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Angle Preserving Mappings

Ali Zamani, Mohammad Sal Moslehian and Michael Frank

Abstract. In this paper, we give some characterizations of orthogonality preserving
mappings between inner product spaces. Furthermore, we study the linear mappings
that preserve some angles. One of our main results states that if X ,Y are real inner
product spaces and θ ∈ (0, π), then an injective nonzero linear mapping T : X −→ Y
is a similarity whenever (i) x∠

θ
y ⇔ Tx∠

θ
Ty for all x, y ∈ X ; (ii) for all x, y ∈ X ,

‖x‖ = ‖y‖ and x∠
θ
y ensure that ‖Tx‖ = ‖Ty‖. We also investigate orthogonality

preserving mappings in the setting of inner product C∗-modules. Another result
shows that if K(H ) ⊆ A ⊆ B(H ) is a C∗-algebra and T : E −→ F is an A -linear
mapping between inner product A -modules, then T is orthogonality preserving if and
only if |x| ≤ |y| ⇒ |Tx| ≤ |Ty| for all x, y ∈ E .
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1. Introduction

Let (X , 〈·, ·〉) be a real inner product space and x, y ∈ X r {0}. From the

Cauchy-Schwarz inequality, we have −1 ≤ 〈x,y〉
‖x‖‖y‖ ≤ 1. Therefore, there is a

unique number (̂x, y) ∈ [0, π] such that (̂x, y) = arccos 〈x,y〉
‖x‖‖y‖ . The number

(̂x, y) is called the angle between x and y. If θ = (̂x, y), we write x∠
θ
y. If

(̂x, y) = 0 or π, we say that x, y are parallel and we write x ‖ y (see [24]). Also,

if (̂x, y) = π
2
, we say that x, y are orthogonal and we write x ⊥ y.
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We call a mapping T : X −→ Y , where X and Y are inner product spaces,
orthogonality preserving if x ⊥ y ⇒ Tx ⊥ Ty for all x, y ∈ X . Chmieliński [11]
proved that a linear mapping T preserves orthogonality if and only if T is an
isometry multiplied by a positive constant. Blanco and Turnšek [8], extended
this result to the case of the linear mappings between normed spaces with the
Birkhoff-James orthogonality. Recently the linear mappings preserving approx-
imately Roberts orthogonality in normed spaces have been studied; cf. [23].
Further, Chmieliński [12] studied stability of angle-preserving mappings on the
plane. In Section 3 we give a new characterization of orthogonality preserv-
ing mappings between two real inner product spaces and investigate the linear
mappings that preserve some angles.

It is natural to explore the orthogonality preserving mappings between inner
product C∗-modules. Ilǐsević and Turnšek [16] studied approximately orthog-
onality preserving mappings on C∗-modules. Frank et al. [15] extended some
of the results of [16]. Orthogonality preserving mappings have been treated
also in [13,14]. Burgos [10] studied orthogonality preserving linear mappings on
Hilbert C∗-algebras with non-zero socles. We have also to mention the survey
of Leung et al. [18]. In Section 4 we study orthogonality preserving mappings
in inner product C∗-modules, in particular, we treat the local mappings.

2. Preliminaries

Let us fix our notation and terminology. A C∗-algebra is a complex Banach
∗-algebra (A , ‖ · ‖) with the additional norm condition ‖a∗a‖ = ‖a‖2. The
basic examples of C∗-algebras are K(H ) and B(H ), the algebra of all compact
operators and the algebra of all bounded operators on a complex Hilbert space
H , respectively. An element a ∈ A is called positive, denoted by a ≥ 0, if
a = b∗b for some b ∈ A . If 0 ≤ a ≤ b, then 0 ≤ c∗ac ≤ c∗bc ≤ ‖b‖c∗c for all
c ∈ A . In addition, if a, b ≥ 0 and ‖ac‖ = ‖bc‖ for all c ∈ A , then a = b. If
a ∈ A is positive, then there exists a unique positive b ∈ A such that a = b2.
Such an element b is called the positive square root of a and denoted by a

1
2 .

Also, 0 ≤ a ≤ b implies 0 ≤ a
1
2 ≤ b

1
2 . The converse does not hold in general,

but it is valid in the commutative C∗-algebras. An approximate unit for a C∗-
algebra A is an increasing net (ei)i∈I of positive elements in the closed unit ball
of A such that limi ‖a − aei‖ = 0 for all a ∈ A . More details on the theory
C∗-algebras can be found in [21].

The notion of an inner product C∗-module is a natural generalization of that
of an inner product space arising under the replacement of the field of scalars C
by a C∗-algebra. Let A be a C∗-algebra. An inner product A -module, or an
inner product C∗-module over A is a complex linear space E which is a right
A -module with a compatible scalar multiplication (i.e., µ(xa) = (µx)a = x(µa)
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for all x ∈ E , a ∈ A , µ ∈ C) and equipped with an A -valued inner product
〈·, ·〉 : E × E −→ A satisfying

(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉,
(ii) 〈x, ya〉 = 〈x, y〉a,

(iii) 〈x, y〉∗ = 〈y, x〉,
(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

for all x, y, z ∈ E , a ∈ A , α, β ∈ C.
A mapping T : E −→ F , where E and F are inner product A -modules, is

called A -linear if it is linear and T (xa) = (Tx)a for all x ∈ E , a ∈ A . For an
inner product A -module E the Cauchy-Schwarz inequality holds (see also [3]):

‖〈x, y〉‖2 ≤ ‖〈x, x〉‖ ‖〈y, y〉‖ (x, y ∈ E ).

