2(t)‖+M1−αLα

∫ t

−∞
(t−s)α−1e−δ(t−s)‖v1(s)− v2(s)‖ds

+ML

∫ t

−∞
e−δ(t−s) ‖v1(s)− v2(s)‖ ds

≤
(
Lα‖(−A)−α‖+M1−αδ

−αΓ(α)Lα +Mδ−1L
)
‖v1 − v2‖∞,
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which, together with (8), implies that Λ′ is a contraction on AP (R;X). The
existence and uniqueness of fixed point v of Λ′ follows from the Banach’s fixed
point theorem.

In the sequel, we introduce a mapping Γ0 := Γa0 + Γb0 on C0(R;X) as

(Γa0w)(t) :=Hv(t, w(t)) +

∫ t

−∞
AT (t−s)Hv(s, w(s))ds+

∫ t

−∞
T (t− s)J ′v(s, w(s))ds,

(Γb0w)(t) :=

∫ t

−∞
T (t−s)J ′′v (s, w(s))ds,

where J ′v, J
′′
v are the mappings defined in the proof of Theorem 2.8 and

Hv(t, x) := h(t, x+ v(t))− h(t, v(t)), t ∈ R, x ∈ X.

Observe that J ′v(·, w(·)) and J ′′v (·, w(·)) belong to C0(R;X) for every
w ∈ C0(R;X) and

‖Hv(t, x)‖α ≤ Lα‖x‖,
‖Hv(t, x)−Hv(t, y)‖α ≤ Lα‖x− y‖ for all t ∈ R, x, y ∈ X. (10)

This, together with Lemma 2.5, Lemma 2.6, Lemma 3.3 and Lemma 3.4, yields
that Γ0 is well-defined and maps C0(R;X) into itself. Also, noticing (8), a
similar argument as in the proof of Theorem 2.8 proves that there exists a
k0 > 0 such that Γa0w1 + Γb0w2 belongs to Ωk0 for every pair w1, w2 ∈ Ωk0 .

Next, to obtain a fixed point of Γ0 with the help of the Krasnoselskii’s
fixed point theorem, we will show that Γa0 is a contraction and Γb0 is completely
continuous. Since Γ2 = Γb0 holds when Q = 0, recalling the arguments used in
the proof of Theorem 2.8 yields that Γb0 is completely continuous. Also, from (7)
and (10) it follows that for any w1, w2 ∈ Ωk0 ,

‖(Γa0w1)(t)− (Γa0w2)(t)‖
≤ ‖(−A)−α‖ ‖Hv(s, w1(s))−Hv(s, w2(s))‖α

+

∫ t

−∞
‖T (t− s)[J ′v(s, w1(s))− J ′v(s, w2(s))]‖ds

+

∫ t

−∞
‖(−A)1−αT (t− s)‖‖Hv(s, w1(s))−Hv(s, w2(s))‖αds

≤ Lα‖(−A)−α‖‖w1(t)− w2(t)‖

+M1−αLα

∫ t

−∞
(t− s)α−1e−δ(t−s)‖w1(s)− w2(s)‖ds

+ML

∫ t

−∞
e−δ(t−s) ‖w1(s)− w2(s)‖ ds

≤
(
Lα‖(−A)−α‖+M1−αδ

−αΓ(α)Lα +Mδ−1L
)
‖w1 − w2‖∞,
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which shows that Γa0 is a contraction in view of (8). Hence, applying the
Krasnoselskii’s fixed point theorem yields that Γ0 has at least one fixed point
in Ωk0 . This proves that the coupled system (9) has at least one solution in
AP (R;X)× C0(R;X). This completes the proof of theorem.

4. An example

In this section we present an example as an application of our abstract result.
Take X = L2[0, π] with the norm ‖ · ‖ and inner product (·, ·)2. Consider the
partial differential equation of the form

∂u(t, ξ)

∂t
=
∂2u(t, ξ)

∂ξ2
+ au(t, ξ) + (sin t+ sin πt) sinu(t, ξ)

+ e−|t|u(t, ξ) sinu2(t, ξ), (t, ξ) ∈ R× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,

(11)

where a ∈ (p2, (p+ 1)2) (for some p ∈ N+) is a constant.

Define an operator A : D(A) ⊂ X → X by Ax = ∂2x(ξ)
∂ξ2

+ ax(ξ) and

D(A) = {x ∈ X;x, x′ are absolutely continuous, x′′ ∈ X, and x(0) = x(π) = 0}.

It is clear that ρ(A) = C\{a − n2;n ∈ N+} and A generates a C0-semigroup
{T (t)}t≥0 on X as

T (t)x =
+∞∑
n=1

e(−n
2+a)t(x, yn)2yn, t ≥ 0, x ∈ X,

where yn(ξ) =
√

2
π

sin(nξ). Also, note that T (t) is a nuclear operator for each

t > 0, which gives the compactness of T (t) for each t > 0. Moreover, it is clear
that

‖T (t)Px‖ ≤ e(a−(p+1)2)t‖x‖, t ≥ 0, x ∈ X,
‖T (t)Qx‖ ≤ e(a−p

2)t‖x‖, t ≤ 0, x ∈ X,

where Q is the projection onto the subspace spanned by {y1, . . . , yp} and
P = I − Q, which implies that {T (t)}t≥0 is hyperbolic with M = 1 and
δ = min{a− p2, (p+ 1)2 − a}.

Define

f1(t, x(ξ)) := (sin t+ sin πt) sinx(ξ), t ∈ R, x ∈ X
f2(t, x(ξ)) := e−|t|x(ξ) sinx2(ξ), t ∈ R, x ∈ X.
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Then it is easy to verify that f1,f2 : R×X→X are continuous, f1∈AP (R×X;X),
and

‖f1(t, x)− f1(t, y)‖ ≤ 2‖x− y‖, ‖f2(t, x)‖ ≤ e−|t|‖x‖

for all t ∈ R, x, y ∈ X, which implies that f := f1 + f2 ∈ AAP (R×X;X) and
it is semi-Lipschitz continuous with the Lipschitz constant L = 2.

Thus, (11) can be reformulated as the abstract problem (1) and assump-
tion (H) holds with L = 2, Φ(r) = r, β(t) = e−|t|, ρ1 = 1, ρ2 ≤ 2

δ
. Then

from Theorem 2.8 it follows that when δ > 6, equation (11) at least has one
asymptotically almost periodic mild solution.
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