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Nonautonomous Dynamics with
Discrete Time and Topological Equivalence

Luis Barreira, Liviu Horia Popescu and Claudia Valls

Abstract. For evolution families with discrete time, we show that any exponential
dichotomy is topologically equivalent to a certain normal form, in which the exponen-
tial behavior along the stable and unstable directions are multiples of the identity.
We consider the general case of a generalized exponential dichotomy in which the
usual exponential behavior is replaced by an arbitrary growth rate. In addition, we
show that the topological equivalence between two evolution families with general-
ized exponential dichotomies can be completely characterized in terms of a notion of
equivalence between the growth rates.
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1. Introduction

Our main objective is to study the topological equivalence between evolution
families with discrete time that admit an exponential dichotomy. We emphasize
that the dynamics may be nonautonomous. Given invertible linear operators A,
and B, for n € Z, the two nonautonomous dynamics with discrete time

Tnt+1 = Anxn and Yn+1 = Bnyn

are said to be topologically equivalent if there exist homeomorphisms h,, for
m € Z such that

A(m,n)oh, = hy, o B(m,n)
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for m,n € Z, where

Am—l"'An7 m>n,
A(m,n) = < Id, m=n,

ALt AL, m<n,

with a similar definition for B(m,n) with each operator A, replaced by B,,. In
addition, unlike in other works, we consider a condition that allows controlling
the asymptotic behavior of the maps h,, at zero and at infinity. Namely, we
assume that there exists an increasing continuous map L such that

1 (@)l < L(ll2l))  and  [[hy! ()] < L(]|z])

for m € Z. These inequalities ensure that not only the type of stability of the
two dynamics coincides, which is a statement essentially of qualitative nature,
but also that their quantitative behavior is the same at zero and at infinity.

Moreover, we also consider the general case of a contraction and an ex-
pansion with an arbitrary growth rate, instead of only the usual exponential
behavior. This type of generalized exponential behavior was considered earlier
for example in [1-3] and corresponds to situations when the Lyapunov expo-
nents are all infinite or are all zero, such as when the growth is polynomial.

In the above general setting, that is, for nonautonomous dynamics defined
by two-sided sequences of linear operators and possibly with an arbitrary growth
rate in the stable and unstable directions, we show that:

1. Any evolution family with a generalized exponential dichotomy is topo-
logically equivalent to a normal form, in the which the behaviors in the
stable and unstable directions are multiples of the identity.

2. The topological equivalence between two evolution families admitting gen-
eralized exponential dichotomies with different growth rates can be com-
pletely characterized by a notion of equivalence between growth rates.

The proof of the first result consists of constructing explicitly the conju-
gacy maps in the notion of a topological equivalence. For a nonautonomous
linear differential equation, it was shown in [4] for finite-dimensional spaces and
in [5] for arbitrary Banach spaces that if the equation admits an exponential
dichotomy, with the usual growth rate, then the associated evolution family is
topologically conjugate to the evolution family of a normal form.

The second result addresses the problem of how one can characterize the
notion of topological equivalence between evolution families in terms of a notion
of equivalence between their growth rates. Two (increasing sequences of) growth
rates p, and p/ are said to be equivalent if there exist constants «,5 > 0
such that

pm — pn = a(p), — ) = B and  pr, — pr, > alpm — pn) — B
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for m > n. It turns out that this notion characterizes completely (and is in fact
equivalent to) the notion of topological equivalence between evolution families
with generalized exponential dichotomies, possibly with different growth rates.

2. Exponential dichotomies and topological equivalence

2.1. Main result. Let B(E) be the set of all bounded linear operators acting on
a Banach space E. Given a sequence of invertible linear operators A,, € B(E),
for m € Z, we consider the evolution family A = {A(m,n)}mnez formed by the
linear operators
Ap_1--+A,, m>n,
A(m,n) = < Id, m=n,
Al AL mo<on.

Moreover, let X be the set of all increasing sequences p = (pm)mez of real
numbers such that pg = 0 and

¢ = nf (ps1 = pm) > 0.