Consequently, ‖x‖ = ‖〈x, x〉‖ 1
2 defines a norm on E . If E is complete with

respect to this norm, then it is called a Hilbert A -module, or a Hilbert C∗-
module over A . Complex Hilbert spaces are Hilbert C-modules. Any C∗-
algebra A can be regarded as a Hilbert C∗-module over itself via 〈a, b〉 := a∗b.
For every x ∈ E the positive square root of 〈x, x〉 is denoted by |x|. In the case

of a C∗-algebra we get the usual modulus of a, that is |a| = (a∗a)
1
2 . Although

the definition of |x| has the same form as that of the norm of elements of inner
product spaces, there are some significant differences. For instance, it does not
satisfy the triangle inequality in general. Note that the theory of inner product
C∗-modules is quite different from that of inner product spaces. For example,
not any closed submodule of an inner product C∗-module is complemented; a
bounded C∗-linear operator on an inner product C∗-module may not have an
adjoint operator. We refer the reader to [17, 20] for more information on the
basic theory of Hilbert C∗-modules.

3. Linear mappings preserving some angles in inner prod-
uct spaces

We start our work with the following proposition. This result is of independent
interest.

Proposition 3.1. Let θ ∈ (0, π), X be a real inner product space and x, y be two

independent vectors in X such that θ 6= (̂x, y). Then the following conditions

are equivalent:

(i) ‖x‖ = ‖y‖;
(ii) there exists a nonzero scalar λ such that

x+ λy∠
θ
y and y + λx∠

θ
x.
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Moreover, λ is uniquely determined by

λ = −
〈x, y〉 − cot θ

√
‖x‖4 − 〈x, y〉2

‖x‖2
.

Proof. (i)⇒ (ii): We may suppose that 〈x, y〉 6=0. Assume that ‖x‖2 =‖y‖2 =α.
Put

λ := −
〈x, y〉 − cot θ

√
α2 − 〈x, y〉2

α
.

Note that λ 6= 0. Indeed, if λ = 0, then 〈x, y〉 = cot θ
√
α2 − 〈x, y〉2. So,

cos θ = 〈x,y〉
‖x‖‖y‖ , which is impossible. We have

‖x+ λy‖2 = ‖x‖2 + λ2‖y‖2 + 2λ〈x, y〉 = (λ2 + 1)α + 2λ〈x, y〉

and
‖y + λx‖2 = ‖y‖2 + λ2‖x‖2 + 2λ〈x, y〉 = (λ2 + 1)α + 2λ〈x, y〉.

Thus we get

‖x+ λy‖ = ‖y + λx‖

=
√

(λ2 + 1)α + 2λ〈x, y〉

=

〈x, y〉2
α
− 2
〈x, y〉 cot θ

√
α2 − 〈x, y〉2

α
+ α cot2 θ

−〈x, y〉
2 cot2 θ

α
+ α− 2〈x, y〉2

α
+ 2
〈x, y〉 cot θ

√
α2 − 〈x, y〉2

α


1
2

=

√
α2 − 〈x, y〉2
√
α sin θ

. (1)

Since ‖x‖ = ‖y‖, we have

〈y + λx, x〉 = 〈x+ λy, y〉
= 〈x, y〉+ λ‖y‖2

= 〈x, y〉 −

〈x, y〉 − cot θ
√
α2 − 〈x, y〉2

α

α

= cot θ

√
α2 − 〈x, y〉2.

(2)
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Notice that since x and y are independent,
√
α2 − 〈x, y〉2 6= 0. It follows from

(1), (2) that

〈x+ λy, y〉
‖x+ λy‖‖y‖

=
〈y + λx, x〉
‖y + λx‖‖x‖

=
cot θ

√
α2 − 〈x, y〉2

√
α2−〈x,y〉2√
α sin θ

√
α

= cos θ.

Thus x + λy∠
θ
y and y + λx∠

θ
x. In addition, the uniqueness of λ is concluded

from the equality of the cosine of ̂(x+ λy, y) and that of ̂(y + λx, x).

