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Nonautonomous Dynamics with
Discrete Time and Topological Equivalence

Luis Barreira, Liviu Horia Popescu and Claudia Valls

Abstract. For evolution families with discrete time, we show that any exponential
dichotomy is topologically equivalent to a certain normal form, in which the exponen-
tial behavior along the stable and unstable directions are multiples of the identity.
We consider the general case of a generalized exponential dichotomy in which the
usual exponential behavior is replaced by an arbitrary growth rate. In addition, we
show that the topological equivalence between two evolution families with general-
ized exponential dichotomies can be completely characterized in terms of a notion of
equivalence between the growth rates.
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1. Introduction

Our main objective is to study the topological equivalence between evolution
families with discrete time that admit an exponential dichotomy. We emphasize
that the dynamics may be nonautonomous. Given invertible linear operators An
and Bn for n ∈ Z, the two nonautonomous dynamics with discrete time

xn+1 = Anxn and yn+1 = Bnyn

are said to be topologically equivalent if there exist homeomorphisms hm for
m ∈ Z such that

A(m,n) ◦ hn = hm ◦B(m,n)
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for m,n ∈ Z, where

A(m,n) =


Am−1 · · ·An, m > n,

Id, m = n,

A−1m · · ·A−1n−1, m < n,

with a similar definition for B(m,n) with each operator An replaced by Bn. In
addition, unlike in other works, we consider a condition that allows controlling
the asymptotic behavior of the maps hm at zero and at infinity. Namely, we
assume that there exists an increasing continuous map L such that

‖hm(x)‖ ≤ L(‖x‖) and ‖h−1m (x)‖ ≤ L(‖x‖)

for m ∈ Z. These inequalities ensure that not only the type of stability of the
two dynamics coincides, which is a statement essentially of qualitative nature,
but also that their quantitative behavior is the same at zero and at infinity.

Moreover, we also consider the general case of a contraction and an ex-
pansion with an arbitrary growth rate, instead of only the usual exponential
behavior. This type of generalized exponential behavior was considered earlier
for example in [1–3] and corresponds to situations when the Lyapunov expo-
nents are all infinite or are all zero, such as when the growth is polynomial.

In the above general setting, that is, for nonautonomous dynamics defined
by two-sided sequences of linear operators and possibly with an arbitrary growth
rate in the stable and unstable directions, we show that:

1. Any evolution family with a generalized exponential dichotomy is topo-
logically equivalent to a normal form, in the which the behaviors in the
stable and unstable directions are multiples of the identity.

2. The topological equivalence between two evolution families admitting gen-
eralized exponential dichotomies with different growth rates can be com-
pletely characterized by a notion of equivalence between growth rates.

The proof of the first result consists of constructing explicitly the conju-
gacy maps in the notion of a topological equivalence. For a nonautonomous
linear differential equation, it was shown in [4] for finite-dimensional spaces and
in [5] for arbitrary Banach spaces that if the equation admits an exponential
dichotomy, with the usual growth rate, then the associated evolution family is
topologically conjugate to the evolution family of a normal form.

The second result addresses the problem of how one can characterize the
notion of topological equivalence between evolution families in terms of a notion
of equivalence between their growth rates. Two (increasing sequences of) growth
rates ρn and ρ′n are said to be equivalent if there exist constants α, β > 0
such that

ρm − ρn ≥ α(ρ′m − ρ′n)− β and ρ′m − ρ′n ≥ α(ρm − ρn)− β
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for m ≥ n. It turns out that this notion characterizes completely (and is in fact
equivalent to) the notion of topological equivalence between evolution families
with generalized exponential dichotomies, possibly with different growth rates.

2. Exponential dichotomies and topological equivalence

2.1. Main result. Let B(E) be the set of all bounded linear operators acting on
a Banach space E. Given a sequence of invertible linear operators Am ∈ B(E),
for m ∈ Z, we consider the evolution family A = {A(m,n)}m,n∈Z formed by the
linear operators

A(m,n) =


Am−1 · · ·An, m > n,

Id, m = n,

A−1m · · ·A−1n−1, m < n.

Moreover, let X be the set of all increasing sequences ρ = (ρm)m∈Z of real
numbers such that ρ0 = 0 and

c = inf
m∈Z

(ρm+1 − ρm) > 0.

Notice that
lim

m→−∞
ρm = −∞ and lim

m→+∞
ρm = +∞.

