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Abstract. We prove sharp estimates, and find the optimal range of indices, for the
comparison of mixed norms for both functions and their iterated rearrangements.
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1. Introduction

Mixed norm spaces Lp[Lr] were introduced in [4] as an important tool to study
generalizations of Sobolev’s theorem about the continuity of certain poten-
tial operators and the Hausdorff-Young theorem. Previous estimates involving
L1[L∞] already appeared in [11, 18], where the authors proved the end-point
case p = 1 for the Sobolev embedding (a further extension can be also found in
[6, 10]). On the other hand, it was shown in [12] that Sobolev embedding can
be strengthened using iterated rearrangements (see (4) for the definition). The
systematic study of such rearrangements was begun in the work [7] and then was
continued in different papers (see [1–3,14,15,20,22]). In particular, works [2,3]
were devoted to normability properties and embeddings of weighted Lorentz
spaces defined in terms of iterated rearrangements. These rearrangements were
also used in the study of embeddings of Besov, Lipschitz, and Sobolev type
spaces (see [13, 19]). Furthermore, it was shown in [15, 20] that iterated rear-
rangements, in comparison with usual nonincreasing rearrangements, are better
adapted to spaces with dominating mixed smoothness.

As an extension of the results in [6, 10], the works [1, 14] were devoted to
estimates of iterated rearrangements in terms of mixed norms L1[L∞].
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It is then a natural question, regarding these estimates, to consider how do
the mixed norm spaces Lp[Lr] behave under the iterated rearrangements. We
observe that some results in this direction have been already obtained in [7],
but they were not optimal, and some proofs were based on false arguments (see
Remark 4.11). Contrary to what one would a priori expect, the mixed norm
of a function f is not in general determined by its rearrangements, and the
other way around. In order to carry on this study, we introduce in Section 2
the preliminary definitions and prove some results of independent interest (like
the reverse Minkowski’s integral inequality in Proposition 2.2). In Section 3 we
establish in Lemma 3.2 one of the principal techniques of this work, namely a
discrete version of our main result, Theorem 4.5, which is proved in Section 4.
A dual estimate is then considered in Theorem 4.7 and the sharpness of all these
positive results is proved in Propositions 4.6, 4.8, 4.9, and 4.10. Section 5 deals
with the cross-section estimates of rearrangements of general measurable sets.

2. Definitions and auxiliary propositions

Denote by S0(Rn) the class of all measurable and almost everywhere finite
functions f on Rn such that, the distribution function, satisfies that

λf (y) = |{x ∈ Rn : |f(x)| > y}| <∞, for each y > 0. (1)

A nonincreasing rearrangement of a function f ∈ S0(Rn) is a nonnegative and
nonincreasing function f ∗ on R+ = (0,+∞) which is equimeasurable with |f |,
that is, λf∗ = λf . The rearrangement f ∗ can be defined by the equality

f ∗(t) = sup
|E|=t

inf
x∈E
|f(x)|, 0 < t <∞, (2)

where the supremum is taken over all Fσ-sets of measure t (see [9, p. 32]).
Moreover, the supremum is attained for some of such sets E. Note also that
the function defined by (2) is left continuous on R+.

Let 0 < p, r < ∞. A function f ∈ S0(Rn) belongs to the Lorentz space
Lp,r(Rn) if

‖f‖Lp,r ≡ ‖f‖p,r =

(
r

p

∫ ∞
0

(
t
1
pf ∗(t)

)r dt
t

)1
r

=

(∫ ∞
0

(
tλ

1
p

f (t)

)r
dt

t

)1
r

<∞. (3)

It is clear that ‖f‖p,p = ‖f‖p. For a fixed p, the Lorentz spaces Lp,r strictly
increase as the secondary index r increases; that is, the following strict embed-
ding Lp,r ⊂ Lp,s, with r < s, holds (see [5, Chapter 4], [21, Chapter 5]).

Let x = (x1, . . . , xn) ∈ Rn. Denote by x̂k the (n − 1)-dimensional vector
obtained from the n-tuple x by removal of its kth coordinate. We shall write
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x = (xk, x̂k). Let f ∈ S0(Rn) and 1 ≤ k ≤ n. We fix x̂k ∈ Rn−1 and consider
the x̂k-section of the function f

fx̂k(xk) = f(xk, x̂k), xk ∈ R.

For almost all x̂k ∈ Rn−1 we have fx̂k ∈ S0(R). We set

Rkf(u, x̂k) = f ∗x̂k(u), u ∈ R+. (4)

Observe that the kth argument of the function Rkf is equal to u. The function
Rkf is defined almost everywhere on R+ × Rn−1; we call it the rearrangement
of f with respect to the kth variable. It is easy to show that Rkf is a measurable
function equimeasurable with |f |. Let Pn be the collection of all permutations
of the set {1, . . . , n}. For each σ = {k1, . . . , kn} ∈ Pn we call the function

Rσf(t) = Rkn · · ·Rk1f(t), t ∈ Rn
+,

the Rσ-rearrangement of f . Thus, we obtain Rσf by “rearranging” f in non-
increasing order successively with respect to the variables xk1 , . . . , xkn . The
rearrangement Rσf is defined on Rn

+. It is nonnegative, nonincreasing in each
variable, and equimeasurable with the function |f | (see [7]).

