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Sharp Logarithmic Inequalities
for Hardy Operators
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Abstract. Let ` ≥ 1 be a fixed number. We determine, for each K > 0, the best
constant L = L(K, `) ∈ (0,∞] such that the following holds. If f is a function on

(0, 1] with
∫ 1

0 |f(r)|dr = 1, then

∫ 1

0
t`−1

(
1

t

∫ t

0
|f(r)|dr

)`
dt ≤ K

∫ 1

0
|f(r)| log |f(r)|dr + L.

As an application, we derive a sharp local logarithmic estimate for n-dimensional
fractional Hardy operator.
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1. Introduction

The motivation for the results of this paper comes from natural questions con-
cerning one-sided Hardy-Littlewood maximal operator on the positive halfline
and the fractional Hardy operator on Rn. To put these problems into an appro-
priate framework, let us start with some related statements from the literature.
A classical Hardy inequality states that for any nonnegative function f on the
positive halfline (0,∞) we have the sharp estimate∫ ∞

0

(
1

t

∫ t

0

f(s)ds

)k
dt ≤

(
k

k − 1

)k ∫ ∞
0

fk(s)ds, (1)

for any exponent k > 1. A convenient reference is the monograph [7] by Hardy,
Littlewood and Pólya. This inequality is of fundamental importance for analysis
and PDEs, and, by now, there are numerous proofs and modifications of this
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significant result. We will be particularly interested in the following extension
of (1), established by Hardy and Littlewood in [6]:∫ ∞

0

tα
(

1

t

∫ t

0

f(s)ds

)`
dt ≤

(
k

k − 1

)k (∫ ∞
0

fk(x)dx

) `
k

,

where ` ≥ k > 1 and α = `
k
− 1. However, as Hardy and Littlewood observed,

the constant (k/(k − 1))k above is no longer optimal when ` is strictly larger
than k. Nevertheless, they managed to guess what the best value is, and their
conjecture was confirmed a few years later by Bliss [2]. Here is the precise
statement.

Theorem 1.1. Suppose that 1 < k < ` are fixed constants, put α = `
k
− 1 and

let f be a nonnegative function on (0,∞). Then we have∫ ∞
0

tα
(

1

t

∫ t

0

f(s)ds

)`
dt ≤ Ck,`

(∫ ∞
0

fk(x)dx

) `
k

, (2)

where

Ck,` =
1

`− α− 1

[
αΓ
(
`
α

)
Γ
(

1
α

)
Γ
(
`−1
α

)]α . (3)

The inequality is sharp.

There is a vast literature concerning various extensions and applications of
the above results, and it is absolutely impossible to give even a short review
here. We refer the interested reader to the monographs [8] by Kufner and Opic,
and [9] by Kufner and Persson for an overview of related results. Let us just
mention here the works of Aubin [1] and Talenti [19], who linked the above
estimates with a sharp version of Sobolev inequality, and the recent papers
of Lu, Yan and Zhao [10, 11] for applications concerning the so-called Hardy
fractional maximal operator. We will continue the research in the direction of
the latter two papers, but we postpone the definition of the fractional operators
and the statements of the results to Section 4 below.

The main purpose of this paper is to take a look at the case k = 1 in (2).
For this value of k, the constant Ck,` is infinite; hence, it is natural to consider
a slight modification of the estimate, which involves an appropriate logarithmic
(or rather entropic) term:∫ 1

0

t`−1

(
1

t

∫ t

0

f(r)dr

)̀
dt ≤ K

(∫ 1

0

f(r)dr

)̀ −1

Ent f + L

(∫ 1

0

f(r)dr

)̀
. (4)

Here Ent f , the entropy of a function f over [0, 1], is defined by

Ent f =

∫ 1

0

f(r) log f(r)dr −
∫ 1

0

f(r)dr log

∫ 1

0

f(r)dr.
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Note that the assumption
∫ 1

0
f(r)dr = 1, which can be imposed due to the ho-

mogeneity of both sides, transforms this bound into the simpler form presented
in the abstract.

An important remark is in order. Note that there is no hope for the above
inequality to hold on the whole halfline [0,∞) (i.e., we cannot replace the in-
terval (0, 1] by (0,∞)): this can be seen by inserting f = χ(0,1], for which the
left-hand side would become infinite. However, using the substitution t := Mt
and r := Mr, we easily transform (4) into the following version on an interval
(0,M ]:∫ M

0

t`−1

(
1

t

∫ t

0

f(r)dr

)̀
dt ≤ K

(∫ M

0

f(r)dr

)̀ −1

Ent f+(L+logM)

(∫ M

0

f(r)dr

)̀
,

where this time Ent denotes the entropy over the interval (0,M ].
We come back to (4). As with any estimate of this type, the following two

natural problems can be studied (cf. Zygmund [24]):

(I) For which K > 0 there is a universal L <∞ such that the estimate holds?

(II) For K as in (I), what is the best (i.e., the smallest) value L(K, `) of L?

Our principal goal is to answer both these questions. Here is the main
result.

Theorem 1.2. (i) If ` = 1, then

L(K, `) =

{
∞ if K ≤ 1,

K log K
K−1

if K > 1.

