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Abstract. We study the Sturm-Liouville boundary value problem associated with
the planar differential system Jz′ = ∇V (z) + R(t, z), where V (z) is positive and
positively 2-homogeneous and R(t, z) is bounded. Assuming Landesman-Lazer type
conditions, we obtain the existence of a solution in the resonant case. The proofs are
performed via a shooting argument. Some applications to boundary value problems
associated with scalar second order asymmetric equations are discussed.
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1. Introduction

The study of boundary value problems at resonance is a very classical topic
in the theory of nonlinear differential equations. The pioneering work in this
field carries the names of Landesman and Lazer [16], who provided, in 1970, an
existence result for the Dirichlet problem associated with the elliptic PDE

∆u+ λu+ r(x, u) = 0, x ∈ Ω ⊂ R
N ,

where λ is an eigenvalue of −∆ on Ω and r(x, u) is a bounded function. More
precisely, the function r(x, u) was there required to satisfy an integral assump-
tion which is nowadays known as the Landesman-Lazer condition. From there
on, results of Landesman-Lazer type have been given by many authors, both
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for ordinary and partial differential operators, and with different boundary con-
ditions (see, for instance, the bibliography in [10]).

In particular, after the works by Dancer [4] and Fučik [13], a great deal
of interest was devoted to resonance with respect to a more general kind of
spectrum, replacing the notion of eigenvalue λ ∈ R with pairs (µ, ν) ∈ R

2 such
that the homogeneous asymmetric equation

∆u+ µu+ − νu− = 0, (1)

with u± = max{±u, 0}, has a nontrivial solution satisfying the prescribed
boundary conditions. The set of all such couples (µ, ν) is known as the Dancer-
Fučik spectrum. As for the solvability of nonlinear perturbations of (1) under
conditions of Landesman-Lazer type, focusing especially on the case of ordinary
differential operators, we mention the papers [1,5–7,17] (see also the bibliogra-
phy in [15]).

In this paper, we deal with resonant Sturm-Liouville type boundary value
problems for first order planar differential systems like

Jz′ = ∇V (z) +R(t, z), t ∈ [0, T ], z ∈ R
2, (2)

where J = ( 0 −1
1 0 ) is the standard symplectic matrix, R : [0, T ] × R

2 → R
2

is bounded, and V is a positive and positively 2-homogeneous function (see
formula (5) below). As first noticed in [9], this framework provides an elegant
extension of the scalar second order ODE

u′′ + µu+ − νu− + r(t, u) = 0, (3)

since an analogous of the concept of resonance for u′′ + µu+ − νu− = 0 can
be introduced for the autonomous Hamiltonian problem Jz′ = ∇V (z). This
issue was extensively studied with respect to T -periodic boundary conditions,
and several existence results (both under nonresonance and resonance assump-
tions) for (2) were given, e.g., in [8–10, 12]. More recently, the Sturm-Liouville
boundary value problem for (2) was considered; precisely, in [11], the boundary
conditions

z(0) ∈ lS, z(T ) ∈ lA, (4)

where lS and lA are two lines passing through the origin, were taken into account,
and the existence of a solution to (2)–(4) was provided in a nonresonant setting.

The aim of the present work is to give, on the other hand, a Landesman-
Lazer type result in the resonant case. The corresponding statement in the
periodic framework was obtained in [10], using a degree theoretical approach.
Here, instead, we take advantage of a sharp dynamical interpretation of the
Landesman-Lazer condition first developed in [3] (see Remark 2.7), and we
tackle our problem by means of an elementary planar shooting technique. This
is done in detail in Section 2, while in Section 3 we give some corollaries deal-
ing with Sturm-Liouville boundary value problems associated with (3), to be
compared with the results in [1, 5, 6].
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2. The main result

2.1. Preliminaries. Let us start by recalling the setting used in [9, 11]. We
denote by P the set of the C1-functions V : R2 → R, with locally Lipschitz
continuous gradient, which are positively homogeneous of degree 2 and posi-
tive, i.e.,

0 < V (λz) = λ2V (z), λ > 0, z ∈ R
2 \ {0}. (5)

Fixed V ∈ P , the solutions to

Jz′ = ∇V (z) (6)

describe strictly star-shaped Jordan curves around the origin, covered in clock-
wise sense. Moreover, as a consequence of the 2-homogeneity, fixed θ1, θ2 in
[0, 2π] with θ1 ≤ θ2, the time needed for the solutions to cover exactly the an-
gular sector θ1 ≤ θ ≤ θ2 is independent of the norm of the starting point and is
given by

∫ θ2

θ1

dθ

2V (cos θ, sin θ)
. (7)

In particular, the origin is an isochronous center for (6), i.e., there exists τV > 0
such that all the nontrivial solutions to (6) have minimal period equal to τV .
Finally, notice that once a nontrivial solution ϕV (t) to (6) is chosen, all the other
ones are of the form u(t) = CϕV (t+θ), where C ≥ 0, θ ∈ [0, τV [ . We can fix ϕV
such that ϕV (0) belongs to the vertical positive semi-axis and V (ϕV (t)) ≡ 1

2
.

