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Sobolev Embedding Theorem for Irregular
Domains and Discontinuity of p — p*(p,n)
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Abstract. For a domain 2 C R™ we denote
go(p) ==sup {r € [Loc]; forall f: Q >R : (f € WH(Q) = f e L"(Q))}.

Let po € [2,00). We construct a domain Q CR? such that go(p) is discontinuous at p.
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1. Introduction

We study the Sobolev embedding theorem on irregular domains with non-
Lipschitz boundary. The Sobolev embedding theorem on a domain 2 C R"
with Lipschitz boundary claims

feW(Q), p#n = fecLPP(Q), where

* 2 for 1< p<n,
p(p)z{”” (1)
oo, forn <p< .

Inspired by this theorem, we can define the optimal embedding exponent
for a domain 2 C R" as

go(p) == sup {re[l,o0; forall f: Q= R: (feWP(Q) = feL"(Q)}. (2)

There are a lot of results in the field of characterization of gq(p) for various
classes of domains. For a Lipschitz domain Q the function p*(p) = ga(p) is
continuous and even smooth, (see (1)), this was proven by Sobolev in 1938 [12].
Later, embeddings ware examined on some more problematic classes of domains
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by V. G. Maz'ya [9,10], O. V. Besov and V. P. IIin [3], T. Kilpeldinen and
J. Maly [5], D. A. Labutin [6,7], B. V. Trushin [13,14] and others. For further
results and motivation we recommend the introduction by O. V. Besov [2].

For any domain €2, it holds that p < ¢o(p) < p*(p). The “nicer” the
domain €2 is, the greater the function go(p) is. The greatest possible values of
the embedding exponent are ¢o(p) = p*(p). Even considering domains, which
are irregular in some sense, the exponent gqo(p) has always been continuous and
in most cases even smooth. We construct a domain §2 such that the function
of the optimal embedding ¢q(p) is continuous up to some point, jumps at this
point and then it is continuous again. The point of discontinuity py € [n, o)
and the size of the jump can be chosen as desired.

Our work is inspired by the construction of a domain in [4], but our proof
is completely different. The original article shows the construction of such a
domain only in case po = n = 2 and the proof is based on change of variables.
We prove the same result by chaining Poincaré inequalities and we generalize the
construction for the point of discontinuity anywhere in [n,00). This result can
be generalized to any dimension too, but for simplicity we show the calculations
only in case n = 2.

An explicit example of a domain with the point of discontinuity under the
point of dimension, i.e. py € (1,n) would be of interest.

Our proof will be as follows. We choose a domain 2 and verify a given
embedding. Then we continue the proof that the embedding is optimal by
counterexamples.

1.1. Construction of (1, 3 and the embedding. Firstly, we construct a
domain Q, 5 C R? for parameters « > 1,8 > a. The point of discontinu-
ity of qq, ,(p) is po = a + 1, parameter 3 determinates the size of the jump
hmt%po+ 4a, s (t) - hmtﬁ‘m* 49, s (t>

Let us denote by 7} the family of domains in R?

zre (=270 (=277 p27h)ih), } -
)

T; =< |1, 29| € R? , . . 4
{[ ] Tq € (27Z+1’27l+1 4 (5131 4 277,22'71)04271(,8704)2'714*04

The shape of T; is the subgraph of y(z) = x® function on some right neigh-
bourhood of 0. By S we denote S := (—4,0) x (—2,2). Now we define

Qa,,b’ = U T’l U S
1eN

We define qq, ,(p) : [1,8+1) — [1,00) by

D forl1<p<a+1,
qQa,B(p) =

(B+1)
,B+—1—]; fOfOé+1§p<ﬁ+1
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Figure 1: The domain T;
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Figure 2: The domain €, 3
The function qq, ,(p) has a jump at py = a + 1 of size

: . (a4 1)?
tl&}{{){r 40,5 () = limy—yp— g, ,(t) = B—a

Theorem 1.1 (Optimal Sobolev embedding Theorem for Q, ). Let o > 1,
B>aand 1 <p<l1+p8,p#a+1. Then

Wl,p(Qaﬁ) C ana,ﬂ(p)<9aﬂ).

Moreover, for every q(p) > qa, ,(p) there exists a function g : Qap — R satis-

Jying
gEWY(Qup) and g¢ LUP(Q,4).

We prove the first part of Theorem 1.1 in Section 3. The optimality part
of Theorem 1.1 is proven in Section 4.
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Remark 1.2 (Embedding for p = a + 1). We do not formulate previous The-
orem for case p = a + 1. However, if we use supremum definition (2) instead
of q(p) = max{r: r > 1, W' C L"}, then the Theorem would be valid even in
case p = a+ 1 and it can be proven by the same means described in Section 3.