Lemma 2.1. Let fk ∈ S0(Rn) (k ∈ N) and assume that the sequence {fk}
converges in measure to a function f ∈ S0(Rn). Then, for each permutation
σ ∈ Pn

lim
k→∞
Rσfk(t) = Rσf(t), for almost all t ∈ Rn

+.

This lemma follows from a similar statement for usual rearrangements (see
[16, Chapter 2, §2]).

Our next result is an important tool we will need in Section 5 to prove
optimal estimates for sections of measurable sets. It is essentially a reverse
Minkowski’s integral inequality for the Lorentz spaces Lp,r defined in (3), on
the range 0 < p ≤ r ≤ 1. We recall that ‖ · ‖p,r is in fact a norm [5, Chapter 4],
when 1 ≤ r ≤ p <∞, and hence Minkowski’s integral inequality holds for those
indices: ∥∥∥∥∫

R
f(·, y) dy

∥∥∥∥
p,r

≤
∫
R
‖f(·, y)‖p,r dy.

Recall that, if g ∈ S0(R) and t > 0, then for any set A ⊂ R, with |A| = t,∫
A

|g(x)| dx ≤
∫ t

0

g∗(s) ds,

and there exists a set At ⊂ R, with |At| = t, such that [16, Chapter 2, §2]∫
At

|g(x)| dx =

∫ t

0

g∗(s) ds.
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Then, it follows that ∫
R\A
|g(x)| dx ≥

∫ ∞
t

g∗(s) ds, (5)

if |A| = t, and ∫
R\At
|g(x)| dx =

∫ ∞
t

g∗(s) ds. (6)

Proposition 2.2. Let 0 < p ≤ r ≤ 1. Assume that f ∈ S0(R2) is a nonnegative
function. Then, ∥∥∥∥∫

R
f(·, y) dy

∥∥∥∥
p,r

≥
∫
R
‖f(·, y)‖p,r dy. (7)

Proof. It is a trivial calculation to show, using that ‖ · ‖ 1
p

is a norm, that the

result follows if 0 < p = r ≤ 1:∥∥∥∥∫
R
f(·, y) dy

∥∥∥∥
r

≥
∫
R
‖f(·, y)‖r dy. (8)

Now, consider q = r
p
> 1, and set

Ψ(x) =

∫
R
f(x, y) dy.

Applying Fubini’s theorem, we obtain

‖Ψ‖p,r =

(
q

∫ ∞
0

tq−1Ψ∗(t)r dt

) 1
r

=

(
q(q − 1)

∫ ∞
0

tq−2
∫ ∞
t

Ψ∗(u)r du dt

) 1
r

.

We assume that ‖Ψ‖p,r <∞ and thus Ψ ∈ S0(R). From (6) it follows that, for
any t > 0, there exists a measurable set At ⊂ R such that |At| = t and∫ ∞

t

Ψ∗(u)r du =

∫
R\At

Ψ(x)r dx =

∫
R\At

(∫
R
f(x, y) dy

)r
dx.

Applying (8), we have
∫∞
t

Ψ∗(u)r du ≥
(∫

R

(∫
R\At f(x, y)r dx

) 1
r
dy

)r
. Thus,

‖Ψ‖p,r ≥
(
q(q − 1)

∫ ∞
0

(∫
R

Φ(t, y) dy

)r
dt

) 1
r

,

where

Φ(t, y) = t
q−2
r

(∫
R\At

f(x, y)r dx

) 1
r

.
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Using again (8), we obtain ‖Ψ‖p,r ≥
(
q(q−1)

) 1
r
∫
R

( ∫∞
0

Φ(t, y)r dt
) 1
r dy. Further,

by (5) and Fubini’s theorem,

q(q − 1)

∫ ∞
0

Φ(t, y)r dt = q(q − 1)

∫ ∞
0

tq−2
∫
R\At

f(x, y)r dx dt

≥ q(q − 1)

∫ ∞
0

tq−2
∫ ∞
t

R1f(s, y)r ds dt

= q

∫ ∞
0

tq−1R1f(t, y)r dt.

Thus

‖Ψ‖p,r ≥ q
1
r

∫
R

(∫ ∞
0

tq−1R1f(t, y)r dt

) 1
r

dy =

∫
R
‖f(·, y)‖p,r dy.

3. Rearrangement inequalities for finite sequences

We are going to prove in this Section the principal tools needed to handle the
main results of this work. The idea is to discretize the problem (see the proof
of Theorem 4.5) and use Lemmas 3.2 and 3.3.

Lemma 3.1. Let a ≥ b and c ≥ d be nonnegative numbers. Then for any
α ∈ [0, 1]

(a+ d)α + (b+ c)α ≥ (a+ c)α + (b+ d)α. (9)

Proof. Assume that a > 0. Set u = b
a
, v = c

a
, and w = d

a
. Then (9) can be

rewritten as (1 + w)α + (u+ v)α ≥ (1 + v)α + (u+ w)α, or, equivalently,

(1 + w)α − (u+ w)α ≥ (1 + v)α − (u+ v)α. (10)

Let ϕ(x) = (1 + x)α− (u+ x)α, x ≥ 0. Since 0 ≤ u ≤ 1 and 0 < α ≤ 1, we have

ϕ′(x) = α[(1 + x)α−1 − (u+ x)α−1] ≤ 0

for all x > 0, and thus the function ϕ decreases on [0,∞). Since v ≥ w, this
implies inequality (10).