(ii)⇒ (i): Suppose (ii) holds. Since ̂(x+ λy, y) = θ = ̂(y + λx, x), we have

〈x+ λy, y〉
‖x+ λy‖‖y‖

=
〈y + λx, x〉
‖y + λx‖‖x‖

. (3)

Therefore,[
〈x, y〉2 + λ2‖y‖4 + 2λ‖y‖2〈x, y〉

][
‖y‖2 + λ2‖x‖2 + 2λ〈x, y〉

]
‖x‖2

=
[
〈x+ λy, y〉‖y + λx‖‖x‖

]2
=
[
〈y + λx, x〉‖x+ λy‖‖y‖

]2
(by (3))

=
[
〈x, y〉2 + λ2‖x‖4 + 2λ‖x‖2〈x, y〉

][
‖x‖2 + λ2‖y‖2 + 2λ〈x, y〉

]
‖y‖2

A straightforward computation shows that

λ(‖x‖2 − ‖y‖2)(〈x, y〉2 − ‖x‖2‖y‖2)
[
λ(‖x‖2 + ‖y‖2) + 2〈x, y〉

]
= 0.

If 〈x, y〉 = 0, then by identity (3), we arrive at ‖x‖ = ‖y‖. So, we may suppose
that 〈x, y〉 6= 0, and two cases occur:

a) If λ(‖x‖2+‖y‖2)+2〈x, y〉 = 0, then λ = − 2〈x,y〉
‖x‖2+‖y‖2 . Hence by identity (3)

we deduce that
‖x‖2 − ‖y‖2

‖x+ λy‖‖y‖
=
‖y‖2 − ‖x‖2

‖y + λx‖‖x‖
,

whence ‖x‖ = ‖y‖.
b) If λ(‖x‖2−‖y‖2)(〈x, y〉2−‖x‖2‖y‖2) = 0, then because of x and y are

independent we get λ(〈x, y〉2−‖x‖2‖y‖2) 6=0. We conclude that ‖x‖=‖y‖.
Thus, (i) holds true.

Remark 3.2. The case θ = 0 can take place only for parallel vectors x, y with
〈x, y〉 positive and λ = 1, or for 〈x, y〉 negative and λ = −1. The case θ = π
can take place only for parallel vectors x, y with 〈x, y〉 negative with λ = 1, and
for 〈x, y〉 positive with λ = 1.
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Putting θ = π
2

in Proposition 3.1, we get the next result.

Proposition 3.3. Let X be a real inner product space and x, y be twononorthog-
onal, nonparallel vectors in X . The following conditions are equivalent:

(i) ‖x‖ = ‖y‖;
(ii) there exists a unique nonzero scalar λ, given by λ = − 〈x,y〉‖x‖2 , such that

x+ λy ⊥ y and y + λx ⊥ x.

Corollary 3.4. Let X be a real inner product space and x, y be two nonorthog-
onal vectors in X . The following conditions are equivalent:

(i) there exists a unique nonzero scalar λ, given by λ = − 〈x,y〉‖x‖2 , such that
x+ λy ⊥ y and y + λx ⊥ x;

(ii) there exists a unique scalar µ of modulus one, given by µ = 〈x,y〉
|〈x,y〉| , such

that x+ µy ⊥ x− µy.
Furthermore, each one of the assertions above implies ̂(x, x+ y) = ̂(y, y + x).

Proof. (i) ⇒ (ii): Set µ = 〈x,y〉
|〈x,y〉| . So |µ| = 1. By Proposition 3.3, ‖x‖ = ‖y‖.

Now simple computations show that x+ µy ⊥ x− µy.
(ii)⇒ (i): Since |µ| = 1 and x+µy ⊥ x−µy, we conclude that ‖x‖ = ‖y‖.

Therefore, (i) holds by Proposition 3.3.
Assume, that there exists a nonzero scalar λ such that x + λy ⊥ y and

y + λx ⊥ x. So by Proposition 3.3, ‖x‖ = ‖y‖. Therefore

〈x, x+ y〉
‖x‖‖x+ y‖

=
‖x‖
‖x+ y‖

+
〈x, y〉

‖x‖‖x+ y‖
=

‖y‖
‖y + x‖

+
〈y, x〉

‖y‖‖y + x‖
=
〈y, y + x〉
‖y‖‖y + x‖

,

whence ̂(x, x+ y) = ̂(y, x+ y).

We are now in a position to establish the main result of this section.

Theorem 3.5. Let X and Y be two real inner product spaces. For a nonzero
linear mapping T : X −→ Y the following statements are equivalent:

(i) there exists γ > 0 such that ‖Tx‖ = γ‖x‖ for all x ∈ X , i.e., T is a
similarity;

(ii) T is injective and 〈Tx,Ty〉
‖Tx‖‖Ty‖ = 〈x,y〉

‖x‖‖y‖ for all x, y ∈ X r {0};
(iii) x ⊥ y ⇔ Tx ⊥ Ty for all x, y ∈ X , i.e., T is strongly orthogonality

preserving;

(iv) ‖x‖ = ‖y‖ ⇔ ‖Tx‖ = ‖Ty‖ for all x, y ∈ X ;
(v) ‖x‖ = ‖y‖ ⇒ ‖Tx‖ = ‖Ty‖ for all x, y ∈ X ;

(vi) ‖x‖ ≤ ‖y‖ ⇒ ‖Tx‖ ≤ ‖Ty‖ for all x, y ∈ X ;
(vii) x ⊥ y ⇒ Tx ⊥ Ty for all x, y ∈ X , i.e., T is orthogonality preserving.
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Proof. (i) ⇒ (ii): Clearly T is injective. In addition, for all x, y ∈ X r {0}
we have

〈Tx, Ty〉
‖Tx‖‖Ty‖

=

[
‖T (x+y)‖2−‖T (x−y)‖2

]
4(γ‖x‖)(γ‖y‖)

=

[
γ2‖x+y‖2−γ2‖x−y‖2

]
4γ2‖x‖‖y‖

=
〈x, y〉
‖x‖‖y‖

.