(ii) If ` > 1, then

L(K, `) =

{
∞ if K < 1,

K
`
`−1

`−1

∫ K−1

0
s

1
`−1
−1 log 1

1−s ds if K ≥ 1.

A few words about the proof and the organization of the paper are in order.
Though a natural idea is to try some calculus of variation arguments, we will
not choose this path. One of the important contributions of this work is the
novel approach, which rests on the construction of a certain special function,
having appropriate majorization and monotonicity properties. Thus, it can be
regarded as a modification of the so-called Bellman function method, a powerful
technique which has gathered a lot of interest in the recent literature on prob-
ability and harmonic analysis. Consult, for instance, the works of Burkholder
[3,4], Nazarov, Treil and Volberg [12–14], Osȩkowski [15], Slavin and Vasyunin
[16, 17], Vasyunin [20], and Vasyunin and Volberg [21–23], and the references
therein. This interesting connection certainly deserves a further exploration
and, as we believe, can be exploited to prove a number of significant results.
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Theorem 1.2 will be proved in the next two sections. Section 2 handles
the case ` = 1, which is slightly easier; Section 3 studies the case ` > 1. The
final part of the paper is devoted to applications: we prove there related sharp
estimates for Hardy fractional maximal operator.

2. The case ` = 1

2.1. Proof of (4) with L = L(K, 1). Clearly, we may assume that K > 1,
since otherwise there is nothing to prove. For the sake of convenience and
clarity, we have decided to split the reasoning into a few intermediate steps.

Step 1. Some definitions and reductions. As announced in the previous
section, the key role in the proof is played by a certain special function. To
introduce it, we need an auxiliary technical object. We start with the obser-
vation that the function x 7→ x − log x is strictly increasing on the interval
[1,∞) and takes value 1 at 1. Consequently, for any s ≥ 0 there is a unique
ϕ = ϕ(s) ∈ [1,∞) satisfying

ϕ(s)− logϕ(s) = s+ 1. (5)

By some standard theorem on regularity of implicit functions, we infer that ϕ
is of class C1. Furthermore, by the direct differentiation of the above equality,
we get

ϕ′(s)− ϕ′(s)

ϕ(s)
= 1. (6)

Now we are ready to introduce the special function on which the whole argu-
mentation will be based. Namely, consider the function B, defined on the set
{(x, y) ∈ (0,∞)× R : y ≥ x log x} by the formula

B(x, y) = xϕ
(y
x
− log x

)
.

Before we turn to the proof of the entropic estimate, observe that it is enough
to study the estimate for continuous and strictly positive functions f only; this
follows at once from some standard approximation arguments. Given such an f,
we introduce the associated operators X and Y , given by

Xt(f) =
1

1− t

∫ 1−t

0

f(s)ds and Yt(f) =
1

1− t

∫ 1−t

0

f(s) log f(s)ds, (7)

for t ∈ [0, 1). These two objects have a very nice probabilistic interpretation;
since this interpretation will not be used in any arguments below, we have
decided to postpone its description to Remark 2.2 below. For now, observe that
by Jensen’s inequality, the pair (Xt(f), Yt(f)) takes values in the domain of the
function B (note that Xt(f) > 0 since f is assumed to be positive).

Step 2. A key lemma. The crucial interplay between X, Y and the special
function B is studied in the statement below.
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Lemma 2.1. For any t ∈ [0, 1) we have

B(X0(f), Y0(f)) ≥ (1− t)B(Xt(f), Yt(f)) +

∫ 1

1−t

1

x

∫ x

0

f(r)dr dx.

Proof. Denote the right-hand side by F (t). We will show that the function F
is nonincreasing: this will clearly prove the claim, as the left hand side is equal
to F (0). Since f is continuous, we see that F is of class C1 and hence it suffices
to show that F ′(t) ≤ 0 for t ∈ (0, 1). A direct differentiation yields

F ′(t) = ϕ′(s)

[
− f(1− t) log f(1− t) +

f(1− t)Yt(f)

Xt(f)
−Xt(f) + f(1− t)

]
− f(1− t)ϕ(s) +Xt(f),

where

s =
Yt(f)

Xt(f)
− logXt(f). (8)

Substituting x = Xt(f), y = Yt(f) and d = f(1 − t), the inequality F ′(t) ≤ 0
reduces to

ϕ′(s)
[
−d log d+ d

y

x
− x+ d

]
− dϕ(s) + x ≤ 0.