Notice that

lim p,, =—o0 and lim p,, = +o0.
m—r—00 m——+00

Given p € X, we say that a sequence of invertible linear operators (A,,)mez in
B(F) has a p-strong exponential dichotomy if there exist projections P, for
m € Z, and constants NV, u, v > 0 satisfying

PL,A(m,n) = A(m,n)P,
N le—#lpm-1=pni1) < HA(m,n)PnH < Ne*'/(pmﬂfpn_l)’
N te—#lpm-1=pnt1) < ||A(n,m)Qm]|| < Ne v pm+1—=pn—1)

for m > n, where ), = Id — P,, for each m € Z.

Now we introduce a notion of topological equivalence for a nonautonomous
dynamics with discrete time that takes into account the growth of the con-
jugacies at infinity. We say that two evolution families A = {A(m,n)} and
B = {B(m,n)} are topologically equivalent if there exist homeomorphisms
hm: E — E for m € Z and an increasing continuous map L: R} — RJ with

L(0)=0 and lim L(f) = +o0o

0—+o00

such that:
1. A(m,n) o hy, = hy, o B(m,n) for m,n € Z;
2. ()]l < L(lz])) and [|h'(@)]] < L(||l2]]) for m € Z.
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The following is our main result. It shows that any strong exponential
dichotomy is topologically equivalent to a standard normal form.

Theorem 2.1. If A is an evolution family with a p-strong exponential dicho-
tomy, then it is topologically equivalent to the evolution family B defined by

B(m, n) — epn_PmPO + er_PnQO'
2.2. Proof of Theorem 2.1. For each m € Z and x € FE, let

2l = Y ARk, m)al| + Y Ak, m)z],

k>m k<m

where

Ap(k,m) = A(k,m)P,, and Ag(k,m)= A(k,m)Qm.
It is easy to verify that ||-||,, is a norm on F.

Lemma 2.2. For each m € Z and x € E, we have

2N
]| < l|lz)lm < 1_—6,,,6\’95”- (1)

Proof. We have
[l = 1 Emtllm + | @r I, (2)

with

1Pl = > | Ap(k,m)al| and [|Quallm = Y | Ag(k,m)].

k>m k<m
Since || Ppllm = || Bnell and [|Qm|lm = [|@me]l, by (2) we have [lz]|m > [z

For the second inequality in (1), we note that

1Pl < Y Nem=Pm)jlz| < 3 Nemet=m|jz| =

k>m k>m

mﬂxﬂ

and analogously,

m m S P 9
Qi < 7l
This completes the proof of the lemma. n

For each € F and m € Z, let
pm(x) = [[A(m,0) Pz, and gn(z) = ||A(m,0)Qz]|m,

where P = Py and Q = Q.
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Lemma 2.3. The following properties hold:

1. for x € PE\ {0}, the sequence (pm(x))mez is strictly decreasing and for
y € QE \ {0}, the sequence (qm())mez 1s strictly increasing;
2. for each x € PE \ {0} there exists a unique 7(x) € Z such that

Pra)(®) <1 < prigy-1(z)
and for each v € QFE \ {0} there ezists a unique n(x) € Z such that

In(y)-1(7) <1 < gy (2).
Proof. Note that

Pm—1 () =pm(2) =[[Ap(m=1,0)z(| > 0, g (2) = gm-1(2) = || Ag(m, 0)z[| > 0.

This establishes property 1.
Now take z € PE \ {0}. For m > 0, we have

ple) < 3 N al] < 30 Ne el = 2o la]
k>m k>m
and 8o p,(z) — 0 when m — +o00. Moreover, for k < 0 we have
e < 14RO, B)]| - [ Ap(k, 0)z]| < Ne'?[|Ap(k, 0)x|| < Ne**||Ap(k, 0)x|
and thus, ||Ap(k,0)z|| > ~e *||z||. Hence,
pn(e) = 3 1A 0)e] 2 Il 57 e 2 il

for m < 0, which implies that p,,(x) — +0o when m — —oo. Together with
property 1, this guarantees the existence and uniqueness of the integer 7(x)
is guaranteed. One can use similar arguments to establish the existence and
uniqueness of n(x). O

We proceed with the proof of the theorem. Given x € PE\ {0} and m € Z,
let a = a(m, x) be the unique integer in Z such that

epaflfpm < ||xH S epa*pm. (3)
We note that there exists a unique ¢ = ¢(m, z) € [0, 1) such that
HxH — tepa—lfpm + (1 _ t)epafpm (4)