Lemma 3.2. Let A = (ajk) be a µ × ν-matrix of nonnegative numbers. For a
fixed column k, let {a∗jk}

µ
j=1 be the nonincreasing rearrangement of the sequence

{ajk}µj=1. Then for any α ∈ (0, 1]

µ∑
j=1

(
ν∑
k=1

ajk

)α

≥
µ∑
j=1

(
ν∑
k=1

a∗jk

)α

. (11)
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Proof. We use the induction with respect to µ to prove that, for any µ ∈ N,
inequality (11) holds, for all ν ∈ N. If µ = 1, then for any ν ∈ N we have
equality in (11). Suppose that a number m ∈ N has the following property:

(i) inequality (11) is true for µ = m and any ν ∈ N.
Fix m and prove that inequality (11) holds for µ = m + 1 and any ν ∈ N. For
this, we apply induction with respect to ν. For ν = 1 and any µ ∈ N, we have
equality in (11). Assume that n ∈ N is such that:

(ii) inequality (11) is true for µ = m+ 1 and ν = n.
We shall prove that (11) is true for µ = m+1 and ν = n+1; then, by induction,
the lemma will be proved.

Set bj1 = aj1 +aj2 (j = 1, . . . ,m+ 1). For definiteness, we may assume that
n ≥ 2 (the case n = 1 is simpler). Set bjk = aj,k+1 (k = 2, . . . , n). We now
obtain the (m+ 1)× n-matrix B = (bjk). We have

n+1∑
k=1

ajk =
n∑
k=1

bjk, j = 1, . . . ,m+ 1.

Using our assumption (ii), we obtain

S ≡
m+1∑
j=1

(
n+1∑
k=1

ajk

)α

=
m+1∑
j=1

(
n∑
k=1

bjk

)α

≥
m+1∑
j=1

(
n∑
k=1

b∗jk

)α

,

where {b∗jk}m+1
j=1 is the nonincreasing rearrangement of the sequence {bjk}m+1

j=1

(for a fixed k). We have

b∗j1 = bµj1 = aµj1 + aµj2,

where {µ1, . . . , µm+1} is some permutation of the set {1, . . . ,m + 1}. Denote
aj1 = aµj1, aj2 = aµj2. Also, we have b∗jk = a∗j,k+1 for k = 2, . . . , n. Set

sj =
n∑
k=2

b∗jk =
n+1∑
k=3

a∗jk.

Then sj ≥ sj+1 (j = 1, . . . ,m). We have that

S ≥
m+1∑
j=1

(
b∗j1 + sj

)α
=

m+1∑
j=1

(aj1 + aj2 + sj)
α . (12)

Setting ajk = a∗jk for k = 3, . . . , n + 1 and j = 1, . . . ,m + 1, we obtain the
(m + 1) × (n + 1)-matrix A = (ajk). Further, we consider the first column of
this matrix. We shall put the greatest element of this column to the first place,
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carrying out (if necessary) an interchange of elements. Let j′ be the least index
such that

a∗11 = max
1≤j≤m+1

aj1 = aj′1.

If j′ = 1, no interchange is needed. Let j′ > 1, that is, a11 < a∗11 = aj′1. Since
a11 + a12 = b∗11 ≥ b∗j′1 = aj′1 + aj′2, we have that aj′2 < a12. Set

a = aj′1 = a∗11, b = a11, c = a12 + s1, d = aj′2 + sj′ .

Then a > b, c > d. Hence, applying Lemma 3.1, we obtain

(aj′1 + aj′2 + sj′)
α + (a11 + a12 + s1)

α ≥ (a∗11 + a12 + s1)
α + (a11 + aj′2 + sj′)

α.

It follows that, interchanging the elements a11 and aj′1 in the first column of A,
we do not increase the sum at the right-hand side of (12). The elements of
the new column obtained by this interchange will be denoted by ã11, . . . , ãm+1,1;
clearly, ã11 = a∗11. We have the inequality

S ≥ (a∗11 + a12 + s1)
α +

m+1∑
j=2

(ãj1 + aj2 + sj)
α. (13)

Next, we consider the second column of the matrix A. As above, our objec-
tive is to put the greatest element of this column to the first place (possibly
interchanging two elements). Let j′′ be the least index such that

a∗12 = max
1≤j≤m+1

aj2 = aj′′2.

If j′′ = 1, we are done. Assume that j′′ > 1, that is, a12 < a∗12 = aj′′2. Set

a = aj′′2 = a∗12, b = a12, c = a∗11 + s1, d = ãj′′1 + sj′′ .

Then a > b, c ≥ d. Applying Lemma 3.1, we obtain

(aj′′2+ãj′′1+sj′′)
α + (a12+a∗11+s1)

α ≥ (aj′′2+a∗11+s1)
α + (a12+ãj′′1+sj′′)

α

=

(
n+1∑
k=1

a∗1k

)α
+ (ãj′′1+a12+sj′′)

α .

As above, we see that the interchange of the elements a12 and aj′′2 in the second
column of A does not increase the sum at the right-hand side of (13). Making
this interchange, we denote by ã12, . . . , ãm+1,2 the elements of the new column;
here ã12 = a∗12 and ãj′′2 = a12. Now, by (13), we have that

S ≥

(
n+1∑
k=1

a∗1k

)α

+
m+1∑
j=2

(
ãj1 + ãj2 +

n+1∑
k=3

a∗jk

)α

. (14)
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Denote by C the m× (n+ 1)-matrix formed by the columns

{ãj1}m+1
j=2 , {ãj2}m+1

j=2 , {a∗j,3}m+1
j=2 , . . . , {a∗j+1,n+1}m+1

j=2 .