We now turn our attention to the autonomous Sturm-Liouville problem

{

Jz′ = ∇V (z)

z(0) ∈ lS, z(T ) ∈ lA,
(8)

where lS and lA are two lines passing through the origin in the plane (“S” stands
for “starting” and “A” for “arrival”). We will say that (8) is resonant if it has
at least a nontrivial solution; since V ∈ P , it is possible to well characterize this
concept, as we are going to see. To this end, let us focus on ϕV (t), for t ≥ 0.
We denote by τ0,V the least nonnegative time instant such that ϕV (τ0,V ) ∈ lS
and we set:

• τ1,V >0 as the least positive time such that ϕV (τ0,V +τ1,V )∈ lA;
• σ1,V ≥0 as the least nonnegative time such that ϕV (τ0,V +τ1,V +σ1,V )∈ lS;
• τ2,V >0 as the least positive time such that ϕV (τ0,V+τ1,V+σ1,V+τ2,V )∈ lA;
• σ2,V ≥0 as the least nonnegative time such that
ϕV (τ0,V +τ1,V +σ1,V +τ2,V +σ2,V )∈ lS.
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In this way, a complete revolution around the origin is performed in the time

τV = τ1,V + σ1,V + τ2,V + σ2,V .

Notice moreover that, if the lines lS and lA coincide, then it holds that σ1,V =
σ2,V = 0. We illustrate such definitions in Figure 1 below.

x

y

ϕV (t)

lS

lS

lA

lA

ϕV (τ0,V ) = ϕV (τ0,V + τV )

ϕV (τ0,V + τ1,V )
ϕV (τ0,V + τ1,V + σ1,V )

ϕV (τ0,V + τ1,V + σ1,V + τ2,V )

Figure 1: The definition of τ1,V , σ1,V , τ2,V , σ2,V .

It is thus easy to see that problem (8) is resonant if and only if, for some
nonnegative integer k, one of the following four situations occurs:

kτV + τ1,V = T, (9)

kτV + τ1,V + σ1,V + τ2,V = T, (10)

kτV + τ2,V = T, (11)

kτV + τ2,V + σ2,V + τ1,V = T. (12)

Precisely, an eigenfunction (namely, a nontrivial solution to (8)) corresponding
to (9) and (10) is always given by

Φ(t) = ϕV (t+ τ0,V ), (13)

while an eigenfunction corresponding to (11) and (12) is always given by

Ψ(t) = ϕV (t+ τ0,V + τ1,V + σ1,V ). (14)

Notice that, when two or more among the values τi,V , σi,V coincide - possibly
implying that two or more among the conditions (9)–(12) coincide, as well -
Φ(t) and Ψ(t) can be both eigenfunctions at the same time.

2.2. Statement of the main result. We now turn to the nonlinear Sturm-
Liouville boundary value problem

{

Jz′ = ∇V (z) +R(t, z)

z(0) ∈ lS, z(T ) ∈ lA,
(15)
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where R : [0, T ] × R
2 → R

2 is a Carathéodory function (i.e., measurable in t

for every z and continuous in z for almost every t) which is L1-bounded in the
z-variable, that is, for some η ∈ L1(0, T ),

|R(t, z)| ≤ η(t), (16)

for almost every t ∈ [0, T ] and every z ∈ R
2.

We introduce the following notation: for every θ ∈ R,

J −(θ) =

∫ T

0

lim inf
(λ,ω)→(+∞,θ)

〈R(t, λϕV (t+ ω))|ϕV (t+ ω)〉 dt,

J +(θ) =

∫ T

0

lim sup
(λ,ω)→(+∞,θ)

〈R(t, λϕV (t+ ω))|ϕV (t+ ω)〉 dt.

Notice that the functions J ± are τV -periodic and satisfy J −(θ) ≤ J +(θ) for
every θ. With this position, we now state our main result.