Similarly, given z € QF \ {0} and m € Z, let b = b(m, x) be the unique integer
in Z such that
epmfpb S HxH < epmfpbfli
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We note that there exists a unique s = s(m, z) € [0, 1) such that

||xH — Sepm_bel + (1 _ S)epm—Pb_
Clearly,
a(m,e Pmx) =a(0,x), b(m,e’ x)=">b(0,z) (5)
and so
t(m,e mx) =t(0,z), s(m,e’x)=s(0,z). (6)
For each m € Z, we define a map f,,: PE — P, E by f,,(0) =0 and
A(m,0)x

~ tpaa (1) + (1= )pa(a)
for x # 0, and a map ¢,,: QF — QnFE by ¢,(0) =0 and

A(m,0)z
sqp—1(2) + (1 = 5)gp()
for x # 0. Finally, we define h,,: E — E by

hM(x) = fm<Px> + gm(Qx)

One can easily verify that each map h,, is continuous outside the origin.
We consider only f,, (the argument for g,, is analogous). Since the map z —
A(m,0)z is continuous, in order to show that f,, is continuous we must prove
that the function

gm(fl?) =

F(z) =tpe—1(x) + (1 — t)pa(x)
is also continuous. Given m,c € Z, for each x € PE \ {0} satisfying
eﬂc—l*pm < HxH < epc*pm (7)

lel=e™" " __ Hence, in the set of all z

we have a(m, z) = ¢ and so t(m,x) = g

satisfying (7), for some ¢ € Z, the function

] = ere—en

F(x) = Pe—1(x) +

ePc—1—Pm — ePc—Pm

] = ere-r—m

ePc—1—"Pm — ePc—Pm pc(m)

is continuous (since all norms are continuous). Now take y € PE \ {0} with
lly|| = ePe—r=Pm. Letting x — y with x satisfying (7), we have a(m,z) = ¢ and
so t(m,x) — 1, since ||x|| — eP==r~Pm. Therefore,

F(QZ) = t(mv x)])cfl(x) + (1 o t<m7x))pc<x> — pcfl(y>'
On the other hand, since a(m,y) = ¢ — 1 and t(m,y) = 0 we have

F(y) = t(m, Y)Pam.y)-1(y) + (1 = (1, ¥))Pa(m.y) (¥) = pe-1(y)-
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Similarly, one can show that F(x) — F(y) when z — y with ||z|| < efe-17Pm.
Therefore, the function F' is continuous outside the origin and so the same
happens to the map f,,. The continuity of f,, at the origin follows readily from
Step 4 below, where it is shown that there exists a continuous map L: Rj — RJ
with L(0) = 0 such that || f,(2)|| < L(||z]])-

The remainder of the proof consists of showing that the maps h,, have the
required properties in the notion of a topological equivalence.

Step 1: Conjugacy. We prove that
hpp o (e/77PmP + ePm=PnQ) = A(m,n) o hy,.
For this, it suffices to show that

fm(e7Pmx) = A(m,0) fo(x) for xz € PE
and
g(eP) = A(m, 0)go(x) for = € QF. ®)
For t = t(m,e ?mz) and a = a(m,e mx), by (5) and (6) we obtain

_ A(m,0)e Pmx
Pm —
fm(e ") tpa-1(e~Pmx) + (1 — t)pa(ermx)
B A(m,0)e Pmx
toPag—1(e7Pmx) + (1 — tg)pa, (e7Pm )

= A(m7 O)fo(x)7

where to = t(0,x) and ay = a(0,z). Identity (8) can be obtained in a similar
manner.