(ii) ⇒ (iii): This implication is trivial.
(iii) ⇒ (iv):

‖x‖ = ‖y‖ ⇔ x+ y ⊥ x− y ⇔ Tx+ Ty ⊥ Tx− Ty ⇔ ‖Tx‖ = ‖Ty‖.

(iv) ⇒ (v): This implication is trivial.

(v) ⇒ (vi): Let ‖x‖ ≤ ‖y‖. Since ‖x‖ =
∥∥∥‖x‖‖y‖y∥∥∥, so with condition (v) we

obtain ‖Tx‖ =
∥∥∥T (‖x‖‖y‖y)

∥∥∥ = ‖x‖
‖y‖ ‖Ty‖ ≤ ‖Ty‖.

(vi) ⇒ (vii): Suppose (vi) holds and x ⊥ y. Hence, ‖x‖ ≤ ‖x+ ry‖ for all
r ∈ R. Thus ‖Tx‖ ≤ ‖Tx+ rTy‖ for all r ∈ R, and therefore, Tx ⊥ Ty.

(vii) ⇒ (i): Let x0 ∈ X be fixed such that ‖x0‖ = 1. So Tx0 6= 0. Indeed,
if Tx0 = 0, then for any 0 6= z ∈ X we have 〈 z

‖z‖ + x0,
z
‖z‖ − x0〉 = 0. The

orthogonality preserving property of T infers ‖Tz‖ = 0, whence T = 0, which

is a contradiction. Since 〈 w
‖w‖ + x0,

w
‖w‖ − x0〉 = 0 for every w ∈ X r {0}, we get

‖Tw‖ = ‖Tx0‖ ‖w‖ by assumption and, hence, assertion (i).

The following example shows that Theorem 3.5 fails if the supposition of
linearity is dropped.

Example 3.6. Let X be a real inner product space. For the nonlinear mapping
T : X −→ X defined by T (x) = ‖x‖2x we have ‖x‖ = ‖y‖ ⇒ ‖Tx‖ = ‖Ty‖
for all x, y ∈ X , but T is clearly not a similarity.

Corollary 3.7. Let X be a real vector space equipped with two inner products
〈·, ·〉1 and 〈·, ·〉2 generating the norms ‖ · ‖1, ‖ · ‖2 and orthogonality relations
⊥1, ⊥2, respectively. Then the following conditions are equivalent:

(i) x ⊥1 y ⇒ x ⊥2 y (x, y ∈ X );

(ii) x+ z ⊥1 y + z ⇒ x+ z ⊥2 y + z (x, y, z ∈ X );

(iii) ‖x‖1 = ‖y‖1 ⇒ ‖x‖2 = ‖y‖2 (x, y ∈ X );

(iv) ‖x‖1 ≤ ‖y‖1 ⇒ ‖x‖2 ≤ ‖y‖2 (x, y ∈ X );

(v) ‖x+ z‖1 = ‖y + z‖1 ⇒ ‖x+ z‖2 = ‖y + z‖2 (x, y, z ∈ X );

(vi) ‖x+ z‖1 ≤ ‖y + z‖1 ⇒ ‖x+ z‖2 ≤ ‖y + z‖2 (x, y, z ∈ X );

(vii)
〈x,y〉1
‖x‖1‖y‖1

=
〈x,y〉2
‖x‖2‖y‖2

(x, y ∈ X );

(ix)
〈x+z,y+z〉1
‖x+z‖1‖y+z‖1

=
〈x+z,y+z〉2
‖x+z‖2‖y+z‖2

(x, y, z ∈ X );

(x) ‖x‖2 = γ‖x‖1 (x ∈ X ) with some γ > 0;

(xi) 〈x, y〉2 = γ2〈x, y〉1 (x, y ∈ X ) with some γ > 0.
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Proof. Take X = Y and T = id : (X , 〈·, ·〉1) −→ (X , 〈·, ·〉2), and apply Theo-
rem 3.5.

By the equivalence (i) ⇔ (ii) of Theorem 3.5, if θ ∈ (0, π) and T : X −→ Y
is a similarity, then x∠

θ
y ⇔ Tx∠

θ
Ty for all x, y ∈ X . The following theorem is

an extension of Theorem 3.5.

Theorem 3.8. Let θ ∈ (0, π) and X and Y be two real inner product spaces. If
T : X −→ Y is an injective nonzero linear mapping with the following properties:

(i) x∠
θ
y ⇔ Tx∠

θ
Ty for all x, y ∈ X ,

(ii) If ‖x‖ = ‖y‖ with x∠
θ
y, then ‖Tx‖ = ‖Ty‖ for all x, y ∈ X ,

then T is a similarity.