Theorem 2.1. Let V ∈ P satisfy (9), for some nonnegative integer k, and

R(t, z) satisfy (16). Then, the solvability of problem (15) is ensured in each of

the following situations:

τ1,V < τ2,V and J +(τ0,V ) < 0; (17)

τ1,V > τ2,V and J −(τ0,V ) > 0; (18)

τ1,V = τ2,V and J −(τ0,V ) > 0, J −(τ0,V + τ1,V + σ1,V ) > 0; (19)

τ1,V = τ2,V and J +(τ0,V ) < 0, J +(τ0,V + τ1,V + σ1,V ) < 0. (20)

Remark 2.2. The assumptions on J ±(θ) in (17), (18), (19) and (20) are
Landesman-Lazer type conditions, inspired by their counterparts introduced in
[10] for the T -periodic problem. However, while in [10] the solvability condition
reads as

J +(θ) < 0 for every θ ∈ R or J −(θ) > 0 for every θ ∈ R,

here only special values of θ must be considered, namely θ1 = τ0,V and
θ2 = τ0,V + τ1,V + σ1,V . This is not surprising, since the Landesman-Lazer
conditions usually involve the eigenfunctions of the unperturbed problem, and
the nontrivial solutions to (8) are necessarily multiples of ϕ(t+ θi), for at least
one (possibly both) index i ∈ {1, 2} (compare with (13) and (14); of course, in
the T -periodic case all the functions of the form ϕ(t+ θ) are eigenfunctions).

On the other hand, while in the periodic case the conditions J + < 0 and
J − > 0 are always both admissible, here a precise one is needed according to
the statement above. This is not a matter of technicality, on the contrary it
is the main feature of Sturm-Liouville boundary value problems, admitting in
principle wider resonance regions than the T -periodic one (see the discussion in
Remark 3.4).
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Similar results when (10), (11) or (12) hold (instead of (9)) can be stated.
The precise conditions to be assumed derive clearly from the arguments in the
proof below, but maybe they are not obvious at first sight. For this reason, we
include all the explicit statements in the theorem below.

Theorem 2.3. Let V ∈ P and R(t, z) satisfy (16). Then, the solvability of

problem (15) is ensured in each of the following situations:

1) if V satisfies (10) for some nonnegative integer k,

σ1,V < σ2,V and J +(τ0,V ) < 0;

σ1,V > σ2,V and J −(τ0,V ) > 0;

σ1,V = σ2,V and J −(τ0,V ) > 0, J −(τ0,V + τ1,V + σ1,V ) > 0;

σ1,V = σ2,V and J +(τ0,V ) < 0, J +(τ0,V + τ1,V + σ1,V ) < 0;

2) if V satisfies (11) for some nonnegative integer k,

τ1,V > τ2,V and J +(τ0,V + τ1,V + σ1,V ) < 0;

τ1,V < τ2,V and J −(τ0,V + τ1,V + σ1,V ) > 0;

τ1,V = τ2,V and J −(τ0,V ) > 0, J −(τ0,V + τ1,V + σ1,V ) > 0;

τ1,V = τ2,V and J +(τ0,V ) < 0, J +(τ0,V + τ1,V + σ1,V ) < 0;

3) if V satisfies (12) for some nonnegative integer k,

σ1,V > σ2,V and J +(τ0,V + τ1,V + σ1,V ) < 0;

σ1,V < σ2,V and J −(τ0,V + τ1,V + σ1,V ) > 0;

σ1,V = σ2,V and J −(τ0,V ) > 0, J −(τ0,V + τ1,V + σ1,V ) > 0;

σ1,V = σ2,V and J +(τ0,V ) < 0, J +(τ0,V + τ1,V + σ1,V ) < 0.

2.3. Proof of the main result. We argue in an intuitive and informal way,
looking at Figure 2 below. As a notation, we denote by liS and liA, respectively
(i = 1, 2), the two half-lines of lS and lA, and by C+, C− the two connected
components of R2 \ lA.

First, we make a brief digression about the behavior of the solutions to
Jz′ = ∇V (z) starting on lS, following their evolution through the flow from
t = 0 to t = T (= kτV + τ1,V ). In particular, any solution z1(t) starting on l1S
performs k clockwise turns around the origin and then covers the angular sec-
tor between l1S and l1A, thus arriving exactly on l1A. On the other hand, any
solution z2(t) starting on l2S makes exactly k clockwise turns around the origin
in the time kτV and then proceeds clockwise for a time equal to τ1,V . The
mutual position between z2(T ) and l2A is thus determined by the comparison
between τ1,V and τ2,V . Precisely, we have the following possibilities:
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l1
S

l2
S

l2
A

l1
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C+ C−

C+ C−

θ1θ1

τ1,Vτ2,V

Figure 2: An illustration of the notation used along the
proof of Theorem 2.1.

i) if τ1,V < τ2,V , z2(T ) does not reach l
2
A, so that z2(t) ∈ C+;

ii) if τ1,V > τ2,V , z2(T ) exceeds l
2
A, but it cannot reach l

1
A, i.e., z2(T ) ∈ C−;

iii) if τ1,V = τ2,V , then z2(T ) lies on l
2
A.