Given ρ ∈ X, we say that a sequence of invertible linear operators (Am)m∈Z in
B(E) has a ρ-strong exponential dichotomy if there exist projections Pm, for
m ∈ Z, and constants N,µ, ν > 0 satisfying

PmA(m,n) = A(m,n)Pn

N−1e−µ(ρm−1−ρn+1) ≤ ‖A(m,n)Pn‖ ≤ Ne−ν(ρm+1−ρn−1),

N−1e−µ(ρm−1−ρn+1) ≤ ‖A(n,m)Qm‖ ≤ Ne−ν(ρm+1−ρn−1)

for m ≥ n, where Qm = Id− Pm for each m ∈ Z.
Now we introduce a notion of topological equivalence for a nonautonomous

dynamics with discrete time that takes into account the growth of the con-
jugacies at infinity. We say that two evolution families A = {A(m,n)} and
B = {B(m,n)} are topologically equivalent if there exist homeomorphisms
hm : E → E for m ∈ Z and an increasing continuous map L : R+

0 → R+
0 with

L(0) = 0 and lim
θ→+∞

L(θ) = +∞

such that:

1. A(m,n) ◦ hn = hm ◦B(m,n) for m,n ∈ Z;

2. ‖hm(x)‖ ≤ L(‖x‖) and ‖h−1m (x)‖ ≤ L(‖x‖) for m ∈ Z.
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The following is our main result. It shows that any strong exponential
dichotomy is topologically equivalent to a standard normal form.

Theorem 2.1. If A is an evolution family with a ρ-strong exponential dicho-
tomy, then it is topologically equivalent to the evolution family B defined by

B(m,n) = eρn−ρmP0 + eρm−ρnQ0.

2.2. Proof of Theorem 2.1. For each m ∈ Z and x ∈ E, let

‖x‖m =
∑
k≥m

‖AP (k,m)x‖+
∑
k≤m

‖AQ(k,m)x‖,

where
AP (k,m) = A(k,m)Pm and AQ(k,m) = A(k,m)Qm.

It is easy to verify that ‖·‖m is a norm on E.

Lemma 2.2. For each m ∈ Z and x ∈ E, we have

‖x‖ ≤ ‖x‖m ≤
2N

1− e−νc
‖x‖. (1)

Proof. We have
‖x‖m = ‖Pmx‖m + ‖Qmx‖m, (2)

with

‖Pmx‖m =
∑
k≥m

‖AP (k,m)x‖ and ‖Qmx‖m =
∑
k≤m

‖AQ(k,m)x‖.

Since ‖Pmx‖m ≥ ‖Pmx‖ and ‖Qmx‖m ≥ ‖Qmx‖, by (2) we have ‖x‖m ≥ ‖x‖.
For the second inequality in (1), we note that

‖Pmx‖m ≤
∑
k≥m

Ne−ν(ρk−ρm)‖x‖ ≤
∑
k≥m

Ne−νc(k−m)‖x‖ =
N

1− e−νc
‖x‖

and analogously,

‖Qmx‖m ≤
N

1− e−νc
‖x‖,

This completes the proof of the lemma.

For each x ∈ E and m ∈ Z, let

pm(x) = ‖A(m, 0)Px‖m and qm(x) = ‖A(m, 0)Qx‖m,

where P = P0 and Q = Q0.
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Lemma 2.3. The following properties hold:

1. for x ∈ PE \ {0}, the sequence (pm(x))m∈Z is strictly decreasing and for
y ∈ QE \ {0}, the sequence (qm(x))m∈Z is strictly increasing;

2. for each x ∈ PE \ {0} there exists a unique τ(x) ∈ Z such that

pτ(x)(x) ≤ 1 < pτ(x)−1(x)

and for each x ∈ QE \ {0} there exists a unique η(x) ∈ Z such that

qη(y)−1(x) < 1 ≤ qη(x)(x).

Proof. Note that

pm−1(x)−pm(x)=‖AP (m−1, 0)x‖ > 0, qm(x)−qm−1(x)=‖AQ(m, 0)x‖ > 0.

This establishes property 1.
Now take x ∈ PE \ {0}. For m > 0, we have

pm(x) ≤
∑
k≥m

Ne−νρk‖x‖ ≤
∑
k≥m

Ne−νkc‖x‖ =
Ne−νmc

1− e−νc
‖x‖

and so pm(x)→ 0 when m→ +∞. Moreover, for k < 0 we have

‖x‖ ≤ ‖AP (0, k)‖ · ‖AP (k, 0)x‖ ≤ Neνρk‖AP (k, 0)x‖ ≤ Neνkc‖AP (k, 0)x‖

and thus, ‖AP (k, 0)x‖ ≥ 1
N
e−νkc‖x‖. Hence,

pm(x) =
∑
k≥m

‖AP (k, 0)x‖ ≥ ‖x‖
N

∑
k≥m

e−νkc ≥ ‖x‖
N

e−νmc

for m < 0, which implies that pm(x) → +∞ when m → −∞. Together with
property 1, this guarantees the existence and uniqueness of the integer τ(x)
is guaranteed. One can use similar arguments to establish the existence and
uniqueness of η(x).