We have ϕ′(s) > 0, so the left-hand side, considered as a function of d, attains
its maximum for d satisfying ϕ′(s)(− log d+ y

x
)− ϕ(s) = 0, or

d = exp

(
y

x
− ϕ(s)

ϕ′(s)

)
= x exp

(
s− ϕ(s)

ϕ′(s)

)
. (9)

Plugging this above, we compute that the maximum is equal to

x

(
ϕ′(s) exp

(
s− ϕ(s)

ϕ′(s)

)
− ϕ′(s) + 1

)
, (10)

which is zero. Indeed, by (6), we have ϕ(s)
ϕ′(s)

= ϕ(s)− 1 and

exp

(
s− ϕ(s)

ϕ′(s)

)
= exp (s− ϕ(s) + 1) =

1

ϕ(s)
, (11)

where in the last passage we have exploited (5). Thus, the expression in (10) is

x

(
ϕ′(s)

ϕ(s)
− ϕ′(s) + 1

)
= 0,

where the equality follows from (6). This shows that F is indeed nonincreasing,
and the proof of the lemma is finished.
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Step 3. The completion of the proof. Note that the function ϕ is concave:
this follows at once from the fact that ϕ is strictly increasing and the identity

ϕ′(s) = 1 +
1

ϕ(s)− 1
,

which, in turn, is a consequence of (6). Moreover, this identity and the facts
that lims↓0 ϕ(s) = 1 and lims→∞ ϕ(s) = ∞, also give lims↓0 ϕ

′(s) = ∞ and
lims→∞ ϕ

′(s) = 1. Thus, for any K ∈ (1,∞) there is a unique line γK of slope
K, tangent to the graph of ϕ. If (s0, ϕ(s0)) denotes the tangency point, we
compute that ϕ(s0) = K

K−1
by means of (6), and hence, by (5),

s0 =
1

K − 1
− log

K

K − 1
.

Consequently, the formula for the tangent line reads

γK(s) = K

(
s− 1

K − 1
+ log

K

K − 1

)
+

K

K − 1
= Ks+K log

K

K − 1
.

Therefore, since
∫ 1
0 f(r) log f(r)dr∫ 1

0 f(r)dr
− log

∫ 1

0
f(r)dr ≥ 0, we can proceed as follows:

K Ent f +K log
K

K − 1

∫ 1

0

f(r)dr

=

∫ 1

0

f(r)dr · γK

(∫ 1

0
f(r) log f(r)dr∫ 1

0
f(r)dr

− log

∫ 1

0

f(r)dr

)

≥
∫ 1

0

f(r)dr · ϕ

(∫ 1

0
f(r) log f(r)dr∫ 1

0
f(r)dr

− log

∫ 1

0

f(r)dr

)
= B (X0(f), Y0(f))

≥
∫ 1

1−t

1

x

∫ x

0

f(r)dr dx,

(12)

for any t ∈ (0, 1). Here in the last passage we have exploited Lemma 2.1 and
the fact that B is nonnegative. Letting t go to 1 and applying Fatou’s lemma,
we get the desired estimate.

Remark 2.2. The operators X and Y have an important interpretation in
terms of martingales (cf. Doob [5]). Namely, let ([0, 1],B([0, 1]), | · |) be the
Lebesgue probability space and for each t ∈ [0, 1], let Ft be the σ-algebra
generated by [0, 1 − t] and all the Borel subsets of (1 − t, 1]. Then (Ft)t∈[0,1]

forms a filtration, i.e., we have Fs ⊂ Ft for 0 ≤ s < t ≤ 1. Let f : [0, 1]→ R be
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a function satisfying the LlogL integrability condition
∫ 1

0
f(r) log f(r)dr < ∞,

and consider the associated martingales

Mt = E (f |Ft) and Nt = E (f log f |Ft) , t ∈ [0, 1].

Then for any ω ∈ [0, 1] and any t ∈ [0, 1] we have, with probability 1,

Mt(ω) =

{
1

1−t

∫ 1−t
0

f(r)dr if t ≤ 1− ω,
f(ω) if t > 1− ω

and

Nt(ω) =

{
1

1−t

∫ 1−t
0

f(r) log f(r)dr if t ≤ 1− ω,
f(ω) log f(ω) if t > 1− ω.

Therefore, Xt(f), Yt(f) can be regarded as “nontrivial” or “running” parts of
the martingales corresponding to f and f log f . This observation also sheds
some additional light on Lemma 2.1 and exhibit its connection with Bellman
function method. Roughly speaking, the lemma states that the composition
of the special function B with the appropriate martingales X(f), Y (f) has
a monotonicity property. This is the underlying concept of Bellman function
method: see [15] for the general exposition on the subject from the probabilistic
point of view.

2.2. Optimality of L(K, 1) and the search for extremal functions. Now
we will prove that the entropic bound we have just proved above is sharp for
each K; this will be done by exhibiting appropriate examples. Assume first
that K > 1. To give the reader some ideas how the extremal functions can be
discovered, let us inspect carefully the above argumentation. The first thought
which comes into one’s mind is to search for those f , which give equality in
Lemma 2.1; that is, for those which produce a constant function F defined
there. To accomplish this, we must ensure that for any t ∈ (0, 1) we have

f(1− t) =
1

1− t

∫ 1−t

0

f(r)dr · exp

(
s− ϕ(s)

ϕ′(s)

)
, (13)

see (9). Passing from t to 1− t in (13) we obtain, using (8) and (11),

ϕ(s) =
1
t

∫ t
0
f(r)dr

f(t)
, t ∈ (0, 1),

with

s =

∫ 1−t
0

f(r) log f(r)dr∫ 1−t
0

f(r)dr
− log

(
1

1− t

∫ 1−t

0

f(r)dr

)
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(by Jensen’s inequality, s is nonnegative). Hence, by (5),

1
t

∫ t
0
f(r)dr

f(t)
− log

(
1
t

∫ t
0
f(r)dr

f(t)

)
=

∫ t
0
f(r) log f(r)dr∫ t

0
f(r)dr

− log

(
1

t

∫ t

0

f(r)dr

)
+ 1,

for all t ∈ (0, 1). This is further equivalent to saying that(∫ t
0
f(r)dr

)2

tf(t)
+ log f(t)

∫ t

0

f(r)dr =

∫ t

0

f(r) log f(r)dr +

∫ t

0

f(r)dr.