Proof. Assume, x, y ∈ X and ‖x‖ = ‖y‖. If x∠
θ
y, then by (ii) we have ‖Tx‖ =

‖Ty‖. Consider the case when θ 6= (̂x, y). If x and y are linearly dependent,

we get ‖Tx‖ = ‖Ty‖ since ‖x‖ = ‖y‖. Thus, in the case that x and y are

independent, there exists a nonzero scalar λ such that x+ λy∠
θ
y and y + λx∠

θ
x

by Proposition 3.1. By (i), we get Tx + λTy∠
θ
Ty and Ty + λTx∠

θ
Tx. Since T

is injective, Tx and Ty are non-parallel. The condition θ 6= ̂(Tx, Ty) and

Proposition 3.1 imply ‖Tx‖ = ‖Ty‖.
Thus, ‖x‖ = ‖y‖ ⇒ ‖Tx‖ = ‖Ty‖ for all x, y ∈ X . By the equivalence

(i) ⇔ (v) of Theorem 3.5, T is a similarity.

Remark 3.9. Note, that for θ = 0, π, i.e., if x ‖ y, x, y are linearly dependent.
For every linear mapping T , therefore Tx and Ty are linearly dependent too.
Thus we have x ‖ y ⇒ Tx ‖ Ty for any liner mapping T and any x, y ∈ X .

4. Orthogonality preserving mappings in inner product
C∗-modules

The notion of orthogonality in an arbitrary normed space (V , ‖ · ‖) may be
introduced in various ways. Many mathematicians have introduced different
types of orthogonality. Roberts [22] introduced the first type of orthogonality :
x ∈ V is said to be orthogonal in the sense of Roberts to y ∈ V if ‖x+ty‖ = ‖x−
ty‖ for all t ∈ R. Later Birkhoff [7] introduced one of the most important types
of orthogonality: x is said to be Birkhoff orthogonal to y if ‖x‖ ≤ ‖x+ λy‖ for
all λ ∈ C. For inner product spaces, these definitions are equivalent to the usual
definition of orthogonality. Characterizations of the Birkhoff orthogonality in
the framework of Hilbert C∗-modules were obtained in [4, 6]. There are other
ways to generalize the Roberts orthogonality. In the following auxiliary lemma



Angle Preserving Mappings 493

we state some facts involving the “C∗-valued norm” | · | on an inner product
A -module, see also [16, Proposition 2.1].

Lemma 4.1. Let E be an inner product A -module and x, y ∈ E . The following
statements are mutually equivalent:

(i) 〈x, y〉 = 0;

(ii) 〈xb, ya〉 = 0 for all a, b ∈ A ;

(iii) |x+ ya| = |x− ya| for all a ∈ A ;

(iv) |x+ λy| = |x− λy| for all λ ∈ C.

Proof. (i) ⇒ (ii): The implication is trivial.
(ii) ⇒ (iii): Let (ei)i∈I be an approximate unit for A . Since (ii) is valid

we have

‖〈x, y〉‖ = ‖〈xei, yei〉 − 〈x, y〉‖ ≤ ‖ei‖‖〈x, y〉ei − 〈x, y〉‖+ ‖ei〈x, y〉 − 〈x, y〉‖.

By taking limit we get 〈x, y〉 = 0. Thus, |x + ya| =
[
|x|2 + |ya|2

] 1
2 = |x − ya|

for all a ∈ A .
(iii) ⇒ (iv): We may assume that y 6= 0. Let a = 〈y, x〉 ∈ A . Then

|x|2 + 2〈x, y〉〈y, x〉+ |y〈y, x〉|2 = |x|2 + 〈x, y〉a+ a∗〈y, x〉+ |ya|2

= |x+ ya|2

= |x− ya|2

= |x|2 − 〈x, y〉a− a∗〈y, x〉+ |ya|2

= |x|2 − 2〈x, y〉〈y, x〉+ |y〈y, x〉|2,

which implies 〈x, y〉〈y, x〉=0 and so 〈x, y〉=0. Thus, |x+λy|=
[
|x|2+|λ|2|y|2

] 1
2 =

|x−λy| for all λ ∈ C.
(iv) ⇒ (i): Suppose that (iv) holds. Therefore λ〈y, x〉+ λ〈x, y〉 = 0 for all

λ ∈ C. So, for λ = 1,−i we obtain 〈y, x〉+ 〈x, y〉 = 0 and −i〈y, x〉+ i〈x, y〉 = 0.
Hence 〈x, y〉 = 0.