We proceed with the proof of the theorem. Given x ∈ PE \{0} and m ∈ Z,
let a = a(m,x) be the unique integer in Z such that

eρa−1−ρm < ‖x‖ ≤ eρa−ρm . (3)

We note that there exists a unique t = t(m,x) ∈ [0, 1) such that

‖x‖ = teρa−1−ρm + (1− t)eρa−ρm (4)

Similarly, given x ∈ QE \ {0} and m ∈ Z, let b = b(m,x) be the unique integer
in Z such that

eρm−ρb ≤ ‖x‖ < eρm−ρb−1 .
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We note that there exists a unique s = s(m,x) ∈ [0, 1) such that

‖x‖ = seρm−ρb−1 + (1− s)eρm−ρb .

Clearly,
a(m, e−ρmx) = a(0, x), b(m, eρmx) = b(0, x) (5)

and so
t(m, e−ρmx) = t(0, x), s(m, eρmx) = s(0, x). (6)

For each m ∈ Z, we define a map fm : PE → PmE by fm(0) = 0 and

fm(x) =
A(m, 0)x

tpa−1(x) + (1− t)pa(x)

for x 6= 0, and a map gm : QE → QmE by gm(0) = 0 and

gm(x) =
A(m, 0)x

sqb−1(x) + (1− s)qb(x)

for x 6= 0. Finally, we define hm : E → E by

hm(x) = fm(Px) + gm(Qx).

One can easily verify that each map hm is continuous outside the origin.
We consider only fm (the argument for gm is analogous). Since the map x 7→
A(m, 0)x is continuous, in order to show that fm is continuous we must prove
that the function

F (x) = tpa−1(x) + (1− t)pa(x)

is also continuous. Given m, c ∈ Z, for each x ∈ PE \ {0} satisfying

eρc−1−ρm < ‖x‖ < eρc−ρm (7)

we have a(m,x) = c and so t(m,x) = ‖x‖−eρc−ρm
eρc−1−ρm−eρc−ρm . Hence, in the set of all x

satisfying (7), for some c ∈ Z, the function

F (x) =
‖x‖ − eρc−ρm

eρc−1−ρm − eρc−ρm
pc−1(x) +

‖x‖ − eρc−1−ρm

eρc−1−ρm − eρc−ρm
pc(x)

is continuous (since all norms are continuous). Now take y ∈ PE \ {0} with
‖y‖ = eρc−1−ρm . Letting x → y with x satisfying (7), we have a(m,x) = c and
so t(m,x)→ 1, since ‖x‖ → eρc−1−ρm . Therefore,

F (x) = t(m,x)pc−1(x) + (1− t(m,x))pc(x)→ pc−1(y).

On the other hand, since a(m, y) = c− 1 and t(m, y) = 0 we have

F (y) = t(m, y)pa(m,y)−1(y) + (1− t(m, y))pa(m,y)(y) = pc−1(y).



Nonautonomous Dynamics with Discrete Time 27

Similarly, one can show that F (x) → F (y) when x → y with ‖x‖ < eρc−1−ρm .
Therefore, the function F is continuous outside the origin and so the same
happens to the map fm. The continuity of fm at the origin follows readily from
Step 4 below, where it is shown that there exists a continuous map L : R+

0 → R+
0

with L(0) = 0 such that ‖fm(x)‖ ≤ L(‖x‖).
The remainder of the proof consists of showing that the maps hm have the

required properties in the notion of a topological equivalence.

Step 1: Conjugacy. We prove that

hm ◦ (eρn−ρmP + eρm−ρnQ) = A(m,n) ◦ hn.

For this, it suffices to show that

fm(e−ρmx) = A(m, 0)f0(x) for x ∈ PE
and

gm(eρmx) = A(m, 0)g0(x) for x ∈ QE. (8)

For t = t(m, e−ρmx) and a = a(m, e−ρmx), by (5) and (6) we obtain

fm(e−ρmx) =
A(m, 0)e−ρmx

tpa−1(e−ρmx) + (1− t)pa(e−ρmx)

=
A(m, 0)e−ρmx

t0pa0−1(e
−ρmx) + (1− t0)pa0(e−ρmx)

= A(m, 0)f0(x),

where t0 = t(0, x) and a0 = a(0, x). Identity (8) can be obtained in a similar
manner.

Step 2: The maps hm are one-to-one. Assume that fm(x) = fm(y) and
write a = a(m,x), a′ = a(m, y), t = t(m,x) and t′ = t(m, y). Then

x

tpa−1(x) + (1− t)pa(x)
=

y

t′pa′−1(y) + (1− t′)pa′(y)
= ξ ∈ PE. (9)

Since pa−1 > pa, we have

pa(ξ) =
pa(x)

tpa−1(x) + (1− t)pa(x)
≤ pa(x)

tpa(x) + (1− t)pa(x)
= 1

and

pa−1(ξ) =
pa−1(x)

tpa−1(x) + (1− t)pa(x)
>

pa−1(x)

tpa−1(x) + (1− t)pa−1(x)
= 1.
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It follows from Lemma 2.3 that a = τ(ξ) and one can show in a similar manner
that a′ = τ(ξ). Hence a = a′ and

x

tpa−1(x) + (1− t)pa(x)
=

y

t′pa−1(y) + (1− t′)pa(y)
.