Assume for a moment that f is of class C1 and let us differentiate both sides
above. We obtain

2

t

∫ t

0

f(r)dr −

(
1
t

∫ t
0
f(r)dr

)2

f(t)
−

(∫ t
0
f(r)dr

)2

tf(t)2
f ′(t) +

f ′(t)

f(t)

∫ t

0

f(r)dr = f(t),

which, after some manipulations, can be rewritten as[
1− 1

tf(t)

∫ t

0

f(r)dr

] [∫ t

0

f(r)dr − tf(t) +
tf ′(t)

f(t)

∫ t

0

f(r)dr

]
= 0.

Let us search for f such that the expression in the second square bracket is zero.

This is equivalent to
(

tf(t)∫ t
0 f(r)dr

)′
= 0, or ctf(t) =

∫ t
0
f(r)dr for some constant c

and all t ∈ (0, 1). The latter equation implies that f is of the form f(t) = βtλ

for some parameters β and λ.

Thus, the above reasoning suggests that the power functions are extremal
in (4), and all we need to make appropriate choices for β and λ. Since (4)
is homogeneous, we may take β = 1; to get the value of λ, we simply plug
f(t) = tλ into the estimate. Then the left-hand side is (λ + 1)−2; furthermore,

we have
∫ 1

0
f(r)dr = (λ + 1)−1 and

∫ 1

0
f(r) log f(r)dr = −λ(λ + 1)−2, so the

right-hand side is equal to

K

[
− λ

(λ+ 1)2
+

1

λ+ 1
log(λ+ 1)

]
+

K

λ+ 1
log

K

K − 1

and it is easy to see that the choice λ = − 1
K

makes both sides equal.
This shows that forK>1, the estimate (4) is indeed sharp with L=L(K, 1) :

the equality holds for a nontrivial choice of f . To handle the remaining values
of the parameter K, note that by the very definition, the function L(·, 1) is
nonincreasing. In consequence, for any K ≤ 1 we get

L(K, 1) ≥ lim
K′↓1

L(K ′, 1) =∞.

This completes the proof.



Logarithmic Hardy Inequalities 9

3. The case ` > 1

Now we turn to the more challenging part of Theorem 1.2. Throughout this
section, ` > 1 is given and fixed. Again, we have to split the reasoning into
several parts.

3.1. An auxiliary function. We begin our analysis by proving the following
crucial technical statement.

Lemma 3.1. For any s > 0 there is a unique u = u(s) ∈ (−∞, 0) satisfying

`− 1

`
(s− u)(1− eu)

1
`−1 =

∫ 0

u

(1− er)
1
`−1 dr. (14)

Furthermore, u is of class C∞ on (0,∞), lims↓0 u(s)=0 and lims→∞ u(s)=−∞.

Proof. Consider the function

F(s, u) =
`− 1

`
(s− u)(1− eu)

1
`−1 −

∫ 0

u

(1− er)
1
`−1 dr, (s, u) ∈ R× (−∞, 0].

Obviously, F ∈ C∞(R × (−∞, 0]) and the equality (14) can be written in the
form

F(s, u) = 0, (s, u) ∈ [0,∞)× (−∞, 0].

Fix s > 0 and consider the function F (u) = F(s, u), u ∈ (−∞, 0]. We derive
that

F ′(u) =
1

`
(1− eu)

1
`−1
−1
[
1− eu − (s− u)eu

]
.

Denote the expression in the square brackets by G(u). We have G(0) = −s < 0,
limu→−∞G(u) = 1 and G′(u) = (u − s)eu < 0 for u ∈ (−∞, 0). Consequently,
there is u0(s) < 0 such that G is positive on (−∞, u0) and negative on (u0, 0);
therefore, F is increasing on (−∞, u0) and decreasing on (u0, 0). Furthermore,
note that F (0) = 0 and limu→−∞ F (u) = −∞. The latter identity follows at
once from

lim
u→−∞

∫ 0

u
(1− et)

1
`−1 dt

(s− u)(1− eu)
1
`−1

= 1,

which can be verified with the use of de l’Hospital rule. This proves the existence
and uniqueness of u(s). It is clear from the above arguments that u(s)<u0(s), so

1− eu(s) − (s− u(s))eu(s) > 0. (15)

The fact that u is of class C∞ follows from standard statements concerning reg-
ularity of implicit functions. The assertion that lims↓0 u(s) = 0 is a consequence
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of F(0, 0) = 0. To study the limit of u at infinity, differentiate both sides of
F(s, u) = 0 with respect to s to obtain

`− 1

`
(1− u′)(1− eu)

1
`−1 − 1

`
(s− u)(1− eu)

1
`−1
−1euu′ + (1− eu)

1
`−1u′ = 0,

or

u′(s)
[
(s− u(s))eu(s) − 1 + eu(s)

]
= (`− 1)(1− eu(s)). (16)

Together with (15), it implies that u′(s) < 0, so u is decreasing on [0,∞) and
the limit lims→∞ u(s) exists. It must be equal to −∞, since other possibilities
lead to a contradiction with (15).