Remark 4.2. In Theorem 3.1 of [5] three further equivalent inequality condi-
tions to assertion (i) above have been found: (v) |x|2 ≤ |x+ ya|2 for all a ∈ A ;
(vi) |x|2 ≤ |x + λy|2 for all λ ∈ C; (vii) |x| ≤ |x + ya| for all a ∈ A . The
authors of [5] conjecture that assertion (viii) |x| ≤ |x+ λy| for all λ ∈ C might
be also equivalent to assertion (i). To verify this to the affirmative, one would
have to prove the equivalence of (i) and (viii) merely for (atomic) von Neu-
mann factors considered as Hilbert C∗-modules over themselves. Indeed, any
full Hilbert C∗-module E can be isometrically embedded into its linking (C∗-)
algebra as constructed by Brown, Green and Rieffel in [9]. The C∗-algebra of
coefficients A , the Hilbert A -module E and the C∗-algebra of all “compact”
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operators on E become full corners of the linking algebra carried by two orthog-
onal projections from the multiplier C∗-algebra of the linking algebra which sum
up to the identity. The module action becomes simple multiplication. Both the
assertions (i) and (viii) survive this isometric embedding, so their equivalence
would have to be shown for C∗-algebras only which are considered as Hilbert
C∗-modules over themselves.

The second trick is due to Akemann, see [1, p. 278], [2, p. I]: Any C∗-algebra
can be ∗-isometrically embedded first in its bidual linear space, a von Neumann
algebra, by classical ∗-representation theory of C∗-algebras. Further, the re-
striction of that ∗-isometric embedding to the atomic part of the bidual von
Neumann algebra is again a ∗-isomorphism simply multiplying by the central
carrier projection of the atomic part. This embedding also preserves both the
assertions (i) and (viii). Since the center of the atomic von Neumann algebras
is an atomic commutative von Neumann algebra one could consider the equiva-
lence of these assertions (i) and (viii) for any atomic projection of it separately,
recomposing the entire picture afterwards. This outlines, ay help one to prove
or disprove the conjecture at least for the von Neumann type I factors.

Recall that a linear mapping T : E −→ F , where E and F are inner
product A -modules, is said to be orthogonality preserving if 〈x, y〉 = 0 ⇒
〈Tx, Ty〉 = 0 for all x, y ∈ E .

Theorem 4.3. Let E and F be two inner product A -modules and let T :
E −→ F be a nonzero linear mapping. If |x| = |y| ⇒ |Tx| = |Ty| for all
x, y ∈ E , then T is orthogonality preserving.

Proof. Let x, y ∈ E such that 〈x, y〉 = 0. By the equivalence (i) ⇔ (iv) of
Lemma 4.1 we have |x + λy| = |x − λy| for all λ ∈ C. We get |Tx + λTy| =
|Tx−λTy| for all λ ∈ C by assumption. So, λ〈Tx, Ty〉−λ〈Ty, Tx〉 = 0. Putting
λ = 1, i, we obtain 〈Tx, Ty〉 + 〈Ty, Tx〉 = 0 and 〈Tx, Ty〉 − 〈Ty, Tx〉 = 0.
Therefore, 〈Tx, Ty〉 = 0 what forces T to be orthogonality preserving.

Theorem 4.4. Let E and F be two inner product A -modules and let T :
E −→ F be a nonzero A -linear mapping. If |x| ≤ |y| ⇒ |Tx| ≤ |Ty| for all
x, y ∈ E , then T is orthogonality preserving.

Proof. Suppose, 〈x, y〉 = 0. Thus,

|x| ≤

[
|x|2 +

∣∣∣∣y 〈Ty, Tx〉‖Ty‖2

∣∣∣∣2
] 1

2

=

∣∣∣∣x− y 〈Ty, Tx〉‖Ty‖2

∣∣∣∣ .
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By assumption we get

|Tx| ≤
∣∣∣∣Tx− Ty 〈Ty, Tx〉‖Ty‖2

∣∣∣∣
=

[
|Tx|2 − 2

‖Ty‖2
〈Tx, Ty〉〈Ty, Tx〉+

1

‖Ty‖4
〈Tx, Ty〉〈Ty, Ty〉〈Ty, Tx〉

] 1
2

≤
[
|Tx|2 − 2

‖Ty‖2
〈Tx, Ty〉〈Ty, Tx〉+

1

‖Ty‖4
〈Tx, Ty〉‖Ty‖2〈Ty, Tx〉

] 1
2

=

[
|Tx|2 − 1

‖Ty‖2
〈Tx, Ty〉〈Ty, Tx〉

] 1
2

≤ |Tx|.

Therefore, 〈Tx, Ty〉〈Ty, Tx〉 = 0 and 〈Tx, Ty〉 = 0. As a consequence, T is
orthogonality preserving.

Remark 4.5. Consider the C∗-algebra M2(C) as a Hilbert C∗-module over
itself. If T : M2(C) −→ M2(C) is a linear mapping, not necessarily an M2(C)-
linear mapping, such that |A|≤|B| ⇒ |TA|≤|TB| for all A,B∈M2(C), then T
is orthogonality preserving. Indeed, let A,B ∈M2(C) such that A∗B = 0. Thus

|A| ≤
[
|A|2 + |µB|2

] 1
2

= |A+ µB|,

for all µ ∈ C. Hence, we get |TA| ≤ |TA+µTB| for all µ ∈ C by assumption. By
[5, Proposition 3.6] we obtain (TA)∗TB = 0, and T is orthogonality preserving.