It is easy to see that the rearrangements of the first two columns of C are
{a∗j1}m+1

j=2 and {a∗j2}m+1
j=2 , respectively. Then, applying assumption (i), we have

m+1∑
j=2

(
ãj1 + ãj2 +

n+1∑
k=3

ajk

)α

≥
m+1∑
j=2

(
n+1∑
k=1

a∗jk

)α

.

Using this inequality and (14), we obtain S ≥
∑m+1

j=1

(∑n+1
k=1 a

∗
jk

)α
. By induction,

this completes the proof.

Let A = (ajk) be a µ × ν-matrix of nonnegative numbers. For a fixed
1 ≤ k ≤ ν, denote by {R1ajk}µj=1 the nonincreasing rearrangement of the se-
quence {ajk}µj=1. Further, for a fixed 1 ≤ j ≤ µ, let {R1,2ajk}νk=1 be the
nonincreasing rearrangement of the sequence {R1ajk}νk=1.

Similarly we define R2ajk and R2,1ajk.

Lemma 3.3. Let H = (hjk) be a µ × ν-matrix of nonnegative numbers. Then
for any α ∈ (0, 1]

ν∑
k=1

(
µ∑
j=1

hjk

)α

≥
ν∑
k=1

(
µ∑
j=1

R1,2hjk

)α

(15)

and
ν∑
k=1

(
µ∑
j=1

hjk

)α

≥
ν∑
k=1

(
µ∑
j=1

R2,1hjk

)α

. (16)

Proof. Applying Lemma 3.2 to the transposed matrix (R1hjk)
T , we obtain

ν∑
k=1

(
µ∑
j=1

hjk

)α

=
ν∑
k=1

(
µ∑
j=1

R1hjk

)α

≥
ν∑
k=1

(
µ∑
j=1

R1,2hjk

)α

.

Further, by Lemma 3.2 applied to the transposed matrix (hjk)
T , we have

ν∑
k=1

(
µ∑
j=1

hjk

)α

≥
ν∑
k=1

(
µ∑
j=1

R2hjk

)α

. (17)

For any fixed k the sequence {R2,1hjk}µj=1 is the rearrangement of the sequence
{R2hjk}µj=1 and therefore

µ∑
j=1

R2hjk =

µ∑
j=1

R2,1hjk.

Together with (17), this implies (16).
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Remark 3.4. Let T = (tjk) be a µ× ν-matrix of nonnegative numbers. Then
for any p ≥ 1

ν∑
k=1

(
max
1≤j≤µ

tjk

)p
≥

ν∑
k=1

(
max
1≤j≤µ

R1,2tjk

)p
and

ν∑
k=1

(
max
1≤j≤µ

tjk

)p
≥

ν∑
k=1

(
max
1≤j≤µ

R2,1tjk

)p
.

For the proof, we apply Lemma 3.3 to hj,k = trj,k, α = p
r
, with r > p, and then

let r tend to ∞.

4. Mixed norm spaces Lp[Lr]

We begin with the following simple observation. Let ϕ be a nonnegative step
function on R, ϕ(x) = 0 for |x| > H > 0, and

ϕ(x) = ak for x ∈
(

(k − ν − 1)H

ν
,
(k − ν)H

ν

]
, k = 1, . . . , 2ν.

Then ϕ∗(t) = 0 for t > 2H and

ϕ∗(t) = a∗k for t ∈
(

(k − 1)H

ν
,
kH

ν

]
, k = 1, . . . , 2ν,

where {a∗k}2νk=1 is the nonincreasing rearrangement of the sequence {ak}2νk=1.
Further, we introduce the following definition.

Definition 4.1. Let Q = [−H,H]2 (H > 0). Denote by S(Q) the set of all
nonnegative functions f defined on R2 such that f(x, y) = 0 for all (x, y) 6∈ Q,
and there exists ν ∈ N such that f is constant on each of the squares

Qjk =

(
(j − ν − 1)H

ν
,
(j − ν)H

ν

]
×
(

(k − ν − 1)H

ν
,
(k − ν)H

ν

]
(j, k = 1, . . . , 2ν).

Lemma 4.2. Let f be a measurable function defined on R2 such that 0 ≤ f(x, y)
≤ M for all (x, y) ∈ R2 and f vanishes outside of some square Q = [−H,H]2

(H > 0). Then there exists a sequence {fk} of functions fk ∈ S(Q) such that
0 ≤ fk(x, y) ≤M for all (x, y) ∈ R2 and {fk} converges to f in measure.

This lemma follows from the Luzin C-property (see, e.g., [17, Chapter
XII, §1]).
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Definition 4.3. Let X and Y be Banach spaces of functions defined on R.
Then by Y [X] we denote the mixed norm space of functions f defined on R2,
with the finite norm

‖f‖Y [X] = ‖ϕ‖Y , where ϕ(y) = ‖f(·, y)‖X .