Lemma 3.2. There is a strictly increasing, continuous function ϕ = ϕ(`) on
[0,∞), satisfying the differential equation

exp

(
s− `ϕ(s)

ϕ′(s)

)
= 1− 1

ϕ′(s)
, s ∈ (0,∞), (17)

and the initial condition ϕ(0) = 1
`
. Furthermore, ϕ is strictly concave and

satisfies

lim
s↓0

ϕ′(s) =∞ and lim
s↑∞

ϕ′(s) = 1.

Proof. Let u be the function from the previous lemma and put

ϕ(s) =
s− u(s)

`(1− eu(s))
, s ∈ (0,∞). (18)

Of course, ϕ is of class C∞. Let us compute the derivative of ϕ. Using (16), we
see that

ϕ′(s) =
1

`(1− eu(s))
+ u′(s)

[
(s− u(s))eu(s)

`(1− eu(s))2
− 1

`(1− eu(s))

]
=

1

`(1− eu(s))
+

(`− 1)(1− eu(s))

`(1− eu(s))2

=
1

1− eu(s)

(19)

and hence, in particular, ϕ is strictly increasing. The latter identity can be
rewritten as eu(s) = 1 − 1

ϕ′(s)
; thus, (17) will be proved if we show that u(s) =

s− `ϕ(s)
ϕ′(s)

. But this follows from (18) and (19): indeed,

s− `ϕ(s)

ϕ′(s)
= s− (s− u(s)) = u(s).
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Now we will prove that the function ϕ satisfies lims↓0 ϕ(s) = `−1. To do this,
note that u(s) ↑ 0 as s ↓ 0, by Lemma 3.1. Consequently, by (14) and (18), we
may write that

lim
s↓0

ϕ(s) = lim
u↑0

∫ 0

u
(1− et)

1
`−1 dt

(`− 1)(1− eu)
1
`−1

+1
= lim

u↑0

1

`eu
=

1

`
.

Next, let us show that ϕ is concave. This is simple: we have shown in the
proof of the previous lemma that u is decreasing and hence, by (19), so is ϕ′.
Finally, let us address the behavior of ϕ′(s) for s ↓ 0 and s → ∞. Since
ϕ(0) = 1

`
, the equality lims↓0 ϕ

′(s) = ∞ follows directly from (17). To prove
that lims→∞ ϕ

′(s) = 1, use (19) and the equation lims→∞ u(s) = −∞ shown in
the preceding lemma. This completes the proof.

3.2. Proof of (4). We will obtain the desired bound in two steps.

Step 1. A key lemma. Let ϕ = ϕ(`) be the function introduced in the
previous subsection. As in the case ` = 1, the proof of (4) will exploit the
properties of a certain special function. This time B : {(x, y) ∈ (0,∞) × R :
y ≥ x log x} → R is given by the formula

B(x, y) = x`ϕ
(y
x
− log x

)
.

For a given continuous function f : [0, 1]→ (0,∞) and any t ∈ [0, 1), let Xt(f),
Yt(f) be given by (7). Here is the analogue of Lemma 2.1.

Lemma 3.3. For any t ≥ 0 we have

B(X0(f), Y0(f)) ≥ (1− t)`B(Xt(f), Yt(f)) +

∫ 1

1−t

1

x

(∫ x

0

f(r)dr

)`
dx.

Proof. The argument is the same as in the case ` = 1. Denote the right-hand
side by F (t) and compute that

F ′(t)

= −`(1− t)`−1B(Xt(f), Yt(f)) + (1− t)`∂B
∂x

(Xt(f), Yt(f))

[
Xt(f)

1− t
− f(1− t)

1− t

]

+ (1− t)`∂B
∂y

(Xt(f), Yt(f))

[
Yt(f)

1− t
− f(1− t) log f(1− t)

1− t

]
+

(∫ 1−t
0

f
)`

1− t
.

Clearly, we will be done if we show that this derivative is nonpositive. To do
this, substitute x = Xt(f), y = Yt(f), d = f(1 − t) and note that F ′(t) ≤ 0 is
equivalent to saying that

−`B(x, y) +
∂B

∂x
(x, y)[x− d] +

∂B

∂y
(x, y)[y − d log d] + x` ≤ 0.
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By the definition of B, this amounts to saying that

−`x`ϕ(s)+

[
`x`−1ϕ(s) + x`

(
− y

x2
− 1

x

)
ϕ′(s)

]
(x−d)+x`−1ϕ′(s)(y−d log d)+x`

is nonpositive, where s = y
x
−log x. After some computations, this can be further

transformed into the estimate

−`ϕ(s) + ϕ′(s) · y
x

+
[
`ϕ(s)−

(y
x

+ 1
)
ϕ′(s)

](
1− d

x

)
− ϕ′(s)d log d

x
+ 1 ≤ 0.