We now turn to the nonlinear system

Jz′ = ∇V (z) +R(t, z). (21)

Having in mind a shooting argument, the existence of a solution to (15) is
guaranteed if “large” solutions to (21) starting (for t = 0) on l1S and l2S arrive,
after the time T , into different connected components of R2 \ lA. To check when
this is the case, we always use the fact that the angular component of large
solutions to (21) is near the one of the solutions to the unperturbed problem
(since R(t, z) satisfies (16)). Hence, on one hand the solutions starting on l1S
are “dangerously” near l1A. On the other hand, with reference to the previous
cases, we can infer that

i) the solutions starting on l2S do not reach l2A, thus lying in C+. Hence,
assuming that J +(τ0,V ) < 0, we will “brake” the solutions starting on l1S
so as to make them lie in C−;

ii) the solutions starting on l2S exceed l2A, thus lying in C−. Hence, assuming
that J −(τ0,V )>0, we will “push” the solutions starting on l1S towards C+;

iii) both the solutions starting on l1S and l2S, respectively, are dangerously near
l1A and l2A, respectively, so that we either “brake” them both (assuming
J +(τ0,V ) < 0, J +(τ0,V +τ1,V +σ1,V ) < 0) or “push” them both (assuming
J −(τ0,V ) > 0, J −(τ0,V + τ1,V + σ1,V ) > 0).

All the details of this shooting argument (including the approximation of R(t, z)
with Lipschitz functions, so as to have uniqueness for the Cauchy problems) can
be found in [11, Theorem 2.1]. It remains to prove that the Landesman-Lazer
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conditions introduced above actually have the desired braking and pushing ef-
fects, as shown in the following lemma.

Lemma 2.4. Assume (9) and (16). Then, there exists R > 0 such that all the

solutions z1(t) to (21) with z1(0) ∈ l1S, |z1(0)| > R, satisfy the following:

J −(τ0,V ) > 0 ⇒ z1(T ) ∈ C+;

J +(τ0,V ) < 0 ⇒ z1(T ) ∈ C−.

If, moreover, τ1,V = τ2,V , then all the solutions z2(t) to (21) with z2(0) ∈ l2S,

|z2(0)| > R, satisfy the following:

J −(τ0,V + τ1,V + σ1,V ) > 0 ⇒ z2(T ) ∈ C−;

J +(τ0,V + τ1,V + σ1,V ) < 0 ⇒ z2(T ) ∈ C+.

Proof. We only prove the first claim, the others being analogous. By contra-
diction, assume that there exists a sequence of solutions z1,n(t) = zn(t), with
|zn(0)| → +∞ for n → +∞, such that zn(T ) ∈ C− ∪ lA. By Gronwall’s
lemma, mint∈[0,T ] |zn(t)| → +∞, so that we can pass to polar coordinates, writ-
ing zn(t) = ρn(t)(cos θn(t), sin θn(t)). We are going to show that there exists
n̄ ∈ N such that, for every n ≥ n̄, θn(T ) satisfies

∫ θn(T )

θn(0)

dθ

2V (cos θ, sin θ)
> T = kτV + τ1,V . (22)

This readily implies the thesis. Indeed, the left-hand side in (22) is the time
spent by the solutions to Jz′ = ∇V (z) to cover the angular sector between θn(0)
and θn(T ) (cf. (7)); hence, looking again at Figure 2, (22) means that zn(t) has
covered, in the time T , a clockwise angular width greater than 2kπ + θ1. We
thus have zn(T ) ∈ C+ (the fact that zn(t) cannot overcome l2A comes from (16)).

To prove (22), we first compute the angular speed of zn(t). Exploiting the
positive 2-homogeneity of V , we have

−θ′n(t) =
〈Jz′n(t)|zn(t)〉

|zn(t)|2
= 2V (cos θn(t), sin θn(t)) +

〈R(t, zn(t))|zn(t)〉
|zn(t)|2

,

so that

∫ θn(T )

θn(0)

dθ

2V (cos θ, sin θ)
= T +

∫ T

0

〈R(t, zn(t))|zn(t)〉
2V (zn(t))

dt =: T +Rn.

It is thus sufficient to show that the second summand in the right-hand side is
strictly positive for every n large.