Remark 4.4. It is easy to see that Lp[Lp] = Lp, isometrically. It can be proved
that, for the nondiagonal case 1 ≤ p 6= r ≤ ∞, then Lp[Lr] 6= Lq, for all
1 ≤ q ≤ ∞ (see [8] for further results regarding this question).

The following result is one of the main estimates of this work. We will prove
in Proposition 4.6 that it is sharp.

Theorem 4.5. Let 1≤p≤r≤∞ and let f ∈Lp[Lr]. Then R1,2f,R2,1f ∈Lp[Lr]
and

‖R1,2f‖Lp[Lr] ≤ ‖f‖Lp[Lr], (18)

‖R2,1f‖Lp[Lr] ≤ ‖f‖Lp[Lr]. (19)

Proof. First we assume that 1 ≤ r <∞ and f ∈ S(QN), where QN = [−N,N ]2,
N ∈ N. Let cjk be the constant value that f takes on the square Qjk (see
Definition 4.1). Then

‖f‖pLp[Lr] =

(
N

ν

)2 2ν∑
k=1

(
2ν∑
j=1

crjk

) p
r

and (by the observation above)

‖R1,2f‖pLp[Lr] =

(
N

ν

)2 2ν∑
k=1

(
2ν∑
j=1

(R1,2cjk)
r

) p
r

.

Applying inequality (15) with α = p
r

and hjk = crjk, we obtain that inequal-
ity (18) holds for any f ∈ S(QN).

Similarly,

‖R2,1f‖pLp[Lr] =

(
N

ν

)2 2ν∑
k=1

(
2ν∑
j=1

(R2,1cjk)
r

) p
r

,

and (16) implies that (19) also holds for any function f ∈ S(QN).
Assume now that f is an arbitrary measurable function such that 0 ≤

f(x, y) ≤ N for some N ∈ N and for all (x, y) ∈ R2, and f vanishes outside of
the square QN . Then (18) and (19) follow from the preceding case by the use
of Lemma 4.2, Lemma 2.1, and the dominated convergence theorem (see [4]).
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Finally, for any nonnegative function f ∈ Lp[Lr], set

gN(x, y) = min(N, f(x, y))χQN (x, y) (N ∈ N).

Then the sequence gN(x, y) increases and tends to f(x, y) at every point
(x, y) ∈ R2. Thus, R1,2gN(s, t) increases and tends to R1,2f(s, t) for any
(s, t) ∈ R2

+ (see [5, p. 41]). Since for any N ∈ N we have

‖R1,2gN‖Lp[Lr] ≤ ‖gN‖Lp[Lr],

then, applying the monotone convergence theorem, we obtain (18). Similarly
we obtain (19).

In the same way, the case r =∞ follows using Remark 3.4.

We shall show that Theorem 4.5 fails to hold for p > r.

Proposition 4.6. Let 1 ≤ r < p ≤ ∞. Then there exists a function f ∈ Lp[Lr]
such that R1,2f(·, t) = R2,1f(·, t) 6∈ Lr, for all t > 0.

Proof. Set
ψ(y) = ey − 1, F (y) = [ey(y + 1)]−

1
r (y ≥ 0),

and

f(x, y) =

{
F (y), if y ≥ 0, 0 ≤ x ≤ ψ(y),

0, otherwise.

Then
‖f(·, y)‖Lr = F (y)ψ(y)

1
r ≤ (y + 1)−

1
r (y ≥ 0).

Thus, ‖f‖Lp[Lr] <∞, for r < p ≤ ∞.
Further, R1f(s, y) = f(s, y). It follows that

R1,2f(s, t) = R2f(s, t) = R2,1f(s, t).

Let ϕ(x) = ψ−1(x) = ln(1 + x), x ≥ 0. For a fixed s ≥ 0 we have

f(s, y) =

{
F (y), if ϕ(s) ≤ y <∞,
0, if 0 ≤ y < ϕ(s).

It follows easily from (2) that

R1,2f(s, t) = F (ϕ(s) + t), for all s, t ≥ 0.

Hence,

‖R1,2f(·, t)‖rLr =

∫ ∞
0

F (ϕ(s)+t)r ds =

∫ ∞
0

F (z+t)rψ′(z) dz = e−t
∫ ∞
0

dz

z+t+1
=∞,

for any t ≥ 0.
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Now we shall prove a statement which in a sense can be considered as a
“dual” to Theorem 4.5. However, its proof is much simpler.

Theorem 4.7. Let 1 ≤ r ≤ p ≤ ∞. Assume that R1,2f ∈ Lp[Lr]. Then
f ∈ Lp[Lr] and

‖f‖Lp[Lr] ≤ ‖R1,2f‖Lp[Lr]. (20)

Similarly, if R2,1f ∈ Lp[Lr], then f ∈ Lp[Lr] and

‖f‖Lp[Lr] ≤ ‖R2,1f‖Lp[Lr]. (21)

Proof. First we assume that p <∞. Set

Φ(y) =

∫ ∞
0

R1f(s, y)r ds.

Then

Φ(y) =

∫
R
|f(x, y)|r dx (22)

and

‖f‖rLp[Lr] =

(∫
R

Φ(y)q dy

) 1
q

,

where q = p
r
. By duality, there exists a function g ∈ Lq

′
(R) with ‖g‖q′ = 1

(as usual, q′ denotes the conjugate exponent, 1
q

+ 1
q′

= 1) such that ‖f‖rLp[Lr] =∫
R Φ(y)g(y) dy =

∫
R

(∫∞
0
R1f(s, y)r ds

)
g(y) dy =

∫∞
0

(∫
RR1f(s, y)rg(y) dy

)
ds.