We decided to exclude the case p = o + 1, so we show that the maximum
and the supremum definition of ¢(p) are equivalent for all cases p # o+ 1. The
discontinuity of ¢(p) is clear irrespective of precise value at this point and of
the choice of the maximum or the supremum. We do not answer the question
if L9%.,6 T — platl 1olds, we suppose that the answer is no.

2. Preliminaries

For simplicity we use the notation Q = Q.3 and ¢(p) = ga, ;(p). By C we
denote a generic positive constant whose exact value may change at each oc-
currence. We write for example C(a, b, ¢) if C' may depend on parameters a, b
and c.

We use standard notation for weak derivatives and Lebesgue and Sobolev
spaces. We denote the Sobolev norm || f||w1.»(q) for the function f: QCR" — R,
p € [1,00] as

Yoy T i IDif N1 ’ for pe[l, 00
ma‘X{Hf”LP(Q)? HDIfHLP(Q), ceay ||an||Lp(Q)} for p=00.

We denote the Sobolev space W1P(2) as the set of all functions with finite

norm || fllwis(q)-
We use the notation a; ~ b;, if there exists a constant K > 0 such that

1 i :
?<Z—i<K for every ¢ € N.

We denote the integral average by

7 ::]{lfzr;[lf<x>dx.

The following Poincaré-type inequality will be essential.

Lemma 2.1. Let b : B(0,r) C R® — R™ be a bi-Lipschitz mapping with a
bi-Lipschitz constant L > 0, and A = b(B(0,7)). Let 1 < p < oo, p # n
and 1 < m < p*(p). Then there exists a constant C(n,p, m, L) such that for
[ e WP(A) we have

) _1
A7 f = Fallzmeay < Cnp,m, Lyr|A77 [ Df | oay.
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We use the convention |A]~% = 1.
Let p=mn and 1 < m < co. Then there exists a constant C(n,m, L), such
that for f € WYP(A) it holds

A7 || f = fallomay < C(nym, L)r| A7 || D] Lna)-

Proof. In case b is the identity mapping and p = ¢ we get the classical result.
The more difficult case 1 < ¢ < p*(p) follows from [8] as Theorem 12.23 and
Exercise 12.24 and by applying Holder’s inequality. The general case where b
is not the identity follows from a simple change of variables. n

3. The proof of Sobolev embedding Theorem for (2, 3

In this section we prove the embedding part of Theorem 1.1 for the case av > 1.
We give the details for a > 1 and the case o = 1 is only sketched.

Let us suppose that o > 1. Then for every ¢ € N we define the covering
of T; \ S by domains, which are bi-Lipschitz equivalent to balls. The proof of
WP c LiP) for p < a+1 is elementary and follows from (4), as every function
in WP belongs to LP. Further we suppose that 3+ 1>p > o + 1.

3.1. Covering of T;. We define k, = §(L)E,

2\a—1
b= . _1_ 1 il . .o

Sij = ko2lem i ATy = §ka2 a=1§ g a1, (5)

For fixed ¢ € N we define the sequence of domains @;;, j € N

-2

1 +27° it c (Si,j — Tij,Si; + Ti,j)

Qij =1 |71, 2] €T} 2.1 2 v [ (6)
N(=27" (=277 +27%)i )

Lemma 3.1 (Covering lemma). Let i € N, T; be given by (3) and the sequence
of domains Q;; by (6). Then

(i) Qi; are bi-Lipschitz equivalent to balls with radius r; ; with the same bi-
Lipschitz constant L independent of © and j.

(i) For fized jo there exists only a finite number of domains Q;; with non-
empty intersection with Q; j,. This number is bounded by some constant
Cle, B).

(iii) For fized jo let A;jy = Qijo N Qijo+1- There exists some positive constant

[As 5o | [Ai o
C(Oé,ﬁ) SU’Ch that C(Q’,ﬁ) < \Qi,jo\ < |Qi,jo+l|'

(iv) There exists a smallest index j; o satisfying Qs j, .. C S, and there ex-
ists a biggest index j;o salisfying sij,, + i > (=277 4 2701 =
“height of T;”. Estimated values are

Jioo 2 2HEmTEEN o~ 987D, (7)

,Ji,0
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Qi ji o

Figure 3: The covering of T;

The proof is rather technical but straightforward and can be done by basic
calculus, therefore we only outline it.

Sketch of the proof of Lemma 3.1. We define two bi-Lipschitz mappings:
biij: B(0,rig) = (=rijrig) x (0,755),
boij i (=i i) X (0,755) — Qij,

b2,z’,j (ZEl, .I