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Abstract. In this paper we consider an optimal control problem governed by a
rate-independent variational inequality arising in quasistatic plasticity with linear
kinematic hardening. Since the solution operator of a variational inequality is not
differentiable, the Karush-Kuhn-Tucker system is not a necessary optimality condi-
tion. We show a system of weakly stationary type by passing to the limit with the
optimality system of a regularized and time-discretized problem.
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1. Introduction

In this paper we prove a necessary optimality system for an optimal control
problem governed by the quasistatic forward problem of small-strain elastoplas-
ticity. The optimization of elastoplastic systems is of significant importance for
industrial deformation processes, e.g. for the control of the springback of deep-
drawn metal sheets.

As a particular problem, we mention

. v
Minimize F(u,g) = |[u(T) — wql|2ra) + §||g|]§11(07T;L2(FN;Rd)),
with respect to X, u,g
such that (3,u) =G(Eg) and g(0)=g(T)=0.
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Here, G is the solution map of the quasistatic forward problem and F is the con-
trol operator. The definition of the forward problem needs some notation and is
done in Section 1.2. The constraint g(7") = 0 implies that the body at the final
time 7' is unloaded. Due to the observation of the final displacement w(7) in
the objective, this combination of objective and control constraints corresponds
to controlling the springback of the solid body.

The forward system in the stress-based (so-called dual) form is represented
by a time-dependent, rate-independent variational inequality (VI) of mixed
type, see Section 1.2. Hence, the control-to-state map is not, in general, dif-
ferentiable. Moreover, it is already know from finite-dimensional problems,
that the associated Karush-Kuhn-Tucker (KKT) system is not a necessary op-
timality system for optimization problems constrained by a VI. Therefore, one
considers regularizations of VIs, see [3]. The main contribution of this paper is
Theorem 3.1, in which we provide an optimality system for the optimal control
problem under consideration. To our knowledge, necessary optimality systems
for the control of rate-independent VIs in function space are not known up to
now.

A regularized, time-discrete approximation of the forward problem is the
subject of [29]. There, the author proved the Fréchet differentiability of the
solution map of the regularized forward problem which implies a first order nec-
essary optimality condition for the regularized optimal control problem. Based
on this result, we are going to prove an optimality system (of weakly stationary
type) for the unregularized optimal control problem by passing to the limit in
the optimality system of the regularized optimal control problem. In particular,
passing to the limit with the time discretization parameter 7 requires some new
and subtle arguments, see Section 3.

For the notions of the various optimality systems, we refer to [25, Section 2].
Let us put our work into perspective. We give some references for optimal
control of time-dependent VIs. We mention [1,2,19,21], which deal with optimal
control of a parabolic obstacle problem. Moreover, [8] and [18] consider optimal
control of the Allen-Cahn and Cahn-Hilliard VIs, respectively. All of these
papers use a penalization of the VI to obtain a differentiable problem and pass
to the limit with the regularization parameter in the optimality system. In
contrast, we use a relaration approach in the current paper. We also mention
[22,23] who studies the optimal control of rate-independent evolution processes
in a general setting. The existence of an optimal control and the approximability
by solutions of discretized problems is shown, but no optimality conditions are
given.

Let us briefly highlight the main contributions of some of these references.
In [21] the authors give an idea how to prove an optimality system of strong
stationary type for the distributed optimal control of a parabolic VI. As for the
elliptic obstacle problem, this is limited to the quite restrictive case of ample
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controls without control constraints, see also the discussion in [17, Section 4].
To our knowledge, there are no results on optimality systems of C-stationary
type for optimal control problems governed by time-dependent VIs. In [19] the
authors consider the control in the coefficient of the main part of a parabolic
VI. Via a penalization approach they derive a system of weak stationarity. All
of the other contributions mentioned above derive even weaker optimality sys-
tems. Some of them contain sign or complementarity conditions for some of the
dual variables, which, however, hold only for approximating sequences, lacking
passage to the limit.

We also mention [16, 17], which considered the optimal control of static
plasticity. For locally optimal controls, systems of B- and C-stationary type
were obtained.

Comparing the optimal control of quasistatic plasticity to the control of the
parabolic obstacle problem, we find the regularities in time of the multipliers
of both problems to be similar. Indeed, the multiplier (in our notation 6)
associated to the constraint in the VI (in our notation ¢(3) < 0) is not a proper
function, but a measure in time. Moreover, in both problems the adjoint states
(in our notation Y and w) possess no weak derivative w.r.t. time.

Nevertheless, due to the different spatial regularity of the states, adjoints
and multipliers we have to employ different techniques as those used for instance
in [19] for control of the parabolic obstacle problem. Moreover, the analysis
is rendered more challenging due to the nonlinearity in the set K, see (2),
and due to the constraint equation (equilibrium of forces) in the VI. Another
difficulty arises from the fact that there seem to be no existence results for
regularized versions of the time-dependent variational inequality. Therefore, it
is more convenient to regularize the discretization in time rather than vice versa.
The resulting regularized and time-discrete system is a nonlinear saddle-point
problem. Showing the Fréchet differentiability of its solution map is a nontrivial
task, see [29, Section 3].

In contrast to our analysis, most papers on optimal control of (parabolic)
VIs derive conditions which hold only for accumulation points of sequences of
stationary points for the regularized problems. In order to show that these
conditions are satisfied indeed for all local minima, one has to prove that all
local minima can be approximated by stationary points of regularized problems.
To our knowledge, only [2,21] derive necessary conditions in this sense for time-
dependent VIs. We utilize the approximation results of [28, Section 3.4] and
29, Section 4.2] in order to show that the derived optimality system (33)—(38)
holds for all local minimizers.

Let us sketch the outline of the paper. In the remainder of the introduction,
we fix the notation (Section 1.1), and state the forward and optimal control
problems together with their regularizations (Sections 1.2 and 1.3). Section 2 is
devoted to showing an optimality system for the time-discrete optimal control
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problem (P7) by passing to the limit with the optimality conditions for the
regularization (P¢). In Section 3 we pass to the limit with the time discretization
parameter 7. To this end, several convergence arguments have to be used. The
most difficult task is to prove the weak convergence of the term 6 D*DX. in the
adjoint system, see Lemmas 3.8 and 3.9. We finally arrive at the optimality
system of weakly stationary type, see Theorem 3.1.

1.1. Notation and assumptions. Our notation follows [13] and [16].

Function spaces. Let € C R? be a bounded Lipschitz domain with boundary
[' = 09 in dimension d = 3. The boundary consists of two disjoint parts I'y and
I'p. We point out that the presented analysis is not restricted to the case d = 3,
but for reasons of physical interpretation we focus on the three dimensional case.
In dimension d = 2, the interpretation of the forward equation has to be slightly
modified, depending on whether one considers the plane strain or plane stress
formulation.

We denote by S := ngxnﬁl the space of symmetric d-by-d matrices, endowed

with the (Frobenius) inner product o : 7 = Zj i—10ijTij, and we define
V=HHGERY) ={uc H(QGRY) :u=00nTp}, S=L*Q;S)

as the spaces for the displacement wu, stress o, and back stress x, respectively.
The control g belongs to the space of boundary forces

U = L*(I'y; RY).

The control operator £ : U — V', g +— ¢, which maps boundary forces (i.e.,
controls) g € U to functionals ¢ € V' (i.e., right-hand sides of the weak formu-
lation (9)) is given by

(v, Eg)yv = —/ v-gds forallveV. (1)

'y

Hence, E is the negative adjoint of the trace operator from V to U = L*(I'y; R?).
Clearly, £ : U — V' is compact.

For a Banach space X and p € [1,00], we define the Bochner-Lebesgue
space

LP(0,7;X) ={u:[0,T] — X, u is Bochner measurable and p-integrable}.

In the case p = oo one has to replace p-integrability by essential boundedness.
The norm in LP(0,7; X) is given by

lullzro.rsx) = [ wC) x| oo -
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By W?(0,T; X) we denote the Bochner-Sobolev space consisting of functions
u € LP(0,T; X) which possess a weak derivative @ € LP(0,T; X). Two equiva-
lent norms on W?(0, T; X) are given by

D=

1
(el ooz + il oomx)? and (1w + il r ) ?

where the extension to the case p = oo is clear. We use H'(0,7;X) =
Wh2(0,T; X). Moreover, we define the space of functions in H'(0,T; X) van-
ishing at t =0

Hipy(0,T;X) = {ue H'(0,T; X) : u(0) = 0}.

Details on Bochner-Lebesgue and Bochner-Sobolev spaces can be found in [6,
9,24, 30].

Yield function and admissible stresses. We restrict our discussion to the
von Mises yield function. In the context of linear kinematic hardening, it reads

6(2) = 5 (16" + X" - ) )

for ¥ = (o, x) € 5%, where |-| denotes the pointwise Frobenius norm of matrices
and

1
ol =0 — 7 (traceo) I

is the deviatoric part of o. Here, I € S is the identity matrix. The yield
function gives rise to the set of admissible generalized stresses

K={2ecS5:¢(X)<0 ae. inQ}.

Let us mention that the structure of the yield function ¢ given in (2) implies
the shift invariance

ek & YX+(r,—7)eK forallTes.