Applying to the interior integral the Hardy-Littlewood inequality, we obtain

‖f‖rLp[Lr] ≤
∫ ∞
0

∫ ∞
0

R1,2f(s, t)rg∗(t) dt ds =

∫ ∞
0

g∗(t)

(∫ ∞
0

R1,2f(s, t)rds

)
dt.

Finally, applying to the latter integral Hölder’s inequality, we get

‖f‖rLp[Lr] ≤
(∫ ∞

0

(∫ ∞
0

R1,2f(s, t)rds

)q
dt

) 1
q

= ‖R1,2f‖rLp[Lr].

Let now p =∞. Using (22), we have that

‖f‖rL∞[Lr] = ess supy∈R Φ(y) ≤
∫ ∞
0

ess supy∈RR1f(s, y)r ds.

Further, ess supy∈RR1f(s, y) = ess supt>0R1,2f(s, t) = R1,2f(s, 0+), for any
s > 0. On the other hand, by the monotone convergence theorem,

‖R1,2f‖rL∞[Lr] = lim
t→0+

∫ ∞
0

R1,2f(s, t)r ds =

∫ ∞
0

R1,2f(s, 0+)r ds.
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Thus, we obtain (20) for p =∞.
We now consider the proof of (21). By a simple change of notation, we can

assume, without loss of generality, that r = 1. If 1 < p < ∞ , given f , we can
find a suitable nonnegative function h ∈ Lp′ , with ‖h‖p′ = 1, such that

‖f‖Lp[L1] =

(∫
R

(∫
R
|f(x, y)| dx

)p
dy

) 1
p

=

∫
R

(∫
R
|f(x, y)| dx

)
h(y) dy

=

∫
R

(∫
R
|f(x, y)|h(y) dy

)
dx

≤
∫
R

(∫ ∞
0

R2f(x, t)h∗(t) dt

)
dx

=

∫ ∞
0

(∫
R
R2f(x, t) dx

)
h∗(t) dt

=

∫ ∞
0

(∫ ∞
0

R2,1f(s, t) ds

)
h∗(t) dt

≤
(∫ ∞

0

(∫ ∞
0

R2,1f(s, t) ds

)p
dt

) 1
p

‖h‖p′ = ‖R2,1f‖Lp[L1].

If p =∞,

‖f‖L∞[L1] = ess supy∈R

∫
R
|f(x, y)| dx

≤
∫
R

ess supy∈R |f(x, y)| dx

=

∫
R
R2f(x, 0+) dx

=

∫ ∞
0

R2,1f(s, 0+) ds

= lim
t→0+

∫ ∞
0

R2,1f(s, t) ds

= ess supt>0

∫ ∞
0

R2,1f(s, t) ds = ‖R2,1f‖L∞[L1].

We now show that Theorem 4.7 does not hold for 1 ≤ p < r <∞ and R1,2,
although, contrary to what we have proved in Proposition 4.6, the end-point
case 1 ≤ p < r =∞ is also true (see Proposition 4.9).

Proposition 4.8. Let 1 ≤ p < r <∞. Then there exists a function f ∈ S0(R2)
such that R1,2f ∈ Lp[Lr] but f 6∈ Lp[Lr].
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Proof. Set

ψ(y) = ey − 1, F (y) = e−
y
r (y + 1)−

1
p (y ≥ 0),

and

f(x, y) =

{
F (y), if y ≥ 0, 0 ≤ x ≤ ψ(y),

0, otherwise.

Then ‖f(·, y)‖Lr = F (y)ψ(y)
1
r ≥ 1

2(y+1)
1
p

(y ≥ 1) and thus ‖f‖Lp[Lr] =∞.
As in Proposition 4.6, we have

R1,2f(s, t) = F (ϕ(s) + t), for all s, t ≥ 0,

where ϕ(x) = ψ−1(x) = ln(1 + x). Thus,

‖R1,2f(·, t)‖rLr =

∫ ∞
0

F (ϕ(s)+t)rds=

∫ ∞
0

F (z+t)rψ′(z) dz=e−t
∫ ∞
0

dz

(z+t+1)
r
p

≤ pe
−t

r−p
.

Thus, it follows that ‖R1,2f‖Lp[Lr] <∞.

Proposition 4.9. For any p ∈ [1,∞] and any function f ∈ S0(R2),

‖f‖Lp[L∞] = ‖R1,2f‖Lp[L∞]. (23)

Proof. For any y ∈ R

lim
s→0+

R1f(s, y) = R1f(0+, y) = ‖R1f(·, y)‖∞ = ‖f(·, y)‖∞,

and the convergence is monotone. Thus,

lim
s→0+

∫
R
R1f(s, y)p dy =

∫
R
‖f(·, y)‖p∞ dy = ‖f‖pLp[L∞].

On the other hand, for any s > 0,
∫
RR1f(s, y)p dy =

∫∞
0
R1,2f(s, t)p dt, and by

the monotone convergence theorem

lim
s→0+

∫ ∞
0

R1,2f(s,t)pdt=

∫ ∞
0

R1,2f(0+,t)pdt=

∫ ∞
0

‖R1,2f(·,t)‖p∞ dt=‖R1,2f‖pLp[L∞].