Step 2: The maps h,, are one-to-one. Assume that f,,(z) = f,.(y) and
write a = a(m, x), a’ = a(m,y), t = t(m,z) and t' = t(m,y). Then

X - y B
s @+ (= 0pa@)  Tras@ - (= Opaty) 75 O

Since p,_1 > pg, we have

- Po() Pa(7) _
Pa(§) = tha_1(x) + (1 — t)pa(z) = tpa(z) + (1 — t)pa(z) :

and

Pa—1(§) _ pa,1($) pafl(x)

 tpai(@) + (1 — t)pa(z) ” tPar(@) + (1 — O)pai(z) .
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It follows from Lemma 2.3 that a = 7(§) and one can show in a similar manner
that «’ = 7(§). Hence a = o’ and

x B y
tpa—1(x) + (1 = t)pa(z) — t'Pa1(y) + (1 — ')paly)’

Consequently,
Pa() _ Pa(y)
tpa-1(x) + (1 = t)pa(z)  t'pa-1(y) + (1 —1')pa(y)
and
Pa-1(T) _ Pa-1(Y)
tpa—1(z) + (1 = t)pa(z)  t'pa-1(y) + (1 —)paly)
Therefore,
g Paly) _ par(y) _ tpai(y) + (A~ )pa(y)
. Pa(®)  pa—1(x) tpa—1(z) + (1 — t)pa()
and so,

L tpaa(y) + (L= )paly) _ 'pa—i(@) + (1 — t')pa(2)
d tpa—l(x) + (1 - t)pa(l‘) tpa—l(l') + (1 — t)pa(l‘) ’

Since p,_1(x) # pa(z), this implies that ¢ = ¢’ and by the definition of ¢ and ¢’
we obtain ||z|| = |ly||. Finally, equality (9) implies that = = Ay for some A\ > 0,
which together with ||z| = ||y|| yields that x = y. Hence, f,, is one-to-one.
A similar argument shows that g, is one-to-one and so the same happens to
the map h,,.

1

Step 3: The maps h,, are onto. If f,,(z) =y € P, FE for some z € E, then

A(m,0)x B
tpos(@) + (1 Dpalz)
and thus,
x
= A(0,m)y.
(@) + (1= Dpata) ~ 0
Since p,_1 > pq, this implies that
Pal A0, m)y) = Pelz) <1
tpa_1(x) + (1 — t)pa(z)
and
Par(A(0, m)y) = —Lectl®) -1

 tpa—1(a) + (1 — t)pa(x)
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Hence, a = 7(A(0, m)y). On the other hand, since
z = [tpa—1(x) + (1 = t)pa(2)]A(0, m)y, (10)
we have
]} = tePemt7rm 4 (1 = t)e ™™ = [tpa—1(x) + (1 = t)pa(2)]| A0, m)y]|
or, equivalently,

tepafl_Pm + (1 —t epa_Pm
tpa—l('r) + (]' - t)pa(‘r) = ”A(O m)yH)

This leads to
B tePa-1—Pm (1 _ t)epa,_pm

xr =
A0, m)y||
where a = 7(A(0,m)y). In order to express x in terms of m and y, it remains

to write down explicitly ¢ = ¢(m, x) in terms of m and y. For this we note that
letting

A0, m)y,

2 =1ps—1(x) + (1 — t)pa(x),
it follows from (10) that
Pa(x) = 2pa(A(0,m)y) and p,_1(x) = 2pa—1(A(0, m)y).
Multiplying the first identity by 1 — ¢ and the second by t we obtain
z = 2[tpa—1(A(0,m)y) + (1 — 1)pa(A(0, m)y)]
and thus, tp,_1(A(0,m)y) + (1 — t)p.(A(0,m)y) = 1. Therefore,

;= - pa<A(07 m)y)
pa—l(A<07 m)y) - pa(A(Ov m)y) '

We showed that for each y € P, E, any = € E satisfying f,,(z) = y is of
the form

uePe1=Pm 4 (1 — u)elePm

@m0y (11)

where ¢ = 7(A(0,m)y) and

U= 1 - pc(A<07 m>y)
Pe-1(A(0,m)y) — pe(A(0,m)y)

It remains to prove that any such z indeed satisfies f,,(x) = y. We first observe
that u € [0,1). Now let

r=uefetPm 4 (1 — el Pm. (12)



30 Luis Barreira et al.

By (11) we have ||z|| = r and since u € [0, 1), we obtain
ePe—17Pm < ||x|| S ePe=Pm
Hence, ¢ = a and, by (4), we have u = t. Moreover, by (11),

p.(A(0, m)y)