Consequently,

pa(x)

tpa−1(x) + (1− t)pa(x)
=

pa(y)

t′pa−1(y) + (1− t′)pa(y)

and
pa−1(x)

tpa−1(x) + (1− t)pa(x)
=

pa−1(y)

t′pa−1(y) + (1− t′)pa(y)
.

Therefore,

d :=
pa(y)

pa(x)
=
pa−1(y)

pa−1(x)
=
t′pa−1(y) + (1− t′)pa(y)

tpa−1(x) + (1− t)pa(x)

and so,

1 =
1

d
· t
′pa−1(y) + (1− t′)pa(y)

tpa−1(x) + (1− t)pa(x)
=
t′pa−1(x) + (1− t′)pa(x)

tpa−1(x) + (1− t)pa(x)
.

Since pa−1(x) 6= pa(x), this implies that t = t′ and by the definition of t and t′

we obtain ‖x‖ = ‖y‖. Finally, equality (9) implies that x = λy for some λ > 0,
which together with ‖x‖ = ‖y‖ yields that x = y. Hence, fm is one-to-one.
A similar argument shows that gm is one-to-one and so the same happens to
the map hm.

Step 3: The maps hm are onto. If fm(x) = y ∈ PmE for some x ∈ E, then

A(m, 0)x

tpa−1(x) + (1− t)pa(x)
= y

and thus,
x

tpa−1(x) + (1− t)pa(x)
= A(0,m)y.

Since pa−1 > pa, this implies that

pa(A(0,m)y) =
pa(x)

tpa−1(x) + (1− t)pa(x)
≤ 1

and

pa−1(A(0,m)y) =
pa−1(x)

tpa−1(x) + (1− t)pa(x)
> 1.
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Hence, a = τ(A(0,m)y). On the other hand, since

x = [tpa−1(x) + (1− t)pa(x)]A(0,m)y, (10)

we have

‖x‖ = teρa−1−ρm + (1− t)eρa−ρm = [tpa−1(x) + (1− t)pa(x)]‖A(0,m)y‖

or, equivalently,

tpa−1(x) + (1− t)pa(x) =
teρa−1−ρm + (1− t)eρa−ρm

‖A(0,m)y‖
.

This leads to

x =
teρa−1−ρm + (1− t)eρa−ρm

‖A(0,m)y‖
A(0,m)y,

where a = τ(A(0,m)y). In order to express x in terms of m and y, it remains
to write down explicitly t = t(m,x) in terms of m and y. For this we note that
letting

z = tpa−1(x) + (1− t)pa(x),

it follows from (10) that

pa(x) = zpa(A(0,m)y) and pa−1(x) = zpa−1(A(0,m)y).

Multiplying the first identity by 1− t and the second by t we obtain

z = z[tpa−1(A(0,m)y) + (1− t)pa(A(0,m)y)]

and thus, tpa−1(A(0,m)y) + (1− t)pa(A(0,m)y) = 1. Therefore,

t =
1− pa(A(0,m)y)

pa−1(A(0,m)y)− pa(A(0,m)y)
.

We showed that for each y ∈ PmE, any x ∈ E satisfying fm(x) = y is of
the form

x =
ueρc−1−ρm + (1− u)eρc−ρm

‖A(0,m)y‖
A(0,m)y, (11)

where c = τ(A(0,m)y) and

u =
1− pc(A(0,m)y)

pc−1(A(0,m)y)− pc(A(0,m)y)
.

It remains to prove that any such x indeed satisfies fm(x) = y. We first observe
that u ∈ [0, 1). Now let

r = ueρc−1−ρm + (1− u)eρc−ρm . (12)
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By (11) we have ‖x‖ = r and since u ∈ [0, 1), we obtain

eρc−1−ρm < ‖x‖ ≤ eρc−ρm .

Hence, c = a and, by (4), we have u = t. Moreover, by (11),

pa(x) = pc(x) =
rpc(A(0,m)y)

‖A(0,m)y‖
and pa−1(x) = pc−1(x) =

rpc−1(A(0,m)y)

‖A(0,m)y‖
.

Writing ym = A(0,m)y, we obtain

upc−1(x) + (1− u)pc(x)

=
r

‖A(0,m)y‖

[
1− pc(ym)

pc−1(ym)− pc(ym)
pc−1(ym) +

pc−1(ym)− 1

pc−1(ym)− pc(ym)
pc(ym)

]
=

r

‖A(0,m)y‖
.