This property is exploited quite often in the analysis.
Due to the structure of the yield function ¢, o? + x? appears frequently
and we abbreviate it and its adjoint by

DY =o” +xP and Do = (o”,0")

for matrices ¥ € S? as well as for functions ¥ € S? and ¥ € LP(0,T;5?).
When considered as an operator in function space, D maps S? and L?(0,T’; S?)
continuously into S and LP(0,T; S), respectively. For later reference, we also
remark that

DDY = (6" + x”,6” +x”) and (D*D)*=2D'D
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holds. Due to the definition of the operator D, the constraint ¢(X) < 0 can be
formulated as ||DX|| (s < 9. Hence, we obtain

ek = DX el™S). (3)

Here and in the sequel we denote linear operators, e.g. D : S? — S, and
the induced Nemytskii operators, e.g. D : H'(0,T;S?) — H'(0,T;S) and D :
L*(0,T;S?%) — L*(0,T;S), with the same symbol. This will cause no confusion,
since the meaning will be clear from the context.

Operators. The linear operators A : S? — S? and B : S? — V' are defined as
follows. For ¥ = (o,x) € S? and T = (1, u) € S?, let AX be defined through

(T, AX)s2 = /

7:Clods + / o H  y dz.
Q Q

The term % (A, 30) g2 corresponds to the energy associated with the stress state
3. Here C7'(x) and H!(x) are linear maps from S to S (i.e., they are fourth
order tensors) which may depend on the spatial variable z. For ¥ = (o, x) € S?
and v € V| let

(BY, v)yry = —/QO’ e(v) de.

We recall that e(v) = (Vv + (Vv) ") denotes the (linearized) strain tensor.

Standing assumptions. Throughout the paper, we require

Assumption 1.1.

(1) The domain  C R? d = 3 is a bounded Lipschitz domain in the sense
of [10, Chapter 1.2]. The boundary of €2, denoted by I', consists of two
disjoint measurable parts I'y and I'p such that I' = 'y UT'p. While I'y is
a relatively open subset, I'p is a relatively closed subset of I'. Furthermore
I'p is assumed to have positive measure. In addition, the set Q U 'y is
regular in the sense of Groger, cf. [11]. A characterization of regular
domains for the case d € {2,3} can be found in [12, Section 5]. This class
of domains covers a wide range of geometries.

(2) The yield stress ¢ is assumed to be a positive constant. It equals \/g 0o,

where g is the uni-axial yield stress.

(3) C!is a uniformly coercive element of L>(Q; L(S,S)), where L(S,S) de-
notes the space of linear operators S — S. Moreover, we assume that
C~1(z) is symmetric, i.e., 7:C 1 (z)o =0 :C ! (2) 7.

(4) The hardening modulus satisfies H™!(z) = k; ' () I, where the hardening
parameter k; ' € L>(f) is uniformly positive in 2 and T is the identity

map on § = REX(.
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Assumption 1.1(1) enables us to apply the regularity results in [15] pertain-
ing to systems of nonlinear elasticity. The latter appear in the time-discrete
forward problem and its regularizations. Additional regularity leads to a norm
gap, which is needed to prove the differentiability of the control-to-state map.

Moreover, Assumption 1.1(1) implies that Korn’s inequality holds on €2, i.e.,

lullz @may < e ([ulZer, me) + le(w)ls) (4)

for all w € HY(Q;R?), see e.g. [15, Lemma C.1]. Note that (4) entails in
particular that ||e(u)||s is a norm on H}(2;R?) equivalent to the standard
H(;RY) norm. A further consequence is that B* satisfies the inf-sup condition

lully < ek ||B*ul|s2 for all uw € V. (5)
Assumption 1.1(3) is satisfied, e.g. for isotropic and homogeneous materials,

for which ) )
-1
o= 2,ua 2pu2p+dN)

with the identity matrix I € S and Lamé constants p and A, provided that
p>0and d\+2p > 0 hold. These constants appear only here and there is no
risk of confusion with the plastic multiplier \.

Clearly, Assumption 1.1(3),(4) show that (A%, )¢ > a ||2||%; for some
a >0 and all ¥ € S?. Hence, the operator A is S?-elliptic.

trace(o) I

Regularization. For the regularized problem, we need a regularization of the
function max{0, - }.

Assumption 1.2. For all € > 0, the function max® : R — R is of class C*!' and
satisfies

(1) max®(z) > max{0,z} for all z € R,
(2) max® is monotone increasing and convex,
(3) max®(z) = max{0,z} for || > e.
Clearly, for all € > 0 there are functions max® satisfying this assumption,
e.g. the convolution of max{0,-} with some differentiable function. Since the

term appearing inside max® will be smaller than 1, we will assume ¢ € (0, 1),
see (12¢).

Interpolation of time-discrete functions. Let f7 € X be given, where X
is some Banach space and N is the number of time steps. We define certain
interpolants of f7 which will be useful for defining the time-discrete problem as
well as for passing to the limit with the time step size.

We define the piecewise linear and continuous interpolant f7 which will be
used for the primal variables 3, w, and g

L =" Ty e (G- Dmin). (6)
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with f7 = 0. Therefore, we can identify X~ with a subspace of H%O}(O, T; X).
Note that this interpolation coincides with the one given in [28, (3.1)].

The piecewise linear and continuous interpolant f7; will be used for the
dual variables Y and w and is defined as

wfﬁ”%tfr_l for t € [(i — 1) 7,47), (7)

)

calt) =

with f§ = fi. Compared with the definition of f7 , only the fictitious value
of fi was changed. Due to this choice of the initial value, the adjoint equation
(52a) is not only satisfied in the interval (7,7") but also in (0, 7), see Section 3.3.

Moreover, we define the piecewise constant interpolations fi, and fi_ by

fi@t)=f7 fortel(i—1)7,iT1), (8a)
fi)y=fr, fortel(i—1)rir), (8b)

with the convention fj = 0. The interpolant fi, will be used for the adjoint
displacement w in the gradient equation, see (45), whereas f]_ will be used for
several quantities in the adjoint system, see (52). Note that the interpolant f,
coincides with the one given in [28, (3.3)].

1.2. The forward problem. Now, we are in the position to state the forward
problem of quasistatic plasticity. Given ¢ € HEO}(O,T; V'), one has to find
generalized stresses ¥ € H{lo}(O,T; S?) and displacements u € H{lo}(O,T; V)
which satisfy 3(¢) € K and

(AL(t) + B*u(t), T —X(t))s2 >0  forall T € K, (9a)
BX(t) =£(t) inV’ (9b)

for almost all ¢t € (0,7"). The unique solvability of (9) is shown in [13, Theo-
rem 8.12|, see also [28, (1.19)] for the uniqueness of the displacement u in case
of linear kinematic hardening. We denote the solution operator which maps
¢ — (3,u) by G. For continuity properties of the solution map G we refer to
28, Section 2]. Equivalently, by introducing a Lagrange multiplier A\ associated
with the constraint ¢(3%) < 0, the system (9) can be written as

AY + B*u+ AD*DX =0 in L*(0,T;5?), (10a)
BY ={ in L*(0,T;V"), (10b)
0<A L ¢(X)<0 ae. in(0,7)xQ, (10c)

see [14]. As usual, 0 < XA L ¢(X) < 0 is short for A > 0, ¢(X) < 0, and
Ap(X) = 0 a.e. in Q. Note that the derivation of (10) based on its strong
formulation is given in [28, Section 1.2], see also [13, Chapter 3].
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By replacing the time derivatives by backward differences with time step size
T = %, we obtain the discretized problem: given ¢ € (V') find (27,4, \") €
(52 x V x L?(Q))" such that X7 € K and

AX] =27 )+ B*(ul —ul_ )+ 7N D*DX] =0 in S (11a)
BYXT =/{7 inV’, (11b)
0<A L ¢3X])<0 aein® (11c)

is satisfied for all ¢ € {1,..., N}, where (37, u]) = 0. The unique solvability
of this incremental problem is shown in [13, Proof of Theorem 8.12, p. 196], for
the formulation involving the plastic multiplier, we refer to [14, Theorem 1.4].
We denote the solution operator which maps (™ — (X7, u7) by G".

A regularization of (11) is given in [29, Section 2|: given the loads (¢ €
(VNN find (2%, uf) € (S? x V)V satisfying

AX; =35 )+ B*(u; —u_,) + 7\, D*DX; =0, (12a)

BY: =13, (12b)

=771 k_la—f, where af = max® <1 - Go ) : 12¢
ST i)

for all i € {1,..., N}, and with the initial condition (3g,u§) = (0,0). The
unique solvability of (12) can be proved using the Browder-Minty theorem, see
the discussion after [29, Section 2]. We denote the solution operator which maps
(F — (X°,u®) by G°. Note that we suppress the dependence of G* on 7.

1.3. The optimal control problem. At first, we substantiate the assump-
tions on the objective ¢). Throughout this paper we assume
Assumption 1.3.

(1) The function ¢ : HY(0,T;V) — R is weakly lower semicontinuous, con-
tinuous and bounded from below.