TPe—1 (A(Ov m)y)
A0, m)y]| '

pa(r) = pe(z) = A0, m)y|l

and  p,—1(z) = pe_1(x) =

Writing v, = A(0, m)y, we obtain

upe-1(2) + (1 = u)pe(x)

r 1 — pe(Ym) Pe-1(Ym) — 1
= De—1(Ym) + Pe\Ym
A, M)yl | Pe-1(Ym) — Pe(Yim) 1(tim) Pe-1(Ym) — Pe(Ym) ()| (13)
r
A, )yl
On the other hand, it follows from (11) and (12) that A(m,0)z = m and
thus, by (13),
A(m,0)x 1 ry
fm () ( ) = Y-

T (@) + (L= Opa(@)  upes (@) + (1 —w)pe(w)  [JAQO,m)y]

This shows that the map f,, is onto. A similar argument applies to g,, and so
the map h,, is onto.

Step 4: Existence of an increasing map L;. Without loss of generality, we
assume that v < 1 and p > 1. Take x € PE \ {0} with ||z]| < 1. By (3), we
have m > a — 1 and thus m > a. Write x = +. Then
[ A(m, 0)z|"
= t|Ap(m, 0)z[|* + (1 = 1)[|Ap(m, 0)z|"
< t[llAp(m.a = D)| - [Ap(a = 1,0)z]|]" + (1 = ) [ Ap(m, a)l| - || Ap(a, 0)x|]]"
< t[Ne’”(pmfp“’l)paflr +(1-1¢) [Ne”’(p’"7”")]%]"i
_ N”tepafl_pmpz_l + N“(l _ t)epa_Pmps’

where p, = pu(z) and ps—1 = p.—1(x). Using the convexity of the function
x +— " (we are assuming that 0 < v < 1), we obtain

[tpa—1 + (1 = t)pa]™ > tps_y + (1 —t)p};
and hence,

tePa—t=Pmpl | 4 (1 — t)ePa—Pmpt B and +(1—=1t)ev

- PN ’
||f (]3)” = tpg,1+(1_t)pg td—f-(l—t)c
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where
u=efot7Pm <y =elmPm and c=p, <d=p,_,.

It follows from (4) that W < tu—+ (1 —t)v = ||z|| and hence,

[fm(@)|| < Nllz|” whenever ||z <1. (14)

Now take x € PE with ||z|| > 1. By (3), we have a > m and thus a—1 > m.
Write A = % Using the concavity of the function x — z* (we are assuming
that © > 1), we obtain

|Ap(m, 0)|1*

= t||Ap(m,0)z[* + (1 = )| Ap(m, 0)z|*

< t[|A(m,a —1)| - [|[Ap(a — 1,0)z } (1 =t)[|[A(m, a)| - ||Ap(a, 0)x||]
< t[Neﬂ(Pafl_Pm)pa_l])\ +(1—1t) [Neu(pa pm)p ]A

= 75]\f’\€"“‘1_pmp;‘_1 + (1 — t)NAera™ pmpé

and hence,
tePa—1=Pmp) 1 — ¢)ePa—Pmpr tuc 1 — od*
||fm($)H)\ S N)\ € Pa1 +( )e)\ Py — A Luc +( )U)\ ’
[tpa—1 + (1 — t)pa) [te + (1 —t)d]
where
u=elt7Pm <y =efomPm and d=p, <= pa_i. (15)
We will show that
tuc® + (1 — t)vd* < [tu+ (1 — )] - [te + (1 — t)d)*. (16)

For this we define f: [0,1] — R by
ft) = [te+ (1 —t)d.

Since A < 1, the function is concave and so its derivative f’ is decreasing and
positive. Note that inequality (16) is equivalent to

(1= 8)o[f(t) = fO)] = tulf(1) = f(H)] = 0. (17)

By the mean value theorem, there exist £ € (0,t) and n € (¢,1) such that

f@) = f0)=tf(§) and f(1) = f(t)=(1—1)f(n)

Hence, taking these ¢ and 7, inequality (17) is equivalent to
t(1—t)of(§) —t(1 —t)uf'(n) =0
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Therefore, it is sufficient to prove that vf'(§) — uf’(7) > 0 for any £ > 7. In

view of (15) we have indeed v f'(&) —uf'(n) > u(f'(€) — f'(7)) > 0, which yields
inequality (17). Hence, (16) holds and so

[fm(@)[| < N[ whenever [lz]| > 1. (18)

Finally, let
M, (0) = N max{0",0"}.