As we have already proved, the function ϕ is strictly increasing. Consequently,
the left-hand side above, considered as a function of d, attains its maximum
for d satisfying −`ϕ(s) +

(
y
x

+ 1
)
ϕ′(s) = ϕ′(s)(1 + log d), or

d

x
= exp

(
s− `ϕ(s)

ϕ′(s)

)
.

Furthermore, plugging this extremal d above, we easily check that the maximal
value is equal to

ϕ′(s) exp

(
s− `ϕ(s)

ϕ′(s)

)
− ϕ′(s) + 1,

which is zero, in view of (17). This completes the proof of the lemma.

Step 2. Completion of the proof. As we have shown in Lemma 3.2, the
function ϕ is strictly concave and its derivative behaves appropriately for s ↓ 0
and s→∞. Consequently, for any K > 1 there is a unique line γK of slope K
tangent to the graph of ϕ. Denoting by (s0, ϕ(s0)) the tangency point, we have
ϕ′(s0) = K and hence, by (19), u(s0) = log(1 − K−1). Consequently, (14)
implies that

s0 = log(1−K−1) +
`K

1
`−1

`− 1

∫ 0

log(1−K−1)

(1− er)
1
`−1 dr

and, by (18),

ϕ(s0) =
K

`
`−1

`− 1

∫ 0

log(1−K−1)

(1− er)
1
`−1 dr.

Therefore, the line γK is given by

γK(s) = Ks−K log(1−K−1)−K
`
`−1

∫ 0

log(1−K−1)

(1− er)
1
`−1 dr = Ks+ L(K, `),

where in the last passage we have used integration by parts. It suffices to repeat
the argumentation from (12) to obtain (4) in the case K > 1 (in particular, the
reasoning exploits the condition B ≥ 0, which holds true also when ` > 1). The
case K = 1 follows at once by continuity.
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3.3. Sharpness and the search for extremal examples. The reasoning is
similar to that in the case ` = 1. The main idea is to search for a function f
satisfying

f(1− t)
1

1−t

∫ 1−t
0

f(r)dr
= exp

(
s− `ϕ(s)

ϕ′(s)

)
= eu

for each t∈(0, 1). Here, as previously, s =
∫ 1−t
0 f(r) log f(r)dr∫ 1−t

0 f(r)dr
− log

(
1

1−t

∫ 1−t
0
f(r)dr

)
and u = u(s) is given by (14). Passing from t to 1 − t and applying (14), our

goal is to find f such that

`− 1

`

(∫ t
0
f(r) log f(r)dr∫ t

0
f(r)dr

− log f(t)

)(
1− f(t)

1
t

∫ t
0
f(r)dr

) 1
`−1

=

∫ 0

log

[
tf(t)∫ t

0 f(r)dr

](1− er) 1
`−1 dr.

(20)

This equality seems complicated and at the first glance it is not quite clear how
to solve it. The key observation, which comes after some experiments, is to
reduce it to a simpler statement.

Lemma 3.4. If f is continuous on [0, 1] and satisfies(
1− f(t)

1
t

∫ t
0
f(r)dr

) 1
`−1

= c

∫ t

0

f(r)dr, t ∈ (0, 1), (21)

for some constant c, then (20) holds true.

Proof. Differentiating both sides of (21) gives

1

`− 1

(
1− f(t)

1
t

∫ t
0
f(r)dr

) 2−`
`−1

−f(t) + tf ′(t)∫ t
0
f(r)dr

+
tf(t)2(∫ t

0
f(r)dr

)2

 = cf(t),

which combined with (21) again, yields the equality

1

`− 1

(
−f(t)− tf ′(t) +

tf(t)2∫ t
0
f(r)dr

)
= f(t)

(
1− tf(t)∫ t

0
f(r)dr

)
.

After some easy manipulations, we get that the above identity is equivalent to

`− 1

`
f ′(t) =

f(t)

t
+ f ′(t)− f(t)2∫ t

0
f(r)dr

. (22)
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We turn to (20). By (21), we can rephrase it as

c
`−1

`

(∫ t

0

f(r) log f(r)dr − log f(t)

∫ t

0

f(r)dr

)
=

∫ 0

log

[
tf(t)∫ t

0 f(r)dr

](1−er) 1
`−1 dr. (23)

Both sides of (20) are equal to 0 if we let t go to 0, so it is enough to prove that
the derivatives are equal. However, if we differentiate (23), we get an equality
equivalent to (22). This gives the claim.

Thus, in the proof of the sharpness, it is reasonable to consider functions f
enjoying (21). It is not difficult to solve this equation: it is satisfied by the
functions of the form

f(t) =
b(

1 + (bct)`−1
) `
`−1

,

where b is an arbitrary constant. To find the appropriate b and c, let us restrict

ourselves to these values, for which we have b =
(
1 + (bc)`−1

) 1
`−1 . For this

choice of b and c, we have
∫ 1

0
f(r)dr = 1. Furthermore, denoting (bc)`−1 = d,

we compute that∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt = (1 + d)

`
`−1

∫ 1

0

x`−1

(1 + dx`−1)
`
`−1

dx (24)

and, integrating by parts,∫ 1

0

f(r) log f(r)dr = − log(1 + d) + `(1 + d)
1
`−1d

∫ 1

0

x`−1

(1 + dx`−1)
`
`−1

dx.