In the following theorem we present a variant of Theorem 3.5 for the context
of C∗-modules.

Theorem 4.6. Let E and F be two inner product A -modules. For a nonzero
A -linear mapping T : E −→ F the following statements are equivalent:

(i) there exists γ > 0 such that ‖Tx‖ = γ‖x‖ for all x ∈ E , i.e., T is a
similarity;

(ii) T is injective and 〈Tx,Ty〉
‖Tx‖‖Ty‖ = 〈x,y〉

‖x‖‖y‖ for all x, y ∈ E r {0}.
Furthermore, each one of the assertions above implies:

(iii) 〈x, y〉 = 0 ⇔ 〈Tx, Ty〉 = 0 for all x, y ∈ E , i.e., T is strongly orthogo-
nality preserving;

(iv) |x| = |y| ⇔ |Tx| = |Ty| for all x, y ∈ E ;

(v) |x| ≤ |y| ⇔ |Tx| ≤ |Ty| for all x, y ∈ E .
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Proof. (i) ⇒ (ii): Clearly, T is injective. For all a ∈ A and x ∈ E∥∥|Tx|a∥∥ =
√
‖(|Tx|a)∗(|Tx|a)‖

=
√
‖a∗|Tx|2a‖

=
√
‖a∗〈Tx, Tx〉a‖

=
√
‖〈T (xa), T (xa)〉‖

= ‖T (xa)‖
= ‖γ(xa)‖

=
√
‖〈γ(xa), γ(xa)〉‖

=
√
‖(γ|x|a)∗(γ|x|a)‖

=
∥∥(γ|x|)a

∥∥.

(4)

Since |Tx| and γ|x| are positive, (4) implies |Tx| = γ|x|. Now, for all x, y ∈
E r {0} we obtain

〈Tx, Ty〉
‖Tx‖‖Ty‖

=
1
4

∑3
k=0 i

k|T (x+ iky)|2

(γ‖x‖)(γ‖y‖)
=

1
4

∑3
k=0 i

kγ2|x+ iky|2

γ2‖x‖‖y‖
=
〈x, y〉
‖x‖‖y‖

.

(ii) ⇒ (i): Fix x0 ∈ E with ‖x0‖ = 1 and set γ = ‖Tx0‖. Since T is
injective, so γ > 0. For every x ∈ E , if x and x0 are linearly dependent, then
obviously ‖Tx‖ = γ‖x‖. Assume now, that x and x0 are linearly independent.
By (ii) we get〈

z, (x+ x0)
‖Tz‖‖T (x+ x0)‖
‖z‖‖(x+ x0)‖

〉
= 〈Tz, T (x+ x0)〉

= 〈Tz, Tx〉+ 〈Tz, Tx0〉

=

〈
z, x
‖Tz‖‖Tx‖
‖z‖‖x‖

〉
+

〈
z, x0
‖Tz‖‖Tx0‖
‖z‖‖x0‖

〉
=

〈
z, x
‖Tz‖‖Tx‖
‖z‖‖x‖

+ x0
‖Tz‖‖Tx0‖
‖z‖

〉
,

for all z ∈ E r{0}. Whence (x+x0)
‖T (x+x0)‖
‖(x+x0)‖ = x‖Tx‖‖x‖ +x0‖Tx0‖, or equivalently,

x

(
‖T (x+ x0)‖
‖(x+ x0)‖

− ‖Tx‖
‖x‖

)
= x0

(
‖Tx0‖ −

‖T (x+ x0)‖
‖(x+ x0)‖

)
.

The equality ‖Tx‖ = ‖Tx0‖‖x‖ = γ‖x‖ follows.

(ii) ⇒ (iii): This implication is trivial by using (i).

(i) ⇒ (iv),(v): Assume, (i) holds. As in the proof of the implication
(i) ⇒ (ii), we get |Tx| = γ|x| for some γ > 0 and all x ∈ E , what shows the
implications.
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The following example shows that conditions (iii)–(v) are not equivalent to
conditions (i), (ii) in general.

Example 4.7. Let Ω be a locally compact Hausdorff space. Let us take
E = F = C0(Ω), the C∗-algebra of all continuous complex-valued functions
vanishing at infinity on Ω. For a nonzero function f0 ∈ C0(Ω), suppose that
T : C0(Ω) −→ C0(Ω) is given by T (g) = f0g. Obviously T is C0(Ω)-linear
and satisfies conditions (iii)–(v) but need not satisfies conditions (i), (ii). In-
deed, if there exists γ > 0 such that ‖T (g)‖ = γ‖g‖ for all g ∈ C0(Ω), then
1
γ2
f0f0h = h for all h ∈ C0(Ω) and hence, 1

γ2
f0f0 is the identity in C0(Ω), which

is a contradiction (see [16, Example 2.4]).

Recall that a linear mapping T : E −→ F , where E and F are inner
product A -modules, is called local if

xa = 0 ⇒ (Tx)a = 0 (a ∈ A , x ∈ E ).