(13)

On the other hand, it follows from (11) and (12) that A(m, 0)x = ry
‖A(0,m)y‖ and

thus, by (13),

fm(x) =
A(m, 0)x

tpa−1(x) + (1− t)pa(x)
=

1

upc−1(x) + (1− u)pc(x)
· ry

‖A(0,m)y‖
= y.

This shows that the map fm is onto. A similar argument applies to gm and so
the map hm is onto.

Step 4: Existence of an increasing map L1. Without loss of generality, we
assume that ν ≤ 1 and µ ≥ 1. Take x ∈ PE \ {0} with ‖x‖ ≤ 1. By (3), we
have m > a− 1 and thus m ≥ a. Write κ = 1

ν
. Then

‖A(m, 0)x‖κ

= t‖AP (m, 0)x‖κ + (1− t)‖AP (m, 0)x‖κ

≤ t
[
‖AP (m, a− 1)‖ · ‖AP (a− 1, 0)x‖

]κ
+ (1− t)

[
‖AP (m, a)‖ · ‖AP (a, 0)x‖

]κ
≤ t
[
Ne−ν(ρm−ρa−1)pa−1

]κ
+ (1− t)

[
Ne−ν(ρm−ρa)pa

]κ
= Nκteρa−1−ρmpκa−1 +Nκ(1− t)eρa−ρmpκa,

where pa = pa(x) and pa−1 = pa−1(x). Using the convexity of the function
x 7→ xκ (we are assuming that 0 < ν ≤ 1), we obtain

[tpa−1 + (1− t)pa]κ ≥ tpκa−1 + (1− t)pκa

and hence,

‖fm(x)‖κ ≤ Nκ te
ρa−1−ρmpκa−1 + (1− t)eρa−ρmpκa

tpκa−1 + (1− t)pκa
= Nκ tud+ (1− t)cv

td+ (1− t)c
,
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where
u = eρa−1−ρm < v = eρa−ρm and c = pκa < d = pκa−1.

It follows from (4) that tud+(1−t)cv
td+(1−t)c ≤ tu+ (1− t)v = ‖x‖ and hence,

‖fm(x)‖ ≤ N‖x‖ν whenever ‖x‖ ≤ 1. (14)

Now take x ∈ PE with ‖x‖ > 1. By (3), we have a > m and thus a−1 ≥ m.
Write λ = 1

µ
. Using the concavity of the function x 7→ xλ (we are assuming

that µ ≥ 1), we obtain

‖AP (m, 0)x‖λ

= t‖AP (m, 0)x‖λ + (1− t)‖AP (m, 0)x‖λ

≤ t
[
‖A(m, a− 1)‖ · ‖AP (a− 1, 0)x‖

]λ
+ (1− t)

[
‖A(m, a)‖ · ‖AP (a, 0)x‖

]λ
≤ t
[
Neµ(ρa−1−ρm)pa−1

]λ
+ (1− t)

[
Neµ(ρa−ρm)pa

]λ
= tNλeρa−1−ρmpλa−1 + (1− t)Nλeρa−ρmpλa

and hence,

‖fm(x)‖λ ≤ Nλ te
ρa−1−ρmpλa−1 + (1− t)eρa−ρmpλa

[tpa−1 + (1− t)pa]λ
= Nλ tuc

λ + (1− t)vdλ

[tc+ (1− t)d]λ
,

where
u = eρa−1−ρm < v = eρa−ρm and d = pa < c = pa−1. (15)

We will show that

tucλ + (1− t)vdλ ≤ [tu+ (1− t)v] · [tc+ (1− t)d]λ. (16)

For this we define f : [0, 1]→ R by

f(t) = [tc+ (1− t)d]λ.

Since λ ≤ 1, the function is concave and so its derivative f ′ is decreasing and
positive. Note that inequality (16) is equivalent to

(1− t)v[f(t)− f(0)]− tu[f(1)− f(t)] ≥ 0. (17)

By the mean value theorem, there exist ξ ∈ (0, t) and η ∈ (t, 1) such that

f(t)− f(0) = tf ′(ξ) and f(1)− f(t) = (1− t)f ′(η).

Hence, taking these ξ and η, inequality (17) is equivalent to

t(1− t)vf ′(ξ)− t(1− t)uf ′(η) ≥ 0.
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Therefore, it is sufficient to prove that vf ′(ξ̄) − uf ′(η̄) > 0 for any ξ̄ > η̄. In
view of (15) we have indeed vf ′(ξ̄)−uf ′(η̄) > u(f ′(ξ̄)−f ′(η̄)) > 0, which yields
inequality (17). Hence, (16) holds and so

‖fm(x)‖ ≤ N‖x‖µ whenever ‖x‖ > 1. (18)

Finally, let

M1(θ) = N max{θν , θµ}.