(2) We assume that ¢ : H*(0,7;V) — R can be decomposed into 7 :
L*(0,T;V) = R and ¢r : V — R, such that

b(u) = ve(u) + dr(u(T))

holds for all w € H'(0,7T; V). Both, 1. and ¢ are assumed to be contin-
uously Fréchet differentiable.

(3) The cost parameter v is a positive, real number.

The assumptions on the admissible set U,q C H{lo}(O, T;U) and its time-

discretization UTy = U,q NUY, where U” is identified with a linear subspace of
H{lo} (0,T;U) via the linear interpolation (6), is given by
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Assumption 1.4.
(1) The admissible set U,q is nonempty, convex and closed in H{lo}((), T;U).

(2) We suppose that for all g € U,q, there exists g7 € U7y, such that g7 , — g
in H'(0,T;U) as 7 \, 0.

Some examples of 1 and U,y satisfying Assumption 1.3 are given after
28, Assumption 2.8], see also the problem given in the introduction.

The optimal control problem under consideration is given by
. v
Minimize  F(u,g) = v(u) + 219151 0,0 )
such that (¥,u) =G(Fg) and g € Uy.

Here, G is the solution map of (9) and E is defined in (1). The existence of an
optimal control is shown in [28, Theorem 2.9].

Since the control-to-state map G o E' is given by the solution of the VI (9)
or, equivalently, by the complementarity system (10), the optimal control prob-
lem (P) is a mathematical program with equilibrium constraints (MPEC) or
with complementarity constraints (MPCC), respectively. Hence, optimality
conditions are not given by the KKT system. In order to prove optimality con-
ditions for (P), we replace the solution map G of (10) by the solution map G*
of the discretized and regularized problem (12).

By restricting g to U], and by replacing the control-to-state map G by its
discretization G7, we obtain the time-discrete optimal control problem

e v
Minimize F7(u”,g") =¢"(u") + §||gTH(2]N P7)
such that (X", u")=G"(Eq") and g € U],
where the discrete functionals are defined by using the interpolation (6), i.e.,
PT(u’) =Y(ucy) and g lloy = llgepllm omo)-

We refer to [28, Section 3.4] concerning the existence of an optimal control.

Replacing G™ by G¢, we obtain the regularized control problem

v
Minimi F™(uf. af) = " (u - €12
mnimize (U g ) (0 (U )‘I’ 9 ||9 ||UN } (Ps)

such that (X°,u®) =G°(Fg°) and g € Uy,.

The existence of an optimal control is proven in [29, Lemma 2.2] and an opti-
mality system is given in [29, Section 3.3], see also (20).
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2. C-Stationarity for the time-discrete optimization prob-
lem

The aim of this section is to derive an optimality system of C-stationary type
for the time-discrete optimal control problem (P7) by passing to the limit in the
optimality system of its regularization (P¢). Note that all local solutions g™
of (P7) can be approximated by solutions to the following, slightly modified
version of (P¢), see [29, Section 4.2],

. - v 1 .
Minimize 7 (u?) + 2 g7 + 5 19" — 97l
such that (3%, u®) =G°(Fg°) and g¢g° € Ul,.

In order to derive the time-discrete optimality system formally, we introduce
the multipliers

Y7 for (11a), u for A\] >0, see (11c),
w] for (11b), 6] for ¢p(X7) <0, see (11c).

7

As usual in the context of MPCCs, we did not introduce a multiplier for the
complementarity condition A] L ¢(X7). Proceeding, we expect the following

system of C-stationarity to hold for local optima of (P7), cf. [25],
A(SI-%T )+ B*(ul-ul ) +7A\/D*DXT =0,
B(Xi=%7)=E(9;=9i1),
0N L 6(E7)<0,
A(XT=YT,)+B*(wi—w], ) +TA\ID*DY] +76] D*DX] =0,
B(Y[="71) =9 (u"),

— — =
=~ W W
o T o
S— N N N S~—" ~—— S— N

N —~ N
— =
=~ w
Q o

N
> (B W] G7=71—(97=971)) oy ey T (VG2 G— 9 o 20, (15
= DX DY [—p] =0, (16a
PIAT =0, (16b
07 o(%7) =0, (16¢
07 i =0, (16d

for i = 1,...,N and for all g" € UJ,. Here, we used (X7,u]) = (0,0) and
(Yi1, whyq) = (0,0). Moreover, ¢ (u") € V' denotes the partial derivatives
of Y™ w.r.t. ul, see also (41).

Here, (13) is the forward system and (14) is the adjoint system. The vari-
ational inequality (15) is a relationship between the adjoint state w”™ and the
control g7, i.e., it is the gradient equation. The pointwise complementarity
conditions on the multipliers (16) complete the system of C-stationary type.

The main result of this section is the following theorem.
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Theorem 2.1. Let g" be a local solution of (PT). We denote by (X7, u",\7) €
(S x V x L2Q))N the stress, displacement and plastic multiplier, which are
associated to g7 by (11). Then, there are adjoint states (XY™, w™) € (S x V)V
and multipliers ™, 0™ € L*(Q)N, such that (13)—(16) is fulfilled.

In Section 2.1 we reformulate an optimality system of (Pg,), see [29, Sec-
tion 3.3], such that it involves the regularized counterparts of the multipliers
appearing in the C-stationarity system. By passing to the limit with e, we prove
the C-stationarity result in Section 2.2. The main work is to verify certain esti-
mates for the multipliers and adjoint states, which have to be uniform w.r.t. the
regularization parameter €.

2.1. Alternative formulation of forward and adjoint systems. The aim
of this section is to state an optimality system for (Pj.) which resembles the
C-stationarity system (13)—(16). To this end, we denote by (%7, u®, g°) a local
minimizer of (Pg,).

According to [29, (34)], the adjoint states (X% w®) = (v, {5 w®) € (S*x V)N
are defined as the solution of the system

AT = Y50) + B (w; — wiyy) + D7 (v + (i) = 0, (17a)
B(Y; —Yi,) =] (u),  (17h)

i

with (Y%, wyy,) = 0. Here, ¥7 (u®) € V' denotes the partial derivative of )7
w.r.t. u;. Moreover, J; is defined by

DY P
T T DZE>, (18)

where of is defined in (12c¢), and f§ is given by

B = (max*)’ (1 o 7 ) % . (19)

o; +xi)71) (7 + xi1)"]

The local optimality of (%7, u®, g°) implies that

N
Z<E*’LU;TC7 gz—_g;——l_(gf_g§—1>>L2(FN;Rd)+<Vga_‘_gg_gTv gT_ga>UN >0 (20)
=1

holds for all g € U], see [29, Section 3.3].
Using (17a) and {34, =0 we infer ¢ =(¢5)? for all i=1,..., N. We define

DY: = (v5)P + ¢, (21)

Now we are going to manipulate the term JF DY in order that the adjoint equa-
tion (17) resembles its counterpart in the expected C-stationarity system (14).
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We obtain from the second component in (17a), (18) and (21) and Assump-
tion 1.1(4)

DY¢ : DY: ) (22)

DYF = DY} = ¢ = iy = (o DYT 4 5 e P

Dividing by 1 - a5 > 0 yields DY; = - (DY} + 57 22 DX ). Using (18)

- 1= [RHE
we proceed by

- ag DY : DY DY : DYS
JEDYE = ki (DT? e i i ZDZ?) gl il T i pye
% % 1 1-@5 2+62 |DEZ€|2 7 + 1 ﬁz |DEZ€|2 7
. B DXE:DYE
=T A DY + k2 d L DY,
TR T T
This gives rise to the definition
¢ DYDY

0 =k ! bi i ! (23)

1—of |DX;|?
The L?*(Q2)-regularity of 65 is shown in Lemma 2.5. The definitions of 6 implies
JEDYS = 7 X DYS + 765 DXL,

Using the definition of AS and 65 the adjoint system (17) becomes

A(YS = Y5,,) + B (wi — wi,,) + TAD*DYS + 76;D* DS = 0, (24a)
B(Y7=Yi) = ¢j(u). (24b)

It remains to define the multiplier x°. According to (16a) we define
ys = DX : DY € LA(Q). (25)
Testing (22) with DX implies
(i = DY : DS = (1 —of — ) DY5 : DI, (26)
This equation is the starting point to estimate the multiplier x;, see Lemma 2.2.

Now, the optimality system of (P, ) consists of the state equation (12), the
adjoint equation (24) and the gradient equation (20).
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2.2. Convergence of the regularization. As a preparation for the proof of
Theorem 2.1 we verify estimates for various quantities introduced in Section 2.1.

In Assumption 1.2 we require max®(x) = max{0,z} if z ¢ (—¢,¢). Hence it
is natural to split €2 into three disjoint sets in dependence whether the argument
of max® in (12¢) and (19) is smaller than —e, larger than € or in (—¢,¢).

Af’_::{mEQ:ﬂiEﬂg o0 }:{xEQzl— 0 §—5},
1+e | D3|

}:{xGQzl— 20 26},
€ | D3|

At = {m €Q: DX > 1"“
APY = QN (A7 U AT,
We start by giving bounds on the term 1 — of — 37 which appears in the
definition of u5, see (26).

Lemma 2.2. We have

{1}, on A7,
l—af—p5€l0,1], on A, (27)
{0}, on AT,

forallie{l,...,N}.