Examples of local mappings include multiplication and differential operators.
Note that every A -linear mapping is local, but the converse is not true, in gen-
eral (take linear differential operators into account). Moreover, every bounded
local mapping between inner product modules is A -linear [18, Proposition A.1].

Lemma 4.8 ([16, Theorem 3.1]). Let E and F be two inner product A -modules
such that K(H ) ⊆ A ⊆ B(H ). Suppose that T : E −→ F is a nonzero
orthogonality preserving A -linear map. Then there exists a positive number γ
such that

〈Tx, Ty〉 = γ〈x, y〉 for all x, y ∈ E . (5)

Note that the assumption of A -linearity, even in the case A = K(H ), is
necessary in Lemma 4.8 as can be seen from the following example.

Example 4.9. Let H be a Hilbert space such that dim H =∞ and H∗ = H
as an additive group, but define a new scalar multiplication on H∗ by setting
λ · x = λx, and a new inner product by setting 〈x|y〉∗ = 〈y|x〉. Then H∗
equipped with the operations

〈x, y〉 := x⊗ y and x · S := S∗x (x, y ∈H∗, S ∈ K(H ))

is an inner product K(H )-module. If T : H∗ −→ H∗ is any unbounded linear
map, then T preserves orthogonality (namely, if 〈x, y〉 = x⊗ y = 0, then x = 0
or y = 0. So 〈Tx, Ty〉 = Tx⊗ Ty = 0), but T obviously does not satisfy (5).

The next result is a consequence of [19, Corollary 3.2] but we prove it for
the sake of completeness.
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Theorem 4.10. Let E and F be two inner product A -modules such that

K(H ) ⊆ A ⊆ B(H ).

Suppose that T : E −→ F is a local and nonzero orthogonality preserving map.
Then

(i) |x| = |y| ⇔ |Tx| = |Ty| for all x, y ∈ E ;

(ii) |x| ≤ |y| ⇔ |Tx| ≤ |Ty| for all x, y ∈ E .

Proof. Let (ei)i∈I and (fj)j∈J be approximate units for A and K(H ), respec-
tively. Suppose that p ∈ K(H ) is a projection. For x ∈ E we have

xp(1− p)ei(1− p) = 0 and x(1− p)peip = 0.

Since T is local, we obtain

T (xp)(1− p)ei(1− p) = 0 and T (x(1− p))peip = 0.

From limi(1− p)ei(1− p) = 1− p and limi peip = p, we derive

(Tx)p =
(
T (x(1− p)) + T (xp)

)
p

= T (x(1− p))p− T (xp)(1− p) + T (xp)

= lim
i
T (x(1− p))peip− lim

i
T (xp)(1− p)ei(1− p) + T (xp)

= T (x(1− p))peip− T (xp)(1− p)ei(1− p) + T (xp)

= T (xp).

Thus, T (xa) = (Tx)a for all finite rank operators a ∈ K(H ).
Now, for any x ∈ E · K(H ), there exist c ∈ K(H ) and y ∈ E such that

x = yc. Consider the linear mapping T̃ : E · K(H ) −→ F · K(H ) defined by

T̃ (x) := T (y)c.

Notice that T̃ (x) is independent of the decomposition x = yc. Therefore,

T̃ (xa) = T̃ (yca) = T (y)ca = T̃ (x)a

for all x ∈ E and all a ∈ K(H ). Since (fj)j∈J is an approximate unit for K(H )

it follows from ‖T (x)fj − T̃ (x)‖ = ‖T (ycfj) − T (y)c‖ = ‖T (y)cfj − T (y)c‖
that limi T (x)fj = T̃ (x) for all x ∈ E · K(H ) and all j ∈ J . Therefore, if
x1, x2 ∈ E · K(H ) with 〈x1, x2〉 = 0, then 〈Tx1, Tx2〉 = 0 since T is orthogo-
nality preserving, which implies 〈(Tx1)fj, (Tx2)fk〉 = 0 for all j, k ∈ J . As a

consequence, 〈T̃ x1, T̃ x2〉 = 0, whence T̃ has to be an orthogonality preserving
K(H )- linear map.
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By Lemma 4.8 there exists a positive number γ such that 〈T̃ x, T̃ y〉 = γ〈x, y〉
for all x, y ∈ E ·K(H ). Thus

fj〈Tx, Ty〉fk = 〈T̃ (xfj), T̃ (yfk)〉 = γ〈xfj, yfk〉 = fjγ〈x, y〉fk

for all x, y ∈ E and all j, k ∈ J . Hence, 〈Tx, Ty〉 = γ〈x, y〉 for all x, y ∈ E , and
|Tx| = √γ|x| for all x ∈ E . This actually yields (i) and (ii).

Combining Theorems 4.4 and 4.10 we get the next result.

Corollary 4.11. Let E and F be two inner product A -modules and K(H ) ⊆
A ⊆ B(H ). Suppose that T : E −→ F is a nonzero A -linear mapping between
inner product A -modules. Then T is orthogonality preserving if and only if

|x| ≤ |y| ⇒ |Tx| ≤ |Ty| for all x, y ∈ E .
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