Consequently, we see that∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt−K

∫ 1

0

f(r) log f(r)dr

= K log(1 + d) + (1 + d)
1
`−1 (1 + d−K`d)

∫ 1

0

x`−1

(1 + dx`−1)
`
`−1

dx.

Suppose now that K > 1. Comparing the above expression to the formula for
L(K), it is natural to try d = (K − 1)−1. Then

K log(1 + d) + (1 + d)
1
`−1 (1 + d−K`d)

∫ 1

0

x`−1

(1 + dx`−1)
`
`−1

dx

= K log
K

K − 1
+

(
K

K − 1

) `
`−1

(1− `)
∫ 1

0

x`−1(
1 + x`−1

K−1

) `
`−1

dx
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and the substitution r = 1 −
(
1 + x`−1

K−1

)−1
under the integral transforms the

above expression into

K log
K

K − 1
−K

`
`−1

∫ K−1

0

r
1
`−1

dr

1− r
.

Integrating by parts, we see that this is precisely L(K, `) and hence we are done
with the case K > 1. To get the sharpness for K = 1, we argue as in the case
` = 1: the function L(·, `) is nonincreasing, so

L(1, `) ≥ lim
K↓1

L(K, `) =
1

`− 1

∫ 1

0

s
1
`−1
−1 log

1

1− s
ds,

as desired. It remains to handle the case K<1. Fix an arbitrary K ′>1 and let f

be the extremal function for this parameter: f(t) = (1 + d)
1
`−1 (1 + dt`−1)−

`
`−1 ,

where d = (K ′ − 1)−1. For this f , we have equality in (4):∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt = K ′

∫ 1

0

f(r) log f(r)dr + L(K ′, `)

and hence

L(K, `) ≥
∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt−K

∫ 1

0

f(r) log f(r)dr

=

(
1− K

K ′

)∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt+

K

K ′
L(K ′, `).

But the latter expression converges to infinity as K ′ ↓ 1. Indeed, substituting
y = dx`−1 in (24), we get∫ 1

0

1

t

(∫ t

0

f(r)dr

)`
dt = (`− 1)−1

(
1 +

1

d

) `
`−1
∫ d

0

y
1
`−1

(1 + y)
`
`−1

dy

and it suffices to note that d→∞ as K ′ approaches 1. This shows that L(K, `)
must be infinite and the proof of the sharpness is complete.

4. Estimates for fractional maximal operators on Rn

This section contains an application of the results obtained above. Let us start
with the necessary definitions. For any positive integer n and any β ∈ (0, n),
we define Hardy fractional maximal operator Hβ, acting on locally integrable
functions f on Rn, by the formula

Hβf(x) =
1

|B(0, |x|)|1− βn

∫
|y|<|x|

|f(y)|dy, x ∈ Rn \ {0}.
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This operator is closely related to other classical objects in analysis: the so-
called Hardy-Littlewood fractional maximal operator Mβ, which is given by

Mβf(x) = sup
r>0

1

|B(x, r)|1− βn

∫
|y−x|<r

|f(y)|dy, x ∈ Rn,

and to the Riesz potential Iβ, defined by the formula

Iβf(x) =

∫
Rn

f(y)

|x− y|n−β
dy, x ∈ Rn.

The relation between these operators is the following: as one easily checks,

Mβf(x) = sup
y∈Rn

(Hβ(f(·+ x)))(y), x ∈ Rn,

and Hβ(f)(x) ≤ 2n−βMβ(f)(x) ≤ 2n−β
(
ωn−1

n

) β
n
−1
Iβ(f)(x), x ∈ Rn \ {0}, where

wn−1 = 2π
n
2

Γ(n
2

)
denotes the measure of the unit sphere in Rn. Thus, it of interest

to study the action of Hβ on Lp spaces. It is not difficult to show that if
1 < p < q < ∞ satisfy 1

p
= 1

q
+ β

n
, then Hβ is bounded as an operator from Lp

to Lq: this follows immediately from the above relation between Hβ and Iβ, and
the corresponding result for Riesz potentials (see e.g. Stein [18]). The precise
value of the norm has been recently identified by Lu and Zhao in [11]: here is
the statement.

Theorem 4.1. If 0 < β < n and 1 < p < q <∞ satisfy 1
p

= 1
q

+ β
n

, then

||Hβ||Lp(Rn)→Lq(Rn) =

(
p

q(p− 1)

) 1
q
(
n

qβ
· B
(
n

qβ
,
n(q − 1)

qβ

))− β
n

,

where B(z, w) =
∫ 1

0
tz−1(1− t)w−1dt is the usual beta function.

The estimates obtained in the previous sections will allow us to prove a
certain version of this theorem for p = 1, which can be regarded as a local
boundedness from L logL to L

n
n−β . The main result of this section can be

stated as follows.