Note that M1 is increasing and it follows from (14) and (18) that

‖fm(x)‖ ≤M1(‖x‖).

A similar argument applies to the maps gm to produce an increasing function
M2 such that

‖gm(x)‖ ≤M2(‖x‖)

for x ∈ QE. We define an increasing map L1 by

L1(‖x‖) = M1(‖Px‖) +M2(‖Qx‖).

Clearly L1(0) = 0 and ‖hm(x)‖ ≤ L1(‖x‖) for x ∈ E.

Step 5: Existence of an increasing map L2. We continue to assume that
ν ≤ 1 and µ ≥ 1. Take x ∈ PE with ‖x‖ > 1. Then a− 1 ≥ m and

‖A(m, 0)x‖
= t‖AP (m, 0)x‖+ (1− t)‖AP (m, 0)x‖
≥ t‖AP (a− 1,m)‖−1 · ‖AP (a− 1, 0)x‖+ (1− t)‖AP (a,m)‖−1 · ‖AP (a, 0)x‖
≥ tN ′e−ν(ρm−1−ρa)pa−1 + (1− t)N ′e−ν(ρm−1−ρa+1)pa

≥ N ′teν(ρa−ρm)pa−1 +N ′(1− t)eν(ρa−ρm)pa

= N ′eν(ρa−ρm)(tpa−1 + (1− t)pa),

where N ′ = 1−e−νc
2N2 , pa = pa(x) and pa−1 = pa−1(x). Therefore,

‖fm(x)‖ ≥ N ′eν(ρa−ρm) tpa−1 + (1− t)pa
tpa−1 + (1− t)pa

= N ′eρa−ρm ≥ N ′‖x‖ν .

Letting y = fm(x), we obtain

‖f−1m (y)‖ ≤ (N ′)−κ‖y‖κ whenever ‖x‖ > 1. (19)
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Now take x ∈ PE \ {0} with ‖x‖ ≤ 1. Then m ≥ a and

‖A(m, 0)x‖
= t‖AP (m, 0)x‖+ (1− t)‖AP (m, 0)x‖
≥ t‖AP (a− 1,m)‖−1 · ‖AP (a− 1, 0)x‖+ (1− t)‖AP (a,m)‖−1 · ‖AP (a, 0)x‖
≥ tN ′e−µ(ρm−1−ρa)pa−1 + (1− t)N ′e−µ(ρm−1−ρa+1)pa

≥ N ′teµ(ρa−ρm)pa−1 +N ′(1− t)eµ(ρa−ρm)pa

= N ′eµ(ρa−ρm)(tpa−1 + (1− t)pa).

Therefore,

‖fm(x)‖ ≥ N ′eµ(ρa−ρm) tpa−1 + (1− t)pa
tpa−1 + (1− t)pa

= N ′eµ(ρa−ρm) ≥ N ′‖x‖µ.

Letting y = fm(x), we obtain

‖f−1m (y)‖ ≤ (N ′)−λ‖y‖λ whenever ‖x‖ ≤ 1. (20)

Finally, let
M3(θ) = max

{
(N ′)−κθν , (N ′)−λθµ

}
.

Note that M3 is increasing and it follows from (19) and (20) that

‖f−1m (y)‖ ≤M3(‖y‖).

A similar argument applies to the maps gm to produce an increasing function
M4 such that

‖g−1m (y)‖ ≤M4(‖y‖)

for y ∈ QE. We define an increasing map L2 by

L2(‖y‖) = M3(‖Py‖) +M4(‖Qy‖).

Clearly L2(0) = 0 and ‖h−1m (y)‖ ≤ L2(‖y‖) for y ∈ E. This completes the proof
of Theorem 2.1.

3. Equivalence of growth rates

In this section we introduce a notion of equivalence between sequences in X and
we show that it characterizes completely the notion of a topological equivalence
between evolution families.

A sequence (xm)m∈Z is said to be almost increasing if there exists a constant
δ ≥ 0 such that

xm − xn ≥ −δ for m ≥ n.
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Notice that any sequence that is increasing on Z \ [a, b] for some a < b is also
almost increasing.

We define a binary relation � in the set X as follows: (xm)m∈Z � (ym)m∈Z
if there exists a > 0 such that the sequence zm = xm−aym is almost increasing,
that is, if there exist a, b ≥ 0 such that

xm − xn ≥ a(ym − yn)− b for m ≥ n. (21)

Proposition 3.1. (xm)m∈Z � (ym)m∈Z if and only if there exists a constant
α > 0 such that for any θ ≥ 1 we have

xm − xn ≤ θ ⇒ ym − yn ≤ αθ (22)

for each m ≥ n.

Proof. Assume that (xm)m∈Z � (ym)m∈Z and xm − xn ≤ θ. It follows from (21)
that

ym − yn ≤
1

a
(xm − xn) +

b

a
<

1

a
θ +

b

a
θ =

(
1

a
+
b

a

)
θ = αθ.