Note that M; is increasing and it follows from (14) and (18) that

[ fm (@) < Mi(l|z])).

A similar argument applies to the maps g,, to produce an increasing function
M, such that

[1gm () || < Ma([|])

for v € QF. We define an increasing map L; by
Ly(lzll) = My(]| P=(]) + Ma([|Q]).

Clearly L1(0) =0 and ||h,(2)| < Ly(||z]]) for x € E.

Step 5: Existence of an increasing map L,. We continue to assume that
v<1land pu>1. Take z € PE with ||z|| > 1. Then a — 1 > m and

[ A(m, 0)x]]

=t Ap(m, 0)z[| 4 (1 —)[[Ap(m, 0)z||

>t Ap(a—1,m)[ 7" - [Ap(a — 1,0)z[| + (1 = )| Ap(a,m)[| 7" - [Ap(a, 0)z|
> tN’e*”(pm‘lfp“)pa,l +(1— t)N'e*V(pm—rpaH)pa

> N’te”(pafpm)paﬂ + N/(l — t)e"(pafpm)pa

= Nlel’(Pa—Pm)(tpa_l + (1 = t)pa),

where N/ = lgf\;;c, Pa = Pa(z) and pa_1 = pa_1(z). Therefore,

IPa—1 + (1 - t)pa — N'gpa=Pm > N/HZL‘”V

fin(2)| > N’V (Pa=pm)
[ on()] tpa—1+ (1 —1t)pa

Letting y = f,,(x), we obtain

1£ @I < (M) [lyll®  whenever [l > 1. (19)
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Now take z € PE \ {0} with ||z|| < 1. Then m > a and
[ A(m, 0)z|]
=t Ap(m, 0)z[| 4 (1 — £)[|Ap(m, 0)z||
>t Ap(a —1,m)[7" - [[Ap(a — 1,0)z[| + (1 = )| Ap(a,m)|| " - [[Ap(a, 0)z]|
> tNle_M(pmfl_Pa)pa_l + (1 _ t)N’e_“(p’"*l_p““)pa
> N/teu(pa—pm)pa_l + N'(1— t)e“(”“_p’”)pa
= N'etlPa=rm) (tp, 1 + (1 — t)Pa)-

Therefore,

(pa—pm) tPa—1 + (1 —t)pa — Neplpa=pm) > N ||z~

()] > N'et
| frn () P s

Letting y = f,,(x), we obtain
1t @I < (N)Myll* whenever |z < 1. (20)

Finally, let
M;5(0) = max{(N")~"6", (N") 6" }.

Note that Mj is increasing and it follows from (19) and (20) that

1 W) < Ms([lyl)-

A similar argument applies to the maps g,, to produce an increasing function
M, such that

lgm' W11 < Ma(lly)
for y € QF. We define an increasing map Lo by

Ly(llyll) = Ma([[Pyll) + Ma(llQyl))-

Clearly Ly(0) = 0 and ||} (y)]] < La(||y]|) for y € E. This completes the proof
of Theorem 2.1.

3. Equivalence of growth rates

In this section we introduce a notion of equivalence between sequences in X and
we show that it characterizes completely the notion of a topological equivalence
between evolution families.
A sequence (2., )mez is said to be almost increasing if there exists a constant
6 > 0 such that
T — Ty, > —0 for m >n.
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Notice that any sequence that is increasing on Z \ [a, b] for some a < b is also
almost increasing.

We define a binary relation > in the set X as follows: (,)mez > (Ym)mez
if there exists a > 0 such that the sequence z,, = x,, — ay,, is almost increasing,
that is, if there exist a,b > 0 such that

T — Tp > a(Ym — Yn) — b for m >n. (21)

Proposition 3.1. (2,,)mez = (Ym)mez if and only if there ezists a constant
a > 0 such that for any 0 > 1 we have

Ty — T <0 = Yp—Yn < b (22)
for each m > n.