These equalities imply (23).

Finally, we see that Theorem 4.7 does not hold either for R2,1 in the whole
range 1 ≤ p < r ≤ ∞ (including r =∞):

Proposition 4.10. Let 1≤p<r≤∞. Then there exists a function f ∈S0(R2)
such that R2,1f ∈ Lp[Lr] but f 6∈ Lp[Lr].
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Proof. Assume first that 1 ≤ p < r <∞. Define

f(x, y) =

{
n−

1
p , if n− 1 < x, y ≤ n,

0, otherwise.
(24)

Then

R2,1f(s, t) =

{
n−

1
p , if n− 1 < s ≤ n, and 0 < t ≤ 1,

0, otherwise,

and hence,

‖R2,1f‖Lp[Lr] =

(∫ 1

0

(∫ ∞
0

(
R2,1f(s, t)

)r
ds

) p
r

dt

) 1
p

=

( ∞∑
n=1

1

n
r
p

) 1
r

<∞.

On the other hand,

‖f‖Lp[Lr] =

(∫
R

(∫
R

(
f(x, y)

)r
dx

) p
r

dy

) 1
p

=

( ∞∑
n=1

1

n

) 1
p

=∞.

The case 1 ≤ p < r =∞ is handled similarly with the same function in (24).

Remark 4.11. A more general inequality than (20) was proved, in [7], related to
mixed Lorentz spaces (see [7, Theorem 4.5.I]). Nevertheless, Theorem 4.7 does
not follow from this result since the constant in the corresponding inequality
in [7] blows up as p → r+. Further, it was stated in [7] that inequality of the
type (18) (with a constant greater than 1) can be obtained by duality arguments.
However, the duality relation given in [7, Theorem 3.12.II] is false. In the case
X = L1, Y = L∞ this relation can be formulated as follows:

Inclusion
R1,2f ∈ L∞[L1] (25)

holds if and only if

sup
g

∫∫
R2

|f(x, y)g(x, y)|dxdy <∞, (26)

where the supremum is taken over all g such that ‖R1,2g‖L1[L∞] ≤ 1.

We shall show that this statement is false. Set

f(x, y) =

{
1
y
, if 0 < y ≤ 1, 0 < x ≤ y,

0, otherwise.

Then ‖f‖L∞[L1] = 1. Further, R1,2f(s, t) = R2f(s, t) = R2,1f(s, t). We have

R1,2f(s, t) =

{
(s+ t)−1, if 0 < t ≤ 1, 0 ≤ s ≤ 1− t,
0, otherwise.
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Thus ∫ 1

0

R1,2f(s, t) ds =

∫ 1−t

0

ds

s+ t
= ln

1

t
.

It follows that ‖R1,2f‖L∞[L1] =∞.
Assume that g ∈ S0(R2) and ‖R1,2g‖L1[L∞] ≤ 1. Then∫∫

R2

|f(x, y)g(x, y)|dxdy =

∫ 1

0

1

y

∫ y

0

|g(x, y)|dxdy

≤
∫ 1

0

1

y

∫ y

0

R1g(s, y)dsdy

≤
∫ 1

0

ess sups>0R1g(s, y)dy

=

∫ 1

0

R1g(0+, y)dy

= ‖g‖L1[L∞]

≤ 1.

Thus, we see that (26) does not imply (25).

5. Mixed norms and rearrangements for measurable sets

We now study the relationship between both iterated rearrangements, R1,2

andR2,1, on characteristic functions of measurable sets E ⊂ R2. It is interesting
to observe that, in this situation, the estimates on mixed normed spaces can be
described in terms of Lorentz “norms” with main indices below one. For this
purpose, we will work on rearrangement invariant spaces X on R (see [5, 16]).
In this setting, we recall the definition of the fundamental function of X:

ϕX(t) = ‖χE‖X ,

where |E| = t. Given a set E ⊂ R2, we also define the following functions
(representing the linear measures of sections):

Ψ1
E(x) =

∫
R
χE(x, y) dy and Ψ2

E(y) =

∫
R
χE(x, y) dx.

Lemma 5.1. Let X be a rearrangement invariant space on R and E ⊂ R2.
Then,

‖Ψ1
E‖X ≤

∫
R
ϕX(Ψ2

E(y)) dy. (27)

In particular, if 1 ≤ p ≤ r <∞, then∥∥∥∥∫
R
χE(·, y) dy

∥∥∥∥
L
r
p ,1
≤
∥∥∥∥∫

R
χE(x, ·) dx

∥∥∥∥ pr
L
p
r

. (28)
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Proof. This is an easy consequence of the Minkowski’s integral inequality. In
fact,

‖Ψ1
E‖X =

∥∥∥∥∫
R
χE(·, y) dy

∥∥∥∥
X

≤
∫
R
‖χE(·, y)‖X dy =

∫
R
ϕX(Ψ2

E(y)) dy.

Now, if we set q = r
p
≥ 1, with X = Lq,1 and taking into account that the

fundamental function of Lq,1 satisfies that ϕLq,1(t) = t
1
q , using (27) we get,∥∥∥∥∫

R
χE(·, y) dy

∥∥∥∥
L
r
p ,1

= ‖Ψ1
E‖Lq,1 ≤

∫
R

Ψ2
E(y)

1
q dy =

∥∥∥∥∫
R
χE(x, ·) dx

∥∥∥∥ pr
L
p
r

.