Now assume that (22) holds. Take m > n and θ = q(xm−xn) ≥ 1 for some
q ∈ N. Then θ ≥ qc and so,

ym − yn ≤ αθ = qα(xm − xn).

This yields that xm − xn ≥ 1
a
(ym − yn) with a = qα.

We introduce an equivalence relation ∼ on the set X by declaring that
(xm)m∈Z ∼ (ym)m∈Z if

(xm)m∈Z � (ym)m∈Z and (ym)m∈Z � (xm)m∈Z.

The following result relates in an optimal manner the notion of equivalence
between growth rates and the existence of a topological equivalence. Let x =
(xm)m∈Z and y = (ym)m∈Z be growth rates.

Theorem 3.2. Let A and B be evolution families. If A admits an x-strong
exponential dichotomy with projections P1 and Q1 at the origin and B admits a
y-strong exponential dichotomy with projections P2 and Q2, then A and B are
topologically equivalent if and only if:

1. the subspaces P1E and P2E are homeomorphic;

2. the subspaces Q1E and Q2E are homeomorphic;

3. x ∼ y.

Proof. We start with an auxiliary result.
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Lemma 3.3. x ∼ y if and only if the evolution families exm−xnId and eym−ynId
are topologically equivalent.

Proof. Assume first that x ∼ y. Given θ ∈ R and m ∈ Z, there exists a unique
a = a(m, |θ|) ∈ Z such that

exm−xa ≤ |θ| < exm−xa−1 .

One can easily verify that a(m, |θ|exm) = a(0, |θ|). Moreover, let t = t(m, |θ|) ∈
[0, 1) be the unique real number for which

log|θ| = t(xm − xa−1) + (1− t)(xm − xa). (23)

One can also show that t(m, |θ|exm) = t(0, |θ|).
Similarly, given η ∈ R and m ∈ Z, there exists a unique b = b(m, |η|) ∈ Z

such that
eym−yb ≤ |η| < eym−yb−1 .

One can easily verify that b(m, |η|eym) = b(0, |η|). Moreover, let s = s(m, |η|) ∈
[0, 1) be the unique real number for which

log|η| = s(ym − ya−1) + (1− s)(ym − ya). (24)

One can also show that s(m, |η|eym) = s(0, |η|) = s0.
Now let

ε(θ) =


1, θ > 0,

0, θ = 0,

−1, θ < 0.

For each m ∈ Z we consider the function hm : R→ R defined by

hm(θ) = ε(θ)et(ym−ya−1)+(1−t)(ym−ya)

with t as in (23), and the function gm : R→ R defined by

gm(η) = ε(η)es(xm−xb−1)+(1−s)(xm−xb)

with s as in (24). It is easy to check that hm and gm are continuous and that

hm ◦ gm = gm ◦ hm = Id.

Moreover, writing a0 = a(0, |θ|) and t0 = t(0, |θ|), we obtain

hm(exmθ) = ε(exmθ)et0(xm−xa0−1)+(1−t0)(xm−xa)

= ε(θ)eyme−t0ya0−1−(1−t0)ya0

= eymh0(θ).
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Therefore, hm(exm−xnθ) = eymh0(e
−xnθ) = eyme−ynhn(θ) = eym−ynhn(θ).

If m ≥ a, then

|hm(θ)| = et(ym−ya−1)+(1−t)(ym−ya)

≤ e
1
a1

[t(xm−xa−1)+tb1+(1−t)(xm−xa)+(1−t)b1]

= e
b1
a1 |θ|

1
a1 = L1,1(|θ|)

for some a1, b1 > 0. If m < a, then

|hm(θ)| = et(ym−ya−1)+(1−t)(ym−ya)

≤ eta2(ym−ya−1)+tb2+(1−t)a2(ym−ya)+(1−t)b2

= eb2|θ|a2 = L1,2(|θ|)

for some a2, b2 > 0. If m ≥ b, then

|h−1m (η)| = es(xm−xb−1)+(1−s)(xm−xb)

≤ e
1
a2

[s(ym−yb−1)+sb2+(1−s)(ym−yb)+(1−s)b2]

= e
b2
a2 |η|

1
a2 = L2,1(|η|).

Finally, if m < b, then

|h−1m (η)| = es(xm−xb−1)+(1−s)(xm−xb)

≤ esa1(ym−yb−1)+sb1+(1−s)a1(ym−yb)+(1−s)b1

= eb1|η|a1 = L2,2(|η|).

Therefore, one can take

L(θ) = max
{
L1,1(θ), L1,2(θ), L2,1(θ), L2,2(θ)

}
.

Now let hm : R→ R be the functions in the notion of a topological equiva-
lence, which thus satisfy

hm(exm−xnθ) = eym−ynhn(θ).