Proof. Assume that (.,)mez > (YUm)mez and z,,, — z,, < 6. It follows from (21)
that

Ym — Yn <

SEES

1 1
(mm—xn)+é<—9+99:(——i-é)@:oz@.
a a a

a a

Now assume that (22) holds. Take m > n and 0 = ¢(z,, —z,,) > 1 for some
g € N. Then 6 > qc and so,

Ym — Yn < al = qa(xy, — y).

This yields that x,, — x,, > (Y — ¥,) With a = qa. O

a

We introduce an equivalence relation ~ on the set X by declaring that

(Im>mEZ ~ (ym)mEZ it
(xm)mEZ - (ym)mEZ and (ym)mEZ > (xm)mez-

The following result relates in an optimal manner the notion of equivalence
between growth rates and the existence of a topological equivalence. Let z =
(Tm)mez and y = (Ym)mez be growth rates.

Theorem 3.2. Let A and B be evolution families. If A admits an x-strong
exponential dichotomy with projections Py and Q)1 at the origin and B admits a
y-strong exponential dichotomy with projections Py and ()2, then A and B are
topologically equivalent if and only if:

1. the subspaces P E and PoE are homeomorphic;

2. the subspaces Q1 E and Qo FE are homeomorphic;

3. T ~y.

Proof. We start with an auxiliary result.
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Lemma 3.3. x ~ y if and only if the evolution families e*™~*1d and e¥~¥"1d
are topologically equivalent.

Proof. Assume first that © ~ y. Given 6 € R and m € Z, there exists a unique
a = a(m,|0|) € Z such that

ezm_$a < |0’ < exm_xafl'

One can easily verify that a(m, |0|e*™) = a(0, |#]). Moreover, let t = t(m, |0|) €
[0,1) be the unique real number for which

10g0] = t(m — Ta—1) + (1 — ) (T — ). (23)

One can also show that t(m, |0|e*™) = (0, |6]).
Similarly, given n € R and m € Z, there exists a unique b = b(m, |n|) € Z
such that
ey’m*yb S |77| < eymfybfl_

One can easily verify that b(m, |n|e¥™) = b(0, |n|). Moreover, let s = s(m, |n|) €
[0,1) be the unique real number for which

log|n| = s(ym — Ya—1) + (1 = 8)(Ym — Ya)- (24)
One can also show that s(m, |n|e¥™) = s(0, |n]) = so.
Now let
1, 0 >0,
e@) =40, 6=0,
-1, 6<0.

For each m € Z we consider the function h,,: R — R defined by
hom(0) = 5(9)et(ym*ya—l)Jr(l*t)(ym*ya)
with ¢ as in (23), and the function g,,: R — R defined by
(1) = el)esten - 1=
with s as in (24). It is easy to check that h,, and g, are continuous and that
hmogm:gmohmzld-
Moreover, writing ag = a(0, |#|) and ty = ¢(0, |#|), we obtain

hm(exme) — g(ewm9)eto(xm*xa071)+(1fto)(wmfwa)
— 5(Q)eyme—toyaOA—(1—150)%0

= €ymh0(6).
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Therefore, h,,(e*™~*"0) = e¥"ho(e ""0) = eVme ¥ h,(0) = e Y7 h,(0).
If m > a, then

| (6)| = €' @m—¥a-1)+(1=0)(m—a)

< eﬁ[t(:cm—xa_l)+tb1+(1—t)(xm_xa)Jr(l_t)bl]
b1

=em|f|*r = Li11(|0])

for some aq,b; > 0. If m < a, then

|hm (0)] = etWm—=ya—1)+(1=t)(ym—ya)

< et®2(Um—va—1)+tbo+(1-t)az(ym —ya)+(1-1)b:
= €"[0]" = L15(16])
for some ao, by > 0. If m > b, then
h-1 ()| = o5 @m—zp—1)+(1=5) (@m—2s)

< e%[s(ym_yb—l)+5b2+(1_5)(ym_yb)""(l_s)bQ]

by a1
= el = La(|n]).

‘hfl(n)| — S@m—zp1)+(1=5)(zm—zp)

< esal(ym—yb,1)+sb1+(1—s)a1(ym—yb)+(1—s)b1
= e[| = La(|n]).
Therefore, one can take
L(6) = maX{Ll,l(H), Ly2(0), La1(0), L272(0)}.