Theorem 5.2. Let E ⊂ R2 be a measurable subset.

(i) If 1 ≤ p ≤ r ≤ ∞, then

‖R2,1χE‖Lp[Lr] ≤ ‖R1,2χE‖Lp[Lr].

(ii) If 1 ≤ r ≤ p ≤ ∞, then

‖R1,2χE‖Lp[Lr] ≤ ‖R2,1χE‖Lp[Lr]. (29)

Proof. A first step to prove these results is the following: If ϕ1(x) = Ψ1
E(x) and

ϕ2(y) = Ψ2
E(y), then

R1,2χE(s, t) = χ(0,ϕ∗2(t))
(s) and R2,1χE(s, t) = χ(0,ϕ∗1(s))

(t).

In fact, this follows readily from the definition of the iterated rearrangements
and the identities:

R1χE(s, y) = χ(0,ϕ2(y))(s) and R2χE(x, t) = χ(0,ϕ1(x))(t).

Hence, for 1 ≤ p ≤ r <∞ ,∫ ∞
0

R1,2χE(s, t)r ds =

∫ ∞
0

χ(0,ϕ∗2(t))
(s) ds = ϕ∗2(t),

and

‖R1,2χE‖Lp[Lr] =

(∫ ∞
0

ϕ∗2(t)
p
r dt

) 1
p

=

∥∥∥∥∫
R
χE(x, ·) dx

∥∥∥∥ 1
r

L
p
r

. (30)

Similarly, recalling the definition of the distribution function given in (1),∫ ∞
0

R2,1χE(s, t)r ds =

∫ ∞
0

χ(0,ϕ∗1(s))
(t) ds =

∣∣{s > 0 : ϕ∗1(s) > t}
∣∣ = λϕ1(t),
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and, using (3), we obtain

‖R2,1χE‖Lp[Lr] =

(∫ ∞
0

λϕ1(t)
p
r dt

) 1
p

=

∥∥∥∥∫
R
χE(·, y) dy

∥∥∥∥ 1
p

L
r
p ,1
. (31)

Thus, from (30), (31), and (28) we finally get (i), if r <∞. When r =∞,
we only need to combine Proposition 4.9 with (19) in Theorem 4.5.

To prove (ii), when p <∞, we use (30), (31), and the reverse Minkowski’s
integral inequality (7), for the pair of indices 0 < q = r

p
≤ 1 and the Lorentz

space Lq,1:

‖R2,1χE‖Lp[Lr] =

∥∥∥∥∫
R
χE(·, y) dy

∥∥∥∥ 1
p

Lq,1

≥
(∫

R
‖χE(·, y)‖Lq,1 dy

) 1
p

=

(∫ ∞
0

ϕ∗2(t)
1
q dt

) 1
p

= ‖R1,2χE‖Lp[Lr].

As before, the case p =∞ requires an extra argument (however this situation is
much simpler because we are dealing with the exterior norm). Indeed, we first
assume that E is a bounded set; i.e., for some H > 0,

E ⊂ [−H,H]2. (32)

Then, the functions g1 = R1,2χE and g2 = R2,1χE vanish outside the square
[0, 2H]2. Using (29), for 1 ≤ r < q < ∞, which we have just proved, we have
that (∫ 2H

0

(∫ 2H

0

g1(s, t)
rds

) q
r

dt

) 1
q

≤

(∫ 2H

0

(∫ 2H

0

g2(s, t)
rds

) q
r

dt

) 1
q

.

Denote

ψj(t) =

(∫ 2H

0

gj(s, t)
rds

) 1
r

, j = 1, 2.

Then (∫ 2H

0

ψ1(t)
qdt

) 1
q

≤
(∫ 2H

0

ψ2(t)
qdt

) 1
q

.

If we now let q → ∞, then we obtain ‖ψ1‖∞ ≤ ‖ψ2‖∞, as we wanted to show.
The general case, without assuming (32), follows by the monotone convergence
theorem (see [4, p. 302]).
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Remark 5.3. It is easy to see that Theorem 5.2 is sharp. In fact, let 0 < γ < 1,
βn =

∑n
k=1

1
kγ

, Qn = [βn, βn+1]× [βn, βn+1], and E =
⋃∞
n=1Qn. Define fγ = χE.

Then

‖R1,2fγ‖pLp[Lr] =
∞∑
n=1

1

nγ(1+
p
r
)

and

‖R2,1fγ‖pLp[Lr] =
∞∑
n=1

(
1

nγ
− 1

(n+ 1)γ

)
β
p
r
n ≈

∞∑
n=1

1

nλ
,

where λ = γ + 1 + (γ − 1)p
r
.

If 1 ≤ r < p <∞, set γ = p
r+p

. Then,

‖R1,2fγ‖pLp[Lr] =
∞∑
n=1

1

n
p
r

<∞ and ‖R2,1fγ‖pLp[Lr] ≈
∞∑
n=1

1

n
=∞.

Conversely, if 1 ≤ p < r <∞, set γ = r
r+p

. Then,

‖R1,2fγ‖pLp[Lr] =
∞∑
n=1

1

n
=∞ and ‖R2,1fγ‖pLp[Lr] ≈

∞∑
n=1

1

n2− p
r

<∞.
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