Proof. By the definition of af and 57 in (12c) and (19), we infer immediately
o = 5 =0o0n A>7. On A>T we have of = 1 — By and B = By Lhis
implies 1 — af — 37 = 0.

o)
DE5|”
On A%° we have k € (—¢,¢). By definition of o and ¢ in (12¢) and (19), we
have

It remains to check the assertion on A7°. Let us define k7 = 1 —

of = max (k) and B = (max")(k?) (1 - ).

Let us give a precise upper bound of ;. The fundamental theorem of calculus
yields

3
/ (max®)'(z) de = max®(g) — max®(k;) = ¢ — max®(k;).
HE
Since Assumption 1.2 implies that (max®)’ is monotone increasing, we infer
(e — K7) (max®)'(k;) < & — max®(k;).

Hence,
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Now, we obtain

£ — max®(k$)

2 (1 k)

& — K — max®(w7) (¢ — w7) — (¢ — max®(x7)) (1 = #7)

1 —af —fp; >1—max"(k;) —

£

€ — K
1_6 1> € £
_8_H§(max (k) — K7)
> 0.
By af > 0 and 85 > 0 we infer 1 — af — 55 € [0,1] on A%, -

As a simple consequence we obtain the regularized counterpart of the sign
condition (16d).

Lemma 2.3. For alli € {1,...,N}, the condition 65 ui > 0 is satisfied almost
everywhere in €.

Proof. By (26) we obtain
0% i = 05 (1 — o — ) DS : DY,
Now, Lemma 2.2 and the definition of 6 in (23) imply 65 p5 > 0. O
Now we show the boundedness of the adjoint states (Y°, w*).