Theorem 4.2. Let n be a positive integer, let β ∈ (0, n) and put q = n
n−β . Then

for any K > 0 and any locally integrable function f on Rn satisfying

1

|B(0, 1)|

∫
B(0,1)

|f(x)|dx = 1, (25)

we have the bound∫
B(0,1)

(Hβf(x))qdx ≤ K|B(0, 1)|q−1

∫
B(0,1)

|f(x)| log |f(x)|dx+L(K, q)|B(0, 1)|q.

For any K > 0, the constant L(K, q) cannot be replaced by a smaller number.
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By a standard homogenization argument, we may get rid of the normaliza-
tion assumption (25) and obtain the following result. Here, for a nonnegative
function g on B(0, 1),

EntB(0,1)(g)=
1

|B(0, 1)|

∫
B(0,1)

g log g −
(

1

|B(0, 1)|

∫
B(0,1)

g

)
log

(
1

|B(0, 1)|

∫
B(0,1)

g

)
denotes the entropy of g over B(0, 1).

Corollary 4.3. Let n be a positive integer, let β ∈ (0, n) and put q = n
n−β .

Then for any K > 0 and any locally integrable function f on Rn, we have the
sharp bound∫
B(0,1)

(Hβf(x))qdx

≤ K|B(0, 1)|
(∫

B(0,1)

|f(x)|dx
)q−1

EntB(0,1)(|f |) + L(K, q)

(∫
B(0,1)

|f(x)|dx
)q

.

In the proof of the above theorem, we will need the following lemma, a
slight modification of the corresponding fact from [10].

Lemma 4.4. For a locally integrable function f on Rn, let

gf (x) =
1

ωn−1

∫
Sn−1

|f(|x|ξ)|dξ, x ∈ Rn.

Then Hβgf (x) = Hβ(|f |)(x) for all x,∫
B(0,1)

gf (x)dx =

∫
B(0,1)

|f(x)|dx

and ∫
B(0,1)

gf (x) log gf (x)dx ≤
∫
B(0,1)

|f(x)| log |f(x)|dx.

Proof. The equality Hβgf (x) = Hβ(|f |)(x) can be found in [10]. The second
identity follows immediately from the passage to polar coordinates. The last
inequality follows from the passage to polar coordinates and Jensen’s inequality.
Indeed, denoting by e1 the vector (1, 0, 0, . . . , 0) ∈ Rn, we see that∫

B(0,1)

gf (x) log gf (x)dx =

∫ 1

0

∫
Sn−1

gf (rξ) log gf (rξ)r
n−1dξdr

= ωn−1

∫ 1

0

gf (re1) log gf (re1)rn−1dr.
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Now, the function t 7→ t log t is convex on [0,∞) and gf (x) is the average of the
function ξ 7→ |f(|x|ξ)| over Sn−1. Consequently, Jensen’s inequality implies∫

B(0,1)

gf (x) log gf (x)dx ≤ ωn−1

∫ 1

0

1

ωn−1

∫
Sn−1

|f(rξ)| log |f(rξ)|rn−1dξdr

=

∫
B(0,1)

|f(x)| log |f(x)|dx.

This completes the proof.

Proof of Theorem 4.1. By the above lemma, we see that we may restrict our-
selves to functions f which are radial and nonnegative. For such a function, we
easily compute that

Hβf(x) =
1

|B(0, 1)|1− βn |x|n−β

∫ |x|
0

∫
Sn−1

f(rξ)rn−1dξdr

= |B(0, 1)|
β
n |x|β−n

∫ |x|n
0

f(r
1
n e1)dr.

Therefore, passing to polar coordinates again, we get∫
B(0,1)

(Hβf(x))qdx = |B(0, 1)|q
β
n

∫ 1

0

∫
Sn−1

sq(β−n)

[∫ sn

0

f(r
1
n e1)dr

]q
sn−1dξds

= |B(0, 1)|q
∫ 1

0

sq−1

(
1

s

∫ s

0

f(r
1
n e1)dr

)q
ds.

Now, the function f̃ : [0,∞) → [0,∞), given by f̃(t) = f(t
1
n e1), satisfies∫ 1

0
f̃dt = 1, so (4) yields∫
B(0,1)

(Hβf(x))qdx ≤ |B(0, 1)|q
(
K

∫ 1

0

f̃(r) log f̃(r)dr + L(K, q)

)
= |B(0, 1)|q

(
K

|B(0, 1)|

∫
B(0,1)

f(x) log f(x)dx+ L(K, q)

)
,

where in the latter passage we have again exploited polar coordinates. This is
precisely the estimate of Theorem 4.1. It is also clear that for any K > 0, the
constant L(K, q) cannot be improved: this follows at once from the sharpness
of (4). The proof is complete.
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houpt weights (in Russian). Algebra i Analiz 15 (2003), 73 – 117; Engl. transl.:
St. Petersburg Math. J. 15 (2004)(1), 49 – 79.

[21] Vasyunin, V. and Volberg, A., The Bellman function for certain two weight
inequality: the case study. St. Petersburg Math. J. 18 (2007)(2), 201 – 222.

[22] Vasyunin, V. and Volberg, A., Monge-Ampére equation and Bellman optimiza-
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