Now let h,,: R — R be the functions in the notion of a topological equiva-
lence, which thus satisfy

B (€5 750) = e¥™ 7Y, (0).
We have |h,,(0)| = e¥m~¥"|h,(e*»~*™8)| and so,
0] < e’V by (e (hy, (0)))] < e ¥ L(e™ =" L(|6])).

This yields the inequality

e Im|0] < Le™ = L(|0])).
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For || = 1 we have
efn¥m < L(e™ " L(1)).

If6>1andzx, —x, <0, then
eynTIm < L(eaL(l)) < aeb@ < 69(loga—|—b)

for some constants a > 1 and b > 0 (it follows from the proof of Theorem 2.1
that one can take L(0) = a#® for some a > 1 and b > 0). Therefore,

Yn — Ym < 0(loga +b) = cb

for n > m. By Proposition 3.1 we conclude that y > x. One can show in a
similar manner that x > y. O]

We proceed with the proof of the theorem. Assume that A and B are
topologically equivalent. We consider the evolution families

Al(m,n) =™ " Py 4 e Qy,
B/(m, n) — eyn_ymPQ + eym_ynQQ’
C(m,n) = e " Py + "7 ().

Using the symbol ~ to denote topological equivalence, it follows from Theo-
rem 2.1 that A ~ A’ and B ~ B’. In particular, A’ ~ B’ and so there exist
maps h,, as in the notion of topological equivalence such that

R (€577 Pz + e Qq2) = (e¥" 7Y™ Py 4+ V7V Qg) hy(2) (25)
for m,n € Z and z € E. Replacing z by P,z we obtain
hp (e Py z) = €79 Pyh, (Py2) 4+ €™ 7" Qohy, (P 2).

Since
lim hp(e® " Piz) =0 and lim e’ 7Y™ Pyh,(Pz) =0

m—r0o0 m—r o0

(using in the first identity the second property in the notion of a topological
equivalence), we obtain

lim e¥" " Qqsh,(P1z) =0

m—0o0

and so Q2h,(P1z) = 0. Therefore, Pyh, (P1z) = h,(P1z), which yields that
ho(P.E) C P,E. (26)
Now we rewrite identity (25) in the form

h;l<€ynfymp2z + eymfynQ2Z> — exnfxmplh;1(2> + exm*Ianh;Ll(Z).
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Replacing z by P,z we obtain
hr_nl(ey”_ymsz) = 6$’L_me1h;1(sz) + €x7’L_an1h;1(P22).
Since

lim A, (e ¥ Pyz) =0 and lim e *mPh *(Pyz) =0,

m—o0 m—0o0

we obtain Q1h,'(Pyz) = 0. Therefore, Pih,'(Pyz) = h,'(Pyz), which yields
that
h,'(PE) C P,E. (27)

It follows from (26) and (27) that the spaces PiE and P,E are homeomorphic.
Using similar arguments, one can show that the spaces Q1 F and ()2 F are also
homeomorphic. This implies that A" ~ € and so B’ ~ €. Hence, it follows from
Lemma 3.3 that z ~ y.

Now we assume that the three conditions in the theorem are satisfied. Then
the unit spheres S(P, E) and S(P,FE) are homeomorphic, and the same happens
to the unit spheres S(Q1FE) and S(Q2F), via homeomorphisms say

We define maps F': PPE — PE and G: Q1 FE — Qo F by

F(z) = {'O'Z“f%n)? i?E\{O}’

and
G(z) = {gz”gwﬂ iifff“”}’

One can easily verify that /' and G are homeomorphisms, with inverses

F(z) = {gz“f‘l(ﬁ)a zifo%E\{O},
and
G7l(z) = {gz”g‘l(nﬂ zi%E\{O},

Then H = F & G is a homeomorphism of E, with inverse H=! = F~! ¢ G~L.
We have

H(A'(m,n)z) = F(e"™ ™ Piz) + G(e" " Q12)
="M E(Pz) + e G(Q12)
= (eI Py + "I Qg H (2)
=C(m,n)H(z)
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and so A" ~ €. On the other hand, by Theorem 2.1, we have A ~ A’ and
B ~ B’ while Lemma 3.3 implies that B’ ~ €. Together with A’ ~ € this
yields that A ~ B. m
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