Lemma 2.4. The adjoint states (Y°, w*) satisfy

~~~~~~~~~~ -
=1

where the constant C' depends only on the operators A and B.

Proof. There exists Xipy: € 52, such that BYpy: = BY? and DX py: = 0, see
28, (2.4)]. Let us define T = Y; — Xpye. This implies

XN, DY : DT = X; DY :DY; >0, by A >0,
¢;: DX: : DT = 0; DX : DY; =0; u; > 0, by Lemma 2.3.

Testing (24a) with T yields
<Tf - Tzs'—&-l? T>A <0.
Here, (-, -) 4 is the scalar product on S? induced by the operator A. Hence

(05 = X5, X5)a < (X7 -5, Zpxs)a.
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Using (X5 — %, T = 2S5 — 755 + 10— X5, ), vields
1505 = 05 1%+ 105 = Y5015 < 205 = 5y, Zpre)a.

Summing over i € {k,k+1,..., N} and using Y%, = 0 yields

N N
15+ DI =i l5 <2 (0 = Y5, Spre)a
ik ik
N

2(Y5%, Spr)a—2 ) (Y5, Spreopre,,)a
i=k

<C max 5]l (1B ||V/+ZW v,

where C' depends only on A and B. Here, we used
1Zpr:lla < C[BYv

and
1X5ye—pye, lla < CBY; = BY: |y = C o] (u)|lvr,

which follow from the inf-sup condition of B*, see [28, (2.4)]. By BY; =
SN T (uf) we obtain

IRl < € max [F]|a ZIW Mvr < € max [[Y7]|a ZHW v

..........

i=k =1

Taking the maximum over k£ = 1,..., N on the left hand side yields

max [T, < C ZIIW v,

,,,,,

where C' depends only on A and B. The estimate for w$ follows by (17a) and
using the inf-sup condition of B*, see (5). O

For convenience we define the abbreviation
Q; = —AY; — B*w;, (28)

which will be used frequently (also with other sub- and superscripts) in the
sequel. The adjoint system (24a) becomes

S (@7~ @0 = X D'DYS 4 6 DD (20)



Optimal Control of Quasistatic Plasticity III 97

Using Lemma 2.4 we obtain the boundedness of Q°

i=1,...,

N
max [Qfs2 < C ;‘WMHVI. (30)

As a consequence, we obtain an estimate of the bilinear terms in (29) and of
the multiplier 0 in L?(().

Lemma 2.5. The estimates

£ * g € * IS 1 1> £
16; D*DXE |52 + || X D*DY; 1 < 1@ - Q5 |13 (31a)
14+¢

1
1_0)vas * Q7 — Qiullse (31D)

10| 22(0) <

hold fori e {1,...,N}.

Proof. Taking norms on both sides of (29) yields
* 15 154 * € € * & 15 * € 1 15 &
167 D Dzz‘Hiﬂ*(@ D'DX5, A\ D'DY5) 2+ ||A; D DTiH%Q = 72 ||Qi_Qi+1||%2‘

Due to Lemma 2.3, the definition of 15, see (25), and A5 > 0 the scalar product
is non-negative. Indeed, we have

(0 D*DEE, X D*DY5) g = 2 / S 0EDXE DY dg = 2 / A 02 i dz > 0.
Q Q

This yields (31a).
Due to £ =0 on A7, we have 5 = 0 on A;", see (23). By using

DX; = (1-0f) (o5 +x;-1)"” (32)

see 29, (16)], we obtain |DXf| = (1—af) |[DXE| > 5= G0 on ASPUAST. Hence,
the estimate (31b) follows by (31a). O

Unfortunately, these estimates are not uniform w.r.t. the time step size 7.
This will cause severe issues when passing to the limit 7\, 0, see in particular
Lemmas 3.8 and 3.9.

Finally, we prove the regularized counterparts of the complementarity con-
ditions (16b) and (16¢).

Lemma 2.6. The plastic multiplier \* and the multiplier u° satisfy

€
1—¢

X5 15l prgey < kytr! IDXE |5 [|DYXS|ls  for alli€ {1,...,N}.
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Proof. By (12c) we obtain A\{ = 0 on A7". Using (26) and (27) we infer u =0
on AT

OnA Wehave)\g—k1 *1 o <l€1 *115 Hence,

A7 5 Ml o) < k' 1——5 H:U’?HLI(A:’O) <k 7 11—

ills IPY5 s O

Lemma 2.7. The generalized stresses 3° and the multiplier 6° satisfy

2¢
=vep
Proof. We have 3 = 0 and hence by (23) 65 =0 on A;". From (27) and (32)

we infer ¢(X5) = 0 on AT
On AS° we have |DX| € [

165 (37 21

o HH?HLl(Af,o) forallie{l,...,N}.

e ] 7o by (12¢) and (32). Hence, we obtain

., 0F—|DX: 2 _ .
[9(35)] = 5 < e 52 ae. on A
Using Holder’s inequality concludes the proof. O

Using the results above we prove that the system (13)—(16) is a necessary
optimality condition for the time-discrete control problem (P7).

Proof of Theorem 2.1. [29, Corollary 4.7] implies the existence of a sequence of
local solutions {g°} of (Pg,), such that g° — g” as ¢ \, 0.

Let us denote by (3¢, u®, A°) the regularized stresses, displacements and
plastic multipliers, which are associated to g° by (12). From [29, Theorem 4.3
and Corollary 4.4] we infer

(25,45, 0°) = (7, 4", A7) in (SZx V x L*(Q))Y  as e \,0,

where (27, u™, A7) € (S x V x L*(Q))" are the unregularized stresses, displace-
ments and plastic multipliers associated to g7, see (11). This shows the forward
system (13).

Let us define the adjoint states (Y, w®) and the multipliers (6, u°) asso-
ciated to g° by (23), (24) and (26). By Lemma 2.4 and Lemma 2.5 the ad-
joint states (X, w®) and the multipliers (¢, u¥) are bounded in (S? x V)Y and
(L*(Q) x L*(2))", respectively. Hence, there is a subsequence of £ denoted by
the same symbol and an element (X7, w™, 07, u7) € (S? x V x L*(Q) x L*(Q))V,
such that

(Y5, w®,60°, 1) — (X7, w™, 07, 1u7) in (S* x V x L*(Q) x L*(Q))N ase \,0.

Therefore, we can pass to the limit in the necessary optimality condition (20)
of the modified regularized problem (Pg.) and obtain (15).
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By A* — X" in L2(Q)Y and by Y° — Y7 in (S?)V, we infer \* DY® —
AT DY in LY(Q;S)V. Using (31a) we obtain A* DY* — A" DY7 in SV for fixed
T > 0, since Q° is bounded, see (30). Similarly, we infer 6 D¥° — 67 DX"
in SV. Therefore, we can pass to the limit in the regularized adjoint equa-
tion (24) and obtain (14).

It remains to check the relations (16). Using the definition (26) of u® we
infer (16a). Now we address the complementarity conditions (16b) and (16¢).
In view of Lemma 2.6 and Lemma 2.7 it would suffice to prove the weak con-
vergence of X us and 05 ¢(X5) in L'(2), since the L'(Q)-norm is weakly lower
semicontinuous. By X! — X7 in S? and A\ DY; — AN DY] in S we infer
Nops = NDYS:DX; — A p? in LY(Q). Similar, using 65 DX — 67 DXT
in S and £F — X7 in 52 shows 0 () = 05 L (DES : DS — 6)2 — 607 ¢(57)
in L'(Q2). Here, we used the definition (2) of ¢. This shows the complementarity
conditions (16b) and (16c¢).

Last we address (16d). We will use [16, Proposition 3.15]. To this end, we
test (24a) with ¢ Y7, where ¢ € C5°(Q), ¢ > 0. Using 67 DX:DY; = 67 p5 > 0
by Lemma 2.3, we obtain

(A(Y; = X00) + B (w; —wiyy) + AT DD, 9 X5)se < 0.
Applying [16, Proposition 3.15] yields

(A(YT = X70,) + B (w] —wiy,) + AT DDY], o X])s2 < 0.
Testing (14a) with ¢ Y7 yields

/ e0 ul de >0 for all p € C3°(Q2) satistying ¢ > 0.
Q

Hence, 07 u7 > 0 almost everywhere. This shows (16d). O

Remark 2.8. (1) Similarly to Theorem 2.1 a necessary optimality condition
for the modified time-discrete problem (P7) can be proven, see the in-
troduction of Section 3 for the definition of the modified problem. In
the optimality system (13)—(16) we have to replace the gradient equa-
tion (15) by

NE

<E*w;{-7 ng - g;-—l - (g: - gz_1)>L2(FN;Rd)
! T T ~T T (157)
<(gc,p - g) + V3cp)» Gep — gc7p>H1(0,T;U)

0,

v + T

for all g" € UZ;. Here, we used the linear interpolation (6). As an
optimality system for the modified time-discrete problem (P;) we obtain
(13), (14), (15’) and (16).
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(2) In case N = 1 (only one time step) we obtain an optimality system for
the optimal control of static plasticity. The system (13)-(16) equals the
system [16, (3.3)—(3.6)] up to minor differences: in the current paper we
neglected volume forces f, but considered additionally control constraints.

(3) Using the technique of [17, Section 3| one may derive a system of B-
stationary type for the time-discrete problem (P7).

3. Weak stationarity for the quasistatic problem

In this section we derive an optimality system for the continuous problem (P).
We use arguments similar to those in the proof of Theorem 2.1. Throughout
this section, g denotes a fixed local optimum of (P). [28, Theorem 3.10] yields
the existence of a sequence {g"},~¢ of local optima of the time-discrete and
modified problems

v 1

Minimize 47 (u") + 21lg7 I3 + 5197, — 9 )
such that (¥",u") =G"(Fg") and g" € U], !
such that their interpolations g7 , see (6), converge to g in the strong topol-
ogy of H'(0,T;U). This sequence {g”},~o is fixed throughout this section.
The convergence of (the interpolations of) the states (37, uf , Al ) towards
(X,u,\) in H'(0,T; 5% x V) x L*(0,T; L*(Q2)) was shown in [28, Theorems 3.3
and 3.4]. In this section, we study the convergence properties of the dual quan-
tities (Y7, w™, u™,07) and pass to the limit in the optimality system (13)—(16)
as 7\, 0.

Unfortunately, one cannot show the boundedness of the adjoints Y 4 and
w4 in H'(0,T;5%) and H'(0,T; V), but only in L>(0, T S%) and L>(0,T;V),
respectively, which was already proven in Lemma 2.4. Due to this lack of
regularity, the derivatives in time of Y 4 and w] ; in the adjoint equation (14)
have to be formulated in a weak sense in order to pass to the limit 7 ~, 0. Hence,