Assume by contradiction that this is not true, namely Rn ≤ 0 for n large.
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Setting wn = zn
‖zn‖∞ , a standard compactness argument based on the Dunford-

Pettis theorem gives the existence of w ∈ C1([0, T ]), with ‖w‖∞ = 1, such that

wn → w uniformly and w solves Jw′ = ∇V (w). Since wn(0) =
zn(0)
‖zn‖∞ ∈ l1S, we

have w(t) = CϕV (t + τ0,V ), for a suitable C > 0. Writing zn(t) = rn(t)ϕV (t +

ωn(t)), with ωn(0) = τ0,V , since 2V (ϕV ) ≡ 1 we have
∫ T

0

〈R(t, zn(t))|zn(t)〉
2V (zn(t))

dt =

∫ T

0

〈R(t, rn(t)ϕV (t+ ωn(t)))|ϕV (t+ ωn(t)))〉
rn(t)

dt.

Since wn → w uniformly, on one hand we have that rn
‖zn‖∞ → C uniformly; on

the other hand, ωn converges to a constant, so that ωn → τ0,V uniformly (recall

that ωn(0) = τ0,V ). By Fatou’s lemma, we thus obtain, in view of the properties

of the inferior limit,

0 ≥ lim inf
n→+∞

‖zn‖∞Rn

≥
∫ T

0

lim inf
n→+∞

〈R(t, rn(t)ϕV (t+ ωn(t)))|ϕV (t+ ωn(t)))〉
rn(t)
‖zn‖∞

dt

≥
∫ T

0

lim inf
(λ,ω)→(+∞,τ0,V )

〈R(t, λϕV (t+ ω))|ϕV (t+ ω)〉 dt,

contradicting J −(τ0,V ) > 0.

We conclude this section with some observations about possible extensions
and variants of our main result.

Remark 2.5. We first notice that, to perform the shooting technique, it would
be sufficient to assume, instead of (16), an L1-sublinearity condition of the
following type: for every ǫ > 0, there exists ηǫ ∈ L1(0, T ) such that, for almost

every t ∈ [0, T ] and every z ∈ R
2,

|R(t, z)| ≤ ǫ|z|+ ηǫ(t).

However, in order for the integral in J + (resp. J −) to make sense, a suitable
L1-control from above (resp. below) on R(t, ·) is in this case needed (see, for
instance, [3]). For the sake of simplicity, we have preferred to assume the two-
sided boundedness condition (16).

Remark 2.6. In principle, we can deal with more general (nonlinear, homo-
geneous) boundary conditions on cones, as well. For instance, we can replace
each of the lines lS and lA with the union of two half-lines emanating from the
origin. The features of the resonance phenomenon for this “polygonal” problem
have been extensively discussed in [11, Section 4], a crucial role being played by
the mutual position of the half-lines. The Landesman-Lazer conditions can be
formulated with the same spirit as in Theorems 2.1 and 2.3 (see also Figure 6
at the end of the paper).



50 A. Boscaggin and M. Garrione

Remark 2.7. The central point of our proof is given by Lemma 2.4, which
provides a sharp interpretation of the Landesman-Lazer condition in terms of
the (noninteger) number of windings of large solutions to (21) around the origin.
This property was already highlighted (for complete windings) in [3, Section 4],
and then applied, together with the Poincaré-Birkhoff fixed point theorem, to
obtain multiplicity of T -periodic solutions for planar Hamiltonian systems like
Jz′ = ∇zH(t, z), with ∇zH(t, 0) ≡ 0 and exhibiting a “gap” between zero and
infinity. In the same spirit, we can use our Landesman-Lazer conditions to
obtain multiple solutions for resonant Sturm-Liouville problems, improving the
results in [11, Section 5]. Notice that, in this case, the shooting technique used
does not require any Hamiltonian structure.

3. Corollaries for scalar second order ODEs

In this section, we explicitly state some corollaries of Theorems 2.1 and 2.3 for
resonant problems associated with the scalar second order asymmetric equation

u′′ + µu+ − νu− + r(t, u) = 0, (23)

with µ, ν positive1 constants, u± = max{±u, 0} and r(t, u) a Carathéodory
function which is L1-bounded in the u-variable, that is, for some ξ ∈ L1(0, T ),

|r(t, u)| ≤ ξ(t), (24)

for almost every t ∈ [0, T ] and every u ∈ R. In this way, equation (23) enters
the planar setting used in Section 2, with the positions z = (u, v), V (z) = 1

2
[v2+

µ(u+)2+ν(u−)2] andR(t, z) = (r(t, u), 0). It is thus possible to use Theorems 2.1
and 2.3 to give existence results at resonance when (23) is considered jointly
with general Sturm-Liouville boundary conditions of the type

u(0) cosα− u′(0) sinα = 0, u(T ) cos β − u′(T ) sin β = 0,

for α, β ∈ [0, 2π[ . We choose to focus our attention on three particular situa-
tions: the Dirichlet BVP (α = β = 0), the Neumann one (α = β = π

2
) and a

mixed boundary value problem of Robin type (α = 0, β = π
2
).

1With a little abuse in the notation, in the following we will speak about Dancer-Fučik
spectrum of a boundary value problem associated with (23) restricting our attention to the
open first quadrant (R+)2 of the (µ, ν)-plane (see formulas (29), (33), (40)). For some Sturm-
Liouville boundary conditions, resonance could also appear when µ ≤ 0 or ν ≤ 0 (for instance,

this is the case for the Dirichlet problem associated with u′′+
(

π

T

)2
u+ = 0). Landesman-Lazer

type results could be established in these situations as well, on the lines of [2, 14].
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For our analysis, we fix a reference solution φµ,ν(t) to the homogeneous
equation u′′ + µu+ − νu− = 0 by setting

φµ,ν(t) =



















1√
µ
sin(

√
µt) if t ∈

[

0,
π√
µ

]

1√
ν
sin

(√
ν
( π√

µ
− t

)

)

if t ∈
[

π√
µ
,
π√
µ
+

π√
ν

]

(extending the definition by
(

π√
µ
+ π√

ν

)

-periodicity); notice that all the other

solutions are of the form u(t) = Cφµ,ν(t + θ), for C ≥ 0 and θ ∈ R. Of course,

recalling the notation in Section 2, we have ϕV (t) = (φµ,ν(t), φ
′
µ,ν(t)).

Lastly, we set, for an L∞-function ζ(t),

A−
ζ =

∫

{ζ>0}

(

lim inf
x→+∞

r(t, x)
)

ζ(t) dt+

∫

{ζ<0}

(

lim sup
x→−∞

r(t, x)
)

ζ(t) dt,

and

A+
ζ =

∫

{ζ>0}

(

lim sup
x→+∞

r(t, x)
)

ζ(t) dt+

∫

{ζ<0}

(

lim inf
x→−∞

r(t, x)
)

ζ(t) dt,

where {ζ > 0} (resp. {ζ < 0}) stands for the subset of [0, T ] where ζ(t) is
positive (resp. negative). Notice that, similarly as for J ±, we have A−

ζ ≤ A+
ζ .

3.1. The Dirichlet problem. In this subsection, we consider equation (23)
together with Dirichlet boundary conditions

u(0) = u(T ) = 0. (25)

According to the notation used in Section 2, we thus have lS = lA = {0} × R

and

τ0,V = 0, τ1,V =
π√
µ
, τ2,V =

π√
ν
, σ1,V = σ2,V = 0.

Hence, the resonance assumptions (9), (11) and (10) (this last coinciding with
(12)) translate, respectively, into the following:

(k + 1)
π√
µ
+ k

π√
ν
= T, (26)

k
π√
µ
+ (k + 1)

π√
ν
= T, (27)

(k + 1)

(

π√
µ
+

π√
ν

)

= T, (28)



52 A. Boscaggin and M. Garrione

for a nonnegative integer k. Henceforth, we use the notation

ΣD = {(µ, ν) ∈ (R+)2 | (26), (27) or (28) hold for some integer k ≥ 0}, (29)

namely ΣD is the Dancer-Fučik spectrum associated with problem (23)–(25).
The possible eigenfunctions corresponding to (26)–(28) are given by the positive
multiples of

φD(t) = φµ,ν(t), ψD(t) = φµ,ν

(

t+
π√
µ

)

.

Precisely, φD and ψD are, respectively, the eigenfunctions corresponding to con-
ditions (26) and (27), while they are both eigenfunctions if (28) holds.
In this setting, the results stated in Section 2 can be rephrased into the following
statement.

Theorem 3.1. Assume that (µ, ν) ∈ ΣD and let r(t, u) satisfy (24). Then,

sufficient conditions for the solvability of problem (23)–(25) are the following:

• if (26) holds,

µ > ν and A+
φD

< 0;

µ < ν and A−
φD

> 0;

• if (27) holds,

µ > ν and A−
ψD

> 0;

µ < ν and A+
ψD

< 0;

• if either (28) holds or µ = ν,

A−
φD

> 0, A−
ψD

> 0, or A+
φD

< 0, A+
ψD

< 0. (30)

Proof. Using standard properties of the inferior and superior limits (see also
[10, Proposition 3.1]), one can see that the conditions on J ± can be translated
into the given assumptions on A±.

We observe that, when µ = ν, one has φD = −ψD, so that, defining, for an
L∞-function ζ(t),

B−
ζ =

∫

{ζ>0}

(

lim inf
x→−∞

r(t, x)
)

ζ(t) dt+

∫

{ζ<0}

(

lim sup
x→+∞

r(t, x)
)

ζ(t) dt,

and

B+
ζ =

∫

{ζ>0}

(

lim sup
x→−∞

r(t, x)
)

ζ(t) dt+

∫

{ζ<0}

(

lim inf
x→+∞

r(t, x)
)

ζ(t) dt,
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it is possible to write condition (30) as

B+
φD

< 0 < A−
φD

or A+
φD

< 0 < B−
φD
,

or, equivalently,

B+
ψD

< 0 < A−
ψD

or A+
ψD

< 0 < B−
ψD
,

forms which are reminiscent of the original result by Landesman and Lazer [16].
We provide a pictorial description of Theorem 3.1 in Figure 3 below, referring
to Remark 3.4 for a detailed explanation.

Figure 3: The first curves of the Dancer-Fučik spectrum for
Dirichlet boundary conditions are depicted in the first quad-
rant of the (µ, ν)-plane; the arrows illustrate the role of the
Landesman-Lazer conditions (see Remark 3.4). The diagonal is
drawn to highlight the symmetries of the spectrum.

3.2. The Neumann problem. We now turn to consider (23) together with
Neumann boundary conditions

u′(0) = u′(T ) = 0. (31)

Here, we have lS = lA = R× {0} and

τ0,V =
π

2
√
µ
, τ1,V = τ2,V =

1

2

(

π√
µ
+

π√
ν

)

, σ1,V = σ2,V = 0.
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Accordingly, the resonance assumptions (9)–(12) translate into the unique one

k + 1

2

(

π√
µ
+

π√
ν

)

= T, (32)

for a nonnegative integer k. In this case, the Dancer-Fučik spectrum is thus
given by

ΣN = {(µ, ν) ∈ (R+)2 | (32) holds for some integer k ≥ 0}, (33)

with corresponding eigenfunctions

φN(t) = φµ,ν

(

t+
π

2
√
µ

)

, ψN(t) = φµ,ν

(

t+
π√
µ
+

π

2
√
ν

)

.

In this setting, the results of Section 2 translate into the following statement.

Theorem 3.2. Assume that (µ, ν) ∈ ΣN and let r(t, u) satisfy (24). Then,

problem (23)–(31) has a solution if the following condition is satisfied:

A−
φN

> 0, A−
ψN

> 0, or A+
φN

< 0, A+
ψN

< 0. (34)

Incidentally, we notice that for µ = ν one has φN = −ψN , so that it is pos-
sible to rewrite condition (34) using the definitions of B± previously introduced.
As for the Dirichlet problem, we give a visual representation of the statement
in Figure 4 below (see also Remark 3.4).

Figure 4: The situation for the Neumann boundary value problem.
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3.3. A mixed problem. As a final example, we now consider (23) together
with mixed boundary conditions of Robin type

u(0) = u′(T ) = 0. (35)

Here, we have lS = {0} × R, lA = R× {0} and

τ0,V = 0, τ1,V = σ1,V =
π

2
√
µ
, τ2,V = σ2,V =

π

2
√
ν
.

Accordingly, the resonance assumptions (9), (10), (11) and (12) translate, re-
spectively, into

2k + 1

2

π√
µ
+ k

π√
ν
= T, (36)

(k + 1)
π√
µ
+

2k + 1

2

π√
ν
= T, (37)

k
π√
µ
+

2k + 1

2

π√
ν
= T, (38)

2k + 1

2

π√
µ
+ (k + 1)

π√
ν
= T, (39)

for a nonnegative integer k. Accordingly, one can analogously define a Dancer-
Fučik spectrum

ΣM = {(µ, ν) ∈ (R+)2 | (36), (37), (38) or (39) hold for some k ≥ 0} (40)

and the corresponding eigenfunctions are φM(t)=φµ,ν(t), ψM(t)=φµ,ν

(

t+ π√
µ

)

.

In this setting, the results of Section 2 translate into the following statement.

Theorem 3.3. Assume that (µ, ν) ∈ ΣM and let r(t, u) satisfy (24). Then,

sufficient conditions for the solvability of problem (23)–(35) are the following:

• if (36) or (37) holds,

µ > ν and A+
φM

< 0;

µ < ν and A−
φM

> 0;

• if (38) or (39) holds,

µ > ν and A−
ψM

> 0;

µ < ν and A+
ψM

< 0;

• if µ = ν, independently of the resonance condition assumed,

A−
φM

> 0, A−
ψM

> 0, or A+
φM

< 0, A+
ψM

< 0. (41)
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Notice that, since when µ = ν one has φM = −ψM , again one can rewrite
condition (41) in the equivalent form involving B±. Figure 5 below illustrates
the statement; once again, we refer the reader to Remark 3.4.

Figure 5: The situation for the boundary conditions (35).

We conclude the paper with a detailed explanation of the perspective sug-
gested by the figures in this section.

Remark 3.4. In Figures 3, 4 and 5, the first curves of the corresponding
Dancer-Fučik spectra are represented in the first quadrant of the (µ, ν)-plane.
On such curves, the autonomous problem u′′ +µu+ − νu− = 0 (with prescribed
boundary conditions (25), (31) or (35)) has a nontrivial solution and the corre-
sponding perturbed problem u′′ +µu+ − νu− + r(t, u) = 0 may not be solvable.
On the other hand, some regions out of the spectrum are shaded, corresponding
to couples (µ, ν) such that, though the autonomous problem admits only the
trivial solution, the solvability of the perturbed one is still not guaranteed in
general (in the following, we will refer to them as “special resonance regions”).
This is a well-known phenomenon [4, 13] (see also [11]), whose appearance de-
pends on the given boundary conditions. In fact, already at first sight, our
figures display different features:

• in Figure 5, namely for mixed boundary conditions u(0) = u′(T ) = 0,
curves appear in couples intersecting on the diagonal, each of them de-
limiting a special resonance region (this is indeed the typical situation for
a general Sturm-Liouville problem);
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• in Figure 3, namely for Dirichlet boundary conditions, we see a pattern
alternating couples of curves, again delimiting special resonance regions,
and single curves;

• in Figure 4, namely for Neumann boundary conditions, only single curves
occur and no special resonance regions are present (incidentally, this is
the same situation as for periodic boundary conditions).

We can intuitively think of a single curve as the “limit case” when two distinct
curves coincide and there is no room in between for special resonance regions.
With this in mind, we can interpret the Landesman-Lazer conditions as a way
to make the nonlinearity “escape” from the spectrum - as usual - and from the
special resonance regions (when present), as the arrows in the figures suggest.
To be precise, the correspondence between Landesman-Lazer conditions and
arrows is as follows:

• A−
φ > 0 (resp., A+

φ < 0): red arrow to the right (resp., to the left);

• A−
ψ > 0 (resp., A+

ψ < 0): blue arrow to the top (resp., to the bottom).

Focusing on one special resonance region, we notice that the eigenfunction in-
volved in the Landesman-Lazer condition is always the same (and is the one
naturally associated) on each curve delimiting it. However, the sign needed in
the inequality changes: this is coherent with the fact that, in order to escape
from the special resonance region, one has to move in opposite ways according
to whether µ < ν or µ > ν. This pictorial interpretation also makes clear what
is going on when two distinct curves “degenerate” into a single one or when
µ = ν. Precisely: on one hand two Landesman-Lazer conditions are needed
(since the two curves are intersecting); on the other hand, there is more room
to escape from the (possibly empty) special resonance region, so that both the
sign for the inequalities are admissible.

We finally mention that this approach can be a guideline when dealing with
nonlinear boundary conditions giving rise to more complicated pictures for the
associated spectrum. For instance (compare with Remark 2.6) we can consider
equation (23) together with the boundary condition

u′(0) = 0, u(0) ≥ 0 or u(0) = 0, u′(0) ≥ 0 (42)

and

u′(T ) = 0, u(T ) ≤ 0 or u(T ) = 0, u′(T ) ≤ 0 (43)

(namely, u(t) starts from one positive semi-axis and arrives on one negative
one), whose corresponding spectrum has been depicted in [11, Figure 9]. The
Landesman-Lazer conditions to be imposed are easily derived just by “adding
arrows” according to the previous philosophy (see Figure 6 below for some
hints). For the sake of briefness, we leave the details to the interested reader.
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Figure 6: The polygonal problem corresponding to (42) and
(43). Compared with the spectrum of the Dirichlet problem
in Figure 3, new special resonance regions (denoted by R) ap-
pear, delimited by couples of asymmetric curves. Intuitively,
such curves may be interpreted as coming from the splitting
of the single ones in the Dirichlet case. Accordingly, one-sided
Landesman-Lazer conditions (with respect to one eigenfunction)
are now needed on each of these curves. On the other hand, we
recognize the usual picture on couples of symmetric curves, in-
tersecting on the diagonal.
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