We have |hm(θ)| = eym−yn|hn(exn−xmθ)| and so,

|θ| ≤ eym−yn|hn(exn−xm(h−1m (θ)))| ≤ eym−ynL
(
exn−xmL(|θ|)

)
.

This yields the inequality

eyn−ym|θ| ≤ L(exn−xmL(|θ|)).
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For |θ| = 1 we have
eyn−ym ≤ L(exn−xmL(1)).

If θ ≥ 1 and xn − xm ≤ θ, then

eyn−ym ≤ L(eθL(1)) ≤ aebθ < eθ(log a+b)

for some constants a ≥ 1 and b > 0 (it follows from the proof of Theorem 2.1
that one can take L(θ) = aθb for some a ≥ 1 and b > 0). Therefore,

yn − ym < θ(log a+ b) = cθ

for n ≥ m. By Proposition 3.1 we conclude that y � x. One can show in a
similar manner that x � y.

We proceed with the proof of the theorem. Assume that A and B are
topologically equivalent. We consider the evolution families

A′(m,n) = exn−xmP1 + exm−xnQ1,

B′(m,n) = eyn−ymP2 + eym−ynQ2,

C(m,n) = exn−xmP2 + exm−xnQ2.

Using the symbol ∼ to denote topological equivalence, it follows from Theo-
rem 2.1 that A ∼ A′ and B ∼ B′. In particular, A′ ∼ B′ and so there exist
maps hm as in the notion of topological equivalence such that

hm(exn−xmP1z + exm−xnQ1z) = (eyn−ymP2 + eym−ynQ2)hn(z) (25)

for m,n ∈ Z and z ∈ E. Replacing z by P1z we obtain

hm(exn−xmP1z) = eyn−ymP2hn(P1z) + eym−ynQ2hn(P1z).

Since
lim
m→∞

hm(exn−xmP1z) = 0 and lim
m→∞

eyn−ymP2hn(P1z) = 0

(using in the first identity the second property in the notion of a topological
equivalence), we obtain

lim
m→∞

eym−ynQ2hn(P1z) = 0

and so Q2hn(P1z) = 0. Therefore, P2hn(P1z) = hn(P1z), which yields that

hn(P1E) ⊂ P2E. (26)

Now we rewrite identity (25) in the form

h−1m (eyn−ymP2z + eym−ynQ2z) = exn−xmP1h
−1
n (z) + exm−xnQ1h

−1
n (z).
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Replacing z by P2z we obtain

h−1m (eyn−ymP2z) = exn−xmP1h
−1
n (P2z) + exm−xnQ1h

−1
n (P2z).

Since

lim
m→∞

h−1m (eyn−ymP2z) = 0 and lim
m→∞

exn−xmP1h
−1
n (P2z) = 0,

we obtain Q1h
−1
n (P2z) = 0. Therefore, P1h

−1
n (P2z) = h−1n (P2z), which yields

that
h−1n (P2E) ⊂ P1E. (27)

It follows from (26) and (27) that the spaces P1E and P2E are homeomorphic.
Using similar arguments, one can show that the spaces Q1E and Q2E are also
homeomorphic. This implies that A′ ∼ C and so B′ ∼ C. Hence, it follows from
Lemma 3.3 that x ∼ y.

Now we assume that the three conditions in the theorem are satisfied. Then
the unit spheres S(P1E) and S(P2E) are homeomorphic, and the same happens
to the unit spheres S(Q1E) and S(Q2E), via homeomorphisms say

f : S(P1E)→ S(P2E) and g : S(Q1E)→ S(Q2E).

We define maps F : P1E → P1E and G : Q1E → Q2E by

F (z) =

{
‖z‖f

(
z
‖z‖

)
, z ∈ P1E \ {0},

0, z = 0

and

G(z) =

{
‖z‖g

(
z
‖z‖

)
, z ∈ Q1E \ {0},

0, z = 0.

One can easily verify that F and G are homeomorphisms, with inverses

F−1(z) =

{
‖z‖f−1

(
z
‖z‖

)
, z ∈ P2E \ {0},

0, z = 0,

and

G−1(z) =

{
‖z‖g−1

(
z
‖z‖

)
, z ∈ Q2E \ {0},

0, z = 0.

Then H = F ⊕ G is a homeomorphism of E, with inverse H−1 = F−1 ⊕ G−1.
We have

H(A′(m,n)z) = F (exn−xmP1z) +G(exm−xnQ1z)

= exn−xmF (P1z) + exm−xnG(Q1z)

= (exn−xmP2 + exm−xnQ2)H(z)

= C(m,n)H(z)
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and so A′ ∼ C. On the other hand, by Theorem 2.1, we have A ∼ A′ and
B ∼ B′, while Lemma 3.3 implies that B′ ∼ C. Together with A′ ∼ C this
yields that A ∼ B.
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