the adjoint equation (34) of the continuous problem can be stated only in a weak
sense. As mentioned in the introduction, this lack of regularity also occurs in
the optimal control of the parabolic obstacle problem, see [19, Theorem 6.2]
and for the optimal control of ODEs involving hysteresis, see [5, Satz 8.12].

The main result of this paper is the following theorem.

Theorem 3.1. Let g € H(0,T;U) be a local minimum of the optimal control
problem (P). Then there exist

(3,u) € HY(0,T;5% x V), A€ L*(0,T; L*(Q)),
(Y, w) € L2(0,T; 82 x V), (6,1) € X(0,T) x L=(0,T; L*(%)),
(Yr,wr) € S xV, (O, pr) € L*(Q2) x L*(Q)
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satisfying

AY 4+ B*u+ A\D*DX =0,  (33a)
BY. = Eg, (33b)
0<A L ¢(X)<0, (33¢)

<AT + B*'w, T>L°°(O,T;S2),L1(O,T;SQ) — <ATT + B*'lUT, T(T))SQ
+<)\ D*,DT, T>L2(0,T;S%),L2(O,T;S%)/ + 0(D2 . DT) == O, (34&)

T
B(Y — Yr) — / Vi (u)ds =0,  (34b)
<E*’LU, g - g>L2(0,T;U) + <Vga g - g>H1(0,T;U) > 07 (35)
DYDY —pu=0, (36a)
pA=0,  (36b)
O(vo(X)) =0,  (360)
ATT + QT D*DE(T> + B*'lUT = 0, (37&)
BYr — ¢ (u(T) =0,  (37h)
DS(T): DYr— pr =0,  (3%)
O0r ¢(3(T) =0, (38D)
(9T 1% Z 0, (38C)

for all T € X524(0,T), g € Upg and v € X(0,T).

For definition of the spaces X(0,7") and Xs2(0,7T), we refer to (53).

The remainder of this section is devoted to the proof of Theorem 3.1 and
is organized as follows. In Section 3.1, we use some basic convergence results
in order to establish the state equation (33) and the gradient inequality (35).
After deriving some auxiliary results in Section 3.2, we obtain the adjoint equa-
tion (34) and the terminal conditions (37), (38). Finally, the complementarity
conditions (36) are verified in Section 3.4.

Throughout this section, we denote by X7, w™, A7, X7, w7, u”, 67 the states,
adjoint states and multipliers, such that the optimality system (13), (14), (15)
and (16) of the modified problem (P}) is satisfied, see Remark 2.8(1). Moreover,
we denote by X, u, A\ the states associated with g by (10) with ¢ = Eg.

3.1. Basic convergence results. As already mentioned in the introduction
of this section, [28, Theorems 3.3 and 3.4] imply

X, =% in HY(0,T;5?%), ul —u in HY(0,T;V), } (39)

e — A in LP(0,T; L* (),
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where (3,u,\) is the solution of the continuous problem associated to g,
see (10) with £ = Eg. We refer to (6)—(8) for the definitions of f7, fT4, f3,
and f7_. For later use, we mention that this implies

Yo% in L2(0,7;5?),  wui_ —w in L¥(0,T;S?), (40)
N — A in L*(0,T; L*(Q)).

This shows the satisfaction of the state equation (33).

Now, we will give a formula for the partial derivatives ] of ¢" in order
to show that the right hand side in the estimate of Lemma 2.4 is uniform
w.r.t. the time step size 7. If we denote by v; : [0,7] — R the usual hat
function associated with the node t = i 7 (piecewise linear, continuous, 0 at j 7
for j # i and 1 at i 7), we obtain

T
Vi (ul,) = /0 v; Vibe(ug ) dt fori=1,...,N—1, (41a)

T
Vi (ug,) = /0 v Ve (ug ) dt + g (ul (T)) fori= N, (41b)

where Vi.(u) € L*(0,T;V’) denotes the gradient of 1. at w and ¢} € V' is
the Fréchet derivative of 7. This shows

N N T
Sl < 3| [ etz de |+ iz, ) e
i=1 i=1 V0

T
< /0 IV be(ug )l dt + ([ (ug , (T)llv, (42)

where we used that the v; form a partition of unity. Using Lemma 2.4, the
continuities of Vb, : L2(0,T;V) — L?(0,T; V') and ¥4 : V — V', and (39), we
obtain

(X0 g, wE )l e o,m52xvy + [(Xa_, wiy) ||z 0,1352xv) < C, (43)

where C' > 0 does not depend on 7. Since L>°(0,T; 5% x V) is the dual of the
separable space L'(0,T; 5% x V'), see [6, Theorem 4.1] or [7, Theorem 8.18.3],
there are subsequences of {(Y{ 4, w7 4)}-~0 and of {(Y]_, w],)}->0 (denoted by
the same symbol) which converge in the weak-x topology of L*°(0,7T;5? x V).
Testing (Y7 4, wl4) and (X3, w],) with xjq (T, ¢) € L*(0,T; 5% x V'), where
T € S? ¢ € V' and t € [0,T] are arbitrary, shows that the weak-x limits
coincide. Denoting the weak-x limit by (Y, w) € L>=(0,T;S5? x V), we obtain

Y =Y inL®0,7;5%), Yi_ =Y inL>(0,T;5%), } ()

wly D w in L%0,T;V), wi 2w inL>(0,T;V).
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We will use the weak convergence of wyj, in order to pass to the limit in
the gradient equation. Using the interpolations (6) and (8b), the time-discrete
gradient equation (15’) reads

(B*wl,, 90, — 9t ) 2or) + (9ep — 9) F v 9L 9p — 9L mor) > 0 (45)

for all g" € U];. Due to Assumption 1.4 every g € U,q can be approximated by
a sequence g € U,. Passing to the limit 7\, 0 implies

(E™w, Q - g>L2(O,T;U) +vi{g, g— g)Hl(o,T;U) >0 forall g € Ung.

This proves (35).

3.2. Auxiliary results. In this section we provide some results needed several
times in the sequel.

We derive a relationship between the piecewise linear interpolant 37
see (6), and the piecewise constant interpolant 37 | see (8b). A simple cal-
culation shows

Y1) =%,(t)— (t—n"(t)7) 8. (t) fora.a. te0,T], (46)
where n” is given by

n(t) =max{n e N:t > (n—1)7}.

This definition implies ¢ € [(n"(t) — 1) 7,n"(t) ) for all t € [0,T]. The rela-
tion (46) gives rise to the definition

K (t)=(t—n"(t)7) fora.a.tel0,T] (47)

Obviously, we have k™ € L>(0,T) and
K" (t) € [-T,0] fora.a.t e [0,T]. (48)
Due to (46) the term x” (AT;d + B*w ;) appears frequently in Lemmas 3.8
and 3.9. Using the estimates (30) and (42) we can prove that it converges to

zero w.r.t. the weak-x topology of L>°(0,T; S?). Similar to (28), we define

T T *, T
cd — _ATc,d - B wc,d'

Lemma 3.2. The function k™ Q;d converges towards 0 w.r.t. the weak-x topol-
ogy of L*°(0,T;S?).
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Proof. Testing k™ di with x ) T, where ¢t € [0,T] and T € S?, yields

= nT(t) T = T oy
X T, K" Qea)r201:52) = / (T, K" Qe q)s2 d5+/ (T, K" Q. q)s2 ds.
t n

T

Let us estimate these two terms. For the first one we have

nT(t) T =
/ (T, K™ Qc,d>52 ds
t

< 7T sz |7 QZ,d||L°°(0,T;S2)7

since [n7(t) 7 —t| < 7 and [k7| < 7 a.e. in [0, 77, see (48).
Using f(lz'znT kTds = —7 foralli € {1,..., N} and the constantness of Q;d
on ((i —1)7,i7) for all i € {1,..., N}, we obtain for the second term

T

T - T

§ / <T, QC,d>Sz dS
nT(t) T

T T T T
< 5 <T7 Qc,d(T) - c,d(n (t) T)>S2
<7|T| s HQZ,d”LOO(O,T;SQ)-

Hence, by (30) and (42) we obtain [(x¢r) T, k" Q;d>L2(O’T;52) <7C.

Using the boundedness of k7 Q;d in L>°(0,T;5%), see (43) and (47), the
density of the linear hull of {x;7 T} in L'(0,7;5?) finishes the proof. This
density can be found in [9, Lemma IV.1.3]. O

T
/ (T, K™ Q;d>52 ds

)T

Another term which will appear frequently is DT" : DX | where

T7 € L>(0,T; S?) is a sequence which converges in the weak-x topology. Using
the boundedness of DX | in L®((0,7) x 2;S), see (3), and the convergence
DX, — DX in L>(0,T;S), an interpolation argument, see [26, Lemma 8.2],
yields DX[ | — DX in L>*(0,T; LP(€2;S)) for all p < oco. This gives in turn
DT : DX, X DT DX in L®(0,T; LI(Q)) for all ¢ < 2. Using the bounded-
ness of DT : DX | in L>(0,T; L*(Q2)) we infer even the weak-x convergence of
the product in L>=(0,T; L*(2)).
Lemma 3.3. Let T™ = T in L>=(0,T;S?). Then

DX, :DT™ 2 DS : DT in L®(0,T; L*(Q)).
Let fT — fin L*(0,T; L*(2)). Then

fTDEL, — DY in L*(0,T; L'(;S)).

Let g~ = g in L=(0,T; L*(Q)). Then

gD, > gD in L™(0,T;5).

T

The statements remain valid if 3

is replaced by X _.
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Proof. Let us prove the first statement. Since DX | — D3 in L>(0,T;.5) and
T™ T in L=(0,T; S?), we obtain

DT :DX], — DT :D% in L'((0,T) x Q). (49)

Since DX is bounded in the space L>((0,T) x %;8), DT : DX is bounded
in L>(0,T; L*(2)). Due to this boundedness, there exists a subsequence which
converges with respect to the weak-x topology of L>(0,T; L*(€2)). Due to (49),
the limit is unique and hence we obtain the convergence of the whole sequence.
The statement involving g € L°°(0,T; L?(Q2)) proves completely analogously.

It remains to prove the statement involving f. Since f™ D[ is bounded
in L?(0,T; L*(€;S)), it is sufficient to show the convergence

(/TDXL,, T) = (f DX, T)

for all T from a dense subset of the dual space L*(0,7; L'(Q;S))’. This dual

space L2(0,T; L*(£2;S))’ consists of (equivalence classes) of measurable functions
T:(0,7) x Q— S for which the norm

T
T Pp— / IT(0)]| ey
0

is finite, see [7, Theorem 8.20.3]. Hence, the space L>((0,7") x §2;S) is dense in
L*(0,T; L*(€%;S))'. Therefore it remains to show that

[T, — fDE in LY0,T; L' (%S)) = L'((0,T) x ©;S).

This follows by applying Theorem A.2 to the components of f7 D3] ., since

we have f7 — f in L'((0,T) x Q) and the components of DX | converges in

L*((0,T) x Q) and are bounded in L>((0,T) x ). O

3.3. Passing to the limit in the adjoint equation. We start by showing the
weak convergence of the terminal values of the adjoint states Y 4 and w{ 4. Note
that this does not simply follow from the weak-x convergence in L>(0,T; S*xV).

Using Y7 4(T) = Yy and w] 4(T) = w} the adjoint equation (14) with
1 = N implies

AYT, + 7Ny D*DYY + 705, D*DEY, + B*wl, = 0, (50a)
BY}, = ¢ (u”). (50Db)

By standard saddle-point arguments, we obtain the boundedness of Y}, w}
and 7 0},. Hence, there exists a subsequence, denoted by the same symbol, such
that

(X, wh, 70%) = (Y7, wr, 07) in S* xV x L*(Q). (51)
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Moreover, the boundedness of A7 DY in L*(0,7; L'(Q;S)) implies the con-
vergence 7 Ay DY} — 0 in L(Q;S). Hence, we obtain from (50)

ATT + QT D*DE(T) + B*’IUT = 0,
BYr = ¢ (u(T)).

Similarly to the derivation of (16¢) and (16d) we obtain
0r p(2(T)) =0 and O DX(T):DY7 > 0.

Note that under an additional regularity assumption we would also obtain that
(Y, w) € H(0,T;5% x V) and (Yr,wr) coincides with (Y (T),w(T)), see
Remark 3.12(5). This shows the terminal conditions (37), (38).

Due to the choice of the interpolations (7) and (8b), the discrete adjoint
equation (14) reads

—AY 4 — B*wl 4 + \j_ D*DY]_ +0;_D'DE]_ =0, (52a)
—BY [, =4 (u). (52b)

Here we used the notation

Vi (u")(t) =y ((u") forte[(i—1)ri7),i€{2,...,N},
i (u")(t) =0 for t € [0, 7),

similarly to (8b). Let us pass to the limit in (52b). Integration over [¢, 7] implies

T
B(Y4(t) =Y 4(T)) = / i _(u")dt forall t € [0,T].

¢

Hence, 7 0, (51) and (41a) yield

T
B(Y(t)—Yr) = / Vipe(u)dt for a.a. t € [0,T].
t

Now, we turn to (52a). We show that the first three addends in (52a)
converge weakly in adequate spaces. The convergence of the fourth addend
05_D*DX]_ is more delicate and is addressed afterwards.

Since (Y7 4, w]4) is bounded only in L>(0,T; 5% x V'), we have to test the
first two addends in (52a) with a differentiable test function. Let

T ¢ Whi

10y(0,75.8%) = {T € Wh'(0,T;5%) : T(0) = 0}
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be given. Integration by parts implies

T
/ (AY 4+ B*wly, T)s= dt
0

T
. / (AYT, + Brwly, T)ge dt + (AYTo(T) + Bl o(T), T(T))s:
0
T
- — / <AT + B*w, T)SZ dt + <ATT + B*’UJT, T(T))SZ
0

In order to study the third addend in (52a), let us define the space
S7=5*+{(n,n) € L'(%S?) : trace(n) = 0}
equipped with the norm

T = inf T, + S,
Tl =, _ inf l(rsm)lse + Inlzias)

where the infimum is taken over (7,p) € S? and n € L'(Q;S) such that
trace(n) = 0. A simple calculation shows that the dual of S% is

S2 ={T € S*: DT € L= (;S)}
with the norm given by
||| s2, = max{||T|[s, [ DT[| o= (ers9) }

see also [26, Lemma 41.2].

Using the convergence properties of A} and Y[ _, see (40) and (44), we
are led to expect A7 D*DY]_ — AD*DY in L*(0,T;5%). In order to prove
this, we have to determine the dual of this space. Since S2 does not have
the Radon-Nikodym property, we do not have L?(0,T; S7) = L*(0,T;S%), see
[6, Theorem IV.1.1].

Theorem 3.4 ([7, Theorem 8.20.3]). Let T € L*(0,T;S?)" be given. It can be
identified with a function T : [0,T] — S% , which is weakly measurable and

[oop)

T 1

2

T[] 20,7552y = (/ ||T(t)||%go dt> .
0

Note, that the measurability of |T(-)||sz is ensured by [7, Proposition 8.15.3].
The duality pairing is given by

T
(L, T') 12 (0,m52), L2 (0,752 = / (L(t), T(t))s2,52, dt
0

for all X € L?(0,T;S?).
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Remark 3.5. In [7, p. 558] a function T": [0, 7] — S2 is defined to be weakly
measurable if for every € > 0, there is a compact set K C [0,7] such that
([0, T\ K) <e and T : K — S2, is continuous w.r.t. the weak topology of SZ .

This is different from the more commonly used definition of weak measura-
bility, which requires only (f, T'(-)) to be measurable for all f in the dual of S2 .
Nevertheless, both concepts coincide in our situation, see [7, Proposition 8.15.3].

The key issue for proving that (\]_DY]_, DT) — (A\DY, DT) for all
T € L*(0,T;S?) is resolved by the following lemma.

Lemma 3.6. For all T € L*(0,T;5%) we have \}_DT ,\DT € L'(0,T;5S).
Moreover, \i_DT — A\DT in L'(0,T;S).

Proof. Step (1): We show the weak measurability of ADT : [0,7] — S. Let
¢ > 0. By the definition of weak measurability, see Remark 3.5, we infer the
existence of a compact set Ky C [0, 7] such that p([0,7]\ K;) < e and Tk, :
K, — 5% is continuous w.r.t. the weak topology of S%. By Lusin’s theorem,
see [7, Corollary 4.8.5], we infer the existence of a compact set Ky C [0, 7] such
that ([0, 7]\ K2) < e and Ak, : K> — L*(Q2) is a continuous function. We set
K = K; N K. We have u([0,7]\ K) < 2e. Let a sequence {t;} in K be given
such that t; — ¢ € K. Then T(t,) — T(t) in S2 and A(t,) — A(¢) in L*(Q).
Hence, (A\DT)(t,) — (ADT)(t) in S. This shows that (ADT)x : K — S is
weakly continuous. Hence, ADT : [0,7] — S is weakly measurable.

Step (2): Since S is separable, [7, Theorem 8.15.2] implies the measura-
bility of ADT : [0,T] — S.

Step (3): The integrability of A DT The simple estimate

T T
| IADTlsdt < [ 1Mo 1T lse, ot < INlzsomasion [Ty < o0
0 0

implies the integrability of ADT. Hence ADT € L'(0,T;S). Analogously to
Steps (1)—(3), we show \]DT € L'(0,T; S).

Step (4): The convergence \; DT — ADT in L'(0,7;S): Similarly to the
estimate in Step (3), we have

T T
| NPT = ADTYsdt < [ 105 = Mo [Tz, dt
0 0

< [[Aq = Ml zzo.r;z2 ) |1 Tl 220,782 — 0.
This shows AT DT — ADT in L'(0,T; S). 0
Using that the dual of L'(0,7T;S) is L>=(0,T;S), see [6, Theorem IV.1.1]
or [7, Theorem 8.18.3], and DY]_ = DY in L>(0,T}; S), we infer the expected
weak convergence result.
Corollary 3.7. For all T € L*(0,T;5%) we obtain
(AN_DY4_, DT) 20155 — (ADY, DT') 12(0,1:L1 (955)),L2(0,T: L1 (25))
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If we choose a test function T € W{loi(() T;S?) N L*(0,T; S%)" we can pass

to the limit with the first three terms in the adjoint system (52a). For brevity,
we define the spaces

X(0,T) =W*H(0,T; L*(Q)) N L*(0, T; L*(Q)), (53a)

Xs20(0,T) = Wi, (0,T;.5%) N L*(0,T; 57" (53b)

The dual space of X(0,7) can be determined similarly to Theorem 3.4. We
obtain

(—AY 4 — B*wl 4+ \i_ D*DY]_, T)r20m.52) —
<AT + B*w, T)LOO(O7T;SQ)’L1(07T;S2) - (ATT + B*wr, T(T)>Sz (54)
+ AD DY, T)2(0,1;52),L2(0,152)

for all T' € Xg2(0,7). As an immediate consequence of (52a), there exists a
functional © € Xs2 ((0,7)" such that

<957 D*ngi, T>L2(0,T;SQ) — @(T) (55)

for all T' € Xs24(0,T"). The next two lemmas show that © = § D*DX, where ¢
is the weak-* limit of 67 in X'(0,7)".
For brevity, we denote Q@ = —AY — B*w and Q, = —AY — B*wr.

Lemma 3.8. Define 0 € X(0,T)" by

d

2520(v) := <dt(v1>*1>2), Q> — ((T)D*DE(T), Q) (56)

L1(0,T;52),L°°(0,T;52)
for allv € X(0,T). Then 05 =6 in X(0,T).
Proof. Multiplying (52a) with D*DX]_ and using

AN_DY]_ DX} =0, by (16b),

07_DX]_ DX =45507, by (16¢),

(D*D)? = 2D*D, by definition of D and D*,
yields
D'DE]_ Q. +26507. =0 ae. in (57)

where Q74 = —AY[ 3 — B*w 4. Let v € X(0,T) be given. Multiplying (57)
with v, integrating over (0,7") x €2 and using (46) we obtain

2 53 (03, U>L2((O,T)><Q) = —<U (D*DEZ,p — K’ D*Dzz,p)a QT

C:d>L2(O,T;SQ) ’ (58)
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where k7 is given by (47). Due to the regularity of v and using the convergence

of X7, see (39), we obtain similarly to Lemma 3.6

vDY,, —»vDXY in L'(0,T;S). (59)
Together with Lemma 3.2 we infer
(v KT D*DE‘)Z’p, Q;d)Lz(QT;Sz) —0 as7\/0.

It remains to study the first addend on the right hand side of (58). Inte-
gration by parts yields

</U D*ngp, QZ,d>L2(O,T;S2)
= —(0 DD, +vD*DX, . QL) r2(0m552) + (V(T) D*DE] (T), QLo(T))se

Using o € L'(0,T; L*(2)) and Lemma 3.3 with T7 = Q[ 4, we obtain the con-
vergence of the first addend of the right hand side. By (59) and Q4 Q=
—AY — B*w in L>(0,T;S?%), we infer the convergence of the second addend.
It remains to study the convergence of the third addend. We have DX (T) —
DX(T) in S?% see (39), and that sequence is bounded in L*(Q;S). More-
over, we have Q7 4(T) — Qr, see (51). This yields D*DX] (T') : Q7 4(T) —
D*DX(T) : Qp in L*(2). Since v(T) € L*(2), this implies the convergence of
the third addend. Hence,

<U D*DEZ‘,—,p7 Q;d>L2 (0,T;52)
— _<U D*DX +v D*DZ, Q>L1(O,T;S2),L°°(O,T;SQ) + <U(T) D*DE(T)7 QT>527

with Q, = —AY 7 — B*wr. Altogether, we obtain

265 (07, V) r2((0.1)%9)

- <i(v D*DY) Q> — ((T)D*DX(T), Qp)s: (60)
dt ’ L1(0,T;52),L°(0,T;52) XTS5
for all v € X(0,7"). This shows the claim. O

Lemma 3.9. For all T € Xs2(0,T) we have

(DX :DT) = O(T).
Consequently,
<AT + B*w, T)LOO(O,T;SQ)7L1(O,T;52) - <ATT + B*’UJT, T(T)>S2

+ <)\ D*DT7 T>L2(O,T;S%),L2(O,T;S%)’ + H(DE . DT)
=0 forallT € Xs2(0,T).
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Proof. Let a test function T' € Xs2((0,T") be given. Note that DX : DT
does not belong to X(0,7T") due to the discontinuities of 3] _. Hence, we cannot
simply apply Lemma 3.8.

By (46) we have

(05_DXY_, DT) 12015 = (03 (D], — " DX, ), DT>L2(0,T;S)'
Using (57), Lemma 3.2, and Lemma 3.3 with T7 = Q;d, we obtain
K0T 50 in L®(0,T; L*(Q)). (61)

Due to 3, , — ¥ in L2(0,T; S?) and T € L*(0,T; S?)', we infer the convergence
(07_ KT DZ DT>L2(0TS) — 0 as 7 \( 0. Hence, it remains to study the

c,p’

convergence of (05 DX7 |, DT')r20,r;s)- However, DX :DT does not converge

in X(0,7). Again, we cannot sunply apply Lemma 3. 8
Using (57) and (46) we obtain

265(05_ DX DT) 120,1:5) = —((DEL,: DT)(DX] —fiT'DECp) 'DQCd>L2(0TS)

c,p?
By Lemma 3.2 and Lemma 3.3 with f7 = &7 ngp : DQ;d we obtain
K (DX, 4:DQ.q) DXLy — 0 in L*(0,T; L}(S)).
This directly yields 7 (DX 4 : DQ.4)D*DEl, — 0 in L*(0,T;5?). By
T € L?(0,T;S?), this yields
(DX, :DT)HTDEZ,p7 DQZ,d>L2(0,T;S) = (k" (DEZ,d :DQz,d)D*DEZ,dv T)r20.1.57)
— 0 as7N\/0.

Integration by parts implies

—((DX],: PT) D3] DQ. 4)12(0.7:5)

c,p?

d o T T
:<d_((D2c :DT)DX,), DQC’d>L2(0,T;S)

— (DX ,(T) : DT(T)) DXL (T), DQL4(T)) o

Using the chain rule and applying Lemma 3.3 thrice (with T™ = Q,,
=DX],:DQ[4 and f7 = D3, :DQ’,) we obtain

d
(S (037, : DT)DE,). DQL)

= <%((DZ . DT)D¥), DQ)

L2(0,T;S)

LY(0,T;S),L=(0,T;S)
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Putting everything together, we obtain

07_DST_, DT, 2—>< (DS : DT)DE), D >
% ¢ d J1207i) t< ). DQ L1(0,T38),L(0,T;S)

<( DT(T)) DE(T)), DQ;)
= 9(1)2 . DT)

for all T € Xs2(0,7"), see (56). Together with (54)-(56), (60) this shows the
claim. u

This shows the satisfaction of the adjoint equation (34).

3.4. Complementarity conditions. To complete the proof of Theorem 3.1,
it remains to show the complementarity conditions (36). This is obtained by
passing to the limit in the complementarity conditions (16a)—(16c).

In order to satisfy (36a), we define

uw=DX:Y.
Lemma 3.10. We have
uA=0 a.e. in (0,T) x .
Proof. From (16a) and (16b), we infer
AN_DX;_ DY, =0 ae. in (0,7) x Q.

Hence, we have to establish the (weak) convergence of \]_ DX} DY _ towards
ADY :DY.
We already know, see (40) and (44),

DY, — DY in L2(0,T:5), A, — A in L2(0,T; L*(Q)),
DY, DY in L™(0,T;9).
Moreover, DX _ is bounded in L>*((0,7") x €2;S). Hence, we obtain
DY} DY, —DX:DY in L*0,T; L' (Q)),
but that sequence is even bounded in L*°(0,T; L*(Q2)). Thus
DXL DY, SDX:DY in L=(0,T; L*(Q)),
see also the proof of Lemma 3.3 for similar arguments. This yields
N_DST_:DYi_ < ADS:DY in L2((0,T); L'(Q)).
The claim follows since set {0} is weakly closed in L2((0,T); L'(€2)). O



Optimal Control of Quasistatic Plasticity I11 113

It remains to show (36c¢).
Lemma 3.11. We have
Ovp(X)) =0 forallve X(0,T).
Proof. Let v e X(0,T) be given. Testing (16¢) with v, we obtain
(05 &(35.), v)r2(0r)xe) = 0.
We show the convergence of the left-hand side. By (46) we have
DX} DX} =DX :DX] -« D, : (D] +DX] ).

Using (39), (40), (61) we find x™07_ (DX], + DX ) = 0 in L>(0,T;5). To-
gether with (39), we have

</<LT 057 (ngp + DES?) : DET U)LQ(O,T;Ll(Q)),LQ(O,T;Ll(Q))/ — 0

C?p’

Hence, it remains to show

(05 d(X0,), v)r2(omxe) — 0(vd(X)).

Unfortunately, ¢(37 ) v does not converges in X'(0,7), and we cannot simply
apply Lemma 3.8. By definition of ¢, see (2), we have 2 (07 ¢(X ), v) =
(07_ |DX7 |?, v) —65(07_, v). Due to Lemma 3.8, the second addend converges
to 62 0(v). By (57), we obtain

~267 (65 |DE,°, v) = (D'DEY_: Q4 DI, v).

By (46), (D*DE]_: Q.4 |DX] |2 v) = (D*D(X], — k™ 2. ,): Qo y DT |2 v)
follows. By using Lemma 3.2 and (39), we obtain

D'DE™ X, Quq — 0 in L*(0,T; L ().
Similar arguments as in Lemma 3.3 show

DD, Quq|DET P — 0 in L*(0,T;LY()).

Hence, we have ' '
(D*DK™ X, : Q.4 DXL %, v) — 0.

Hence, it remains to study

(D*DX] Q.4 |DET |2 v).
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Integration by parts yields

(D*DE] ) Qo q|DET % v)
=—(D*DX,,: QL 4|DX [, v)—2(D*DX] : Q1 , DX, ,: DX, v)
—(D*DX],: QL DXL : DX, 0)+(D*DX] (T): QL4(T)| DXL (T’ v(T))

Using Lemma 3.3, this converges towards

—<%(v D'DX DX, Q> + (o(T) D*DE(T) [DE(T) %, Q1.

Due to (56), this term is equal to —2 62 (v |DX|?), since v |DX|* € X(0,T).
Putting everything together, we find

0= (03 ¢(35-), v) = 0(v H(X)). =

This finishes the proof of Theorem 3.1. We conclude by giving some remarks
on the optimality system obtained in Theorem 3.1.

Remark 3.12. (1) Following the notation for finite-dimensional MPECs, see

(2)

(3)

(6)

[20,25], the optimality system (33)—(38) is of weak-stationary type.

In a system of C-stationary type, the product of the multipliers p and 6
is required to be non-negative. Due to the low regularity of #, however,
the product 6 i cannot be defined.

Similarly to optimal control problems involving state constraints, the low
regularity of the multiplier 6 is induced by the constraint ¢(3) < 0. For
problems with a state equation much simpler than (9), e.g. with a scalar
evolution variational inequality, one can construct examples where the
multiplier 6 is not a function.

The low regularity of the multiplier ¢ is also confirmed by numerical ex-
periments, see [27, Chapter 6] or, for an ODE setting, [4].

The remarks (2) and (3) above also apply to optimal control of parabolic
Vs, see e.g. the optimality system in [19, Theorem 6.2].

Using (56) and (34), it is easy to prove that 6 € L*(0,T; L*(Q)) if and
only if (Y, w) € H'(0,T;S*xV), (X(T),w(T)) = (X7, wr),and \DY €
L?(0,T;S). Hence, the low regularity of 6 is directly related to the non-
differentiability of (Y, w) as functions of time.

The equations (34) and (37) can be stated equivalently as

<AT + B*w, T>L°°(O,T;5’2),L1(O,T;S2)
+<)\ DT, DT>LQ(O,T;S%),LQ(O,T;S%)’ + @(DZ . DT) - 0, (62&)

BY -~ dp(u(T) - [ Vu(wds=o, (o)
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with 6(v) = 0(v) + (Or, v(T)) 12 for all functions v € X(0,T).
We prefer (34) with terminal conditions (37) over (62) since the former
more clearly show the conditions at time 7.

(7) There are two contributions to the terminal condition (37). The term

Y (u(T)) is induced by the observation ¥p(u(T")) at final time in the
objective. This is typical for optimal control problems with differential
equations.
The term 07 D*D3(T) can be understood as a Lagrange multiplier to the
constraint ¢(X(7")) < 0 in the state equation (33). In fact, similar terms
appear also in the adjoint equation (34a) at times t € (0,7") where 6 has
Dirac contributions.

A. Weak convergence of products in Lebesgue spaces

In this appendix, we provide a result about the weak convergence of the product
a weakly and a strongly convergent sequence in certain Lebesgue spaces. The
result is applied to Qr = (0,7) x 2 in the main text.

First, we recall a basic result about weak convergence in L.

Lemma A.1. Let (Qr,m) be a finite measure space. Suppose that the sequence
{ox} € LY(Qr) converges weakly in L*(Qp). Then, {gr} is uniformly integrable.
That is, for all € > 0, there is 6 > 0, such that

/ lge|do < €
M

for all measurable M C Qr with m(M) < 6.

We refer to [6, Theorem IV.2.1] for a proof.
Now, we can prove the main result of the appendix.

Theorem A.2. Let (Qp,m) be a finite measure space. Suppose that the se-
quences {fir.} C L*(Qr), {gx} C L*(Q7) satisfy

fe—f in LQ(QT>7 gp =g in LI(QT>

for some f € L*(Qr) and g € L*(Qr). Moreover, assume that the sequence
{fi} is bounded in L>(Qy), that is || fi|lLe ) < K.
Then,

Jegr — fg n Ll(QT)-
Proof. Let v € L*(Qr) and € > 0 be given. By Lemma A.1, there is § > 0,

such that
/ gl da < e
M
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for all measurable M C Qr with m(M) < §. By the weak convergence g, — g,
we also obtain [, [g|dz < e for all such sets M.

Since fr — f in L*(Qr), there exists a subsequence (denoted by the same
symbol), such that f, — f a.e. in Qp. By Egorov’s Theorem, there is a mea-
surable set O C Qp with m(O) < ¢ and

1fx = fllz@r0) = 0.
Together with g, — ¢ in L'(Qp \ O), this yields
fege = fg in LNQr )\ O). (63)

This yields

/ (frge — fg)vdx
Q

T

< /Q (frge — fg)vda +/O\(fk9k—f9)vfdx

7\O

< / (g — Fo)vda| + Kllollman) / (gl + |g]) da
Qr\O o)

< / (Foge — foyode| + 2K o]l e n=.
Qr\O

Together with (63), this yields

/ (fege — fg)vdz 0.

Qr

Since v € L*°(Qr) was arbitrary, this shows the weak convergence of f; gy in
L'(Qr). A subsequence-subsequence argument shows the convergence of the
whole sequence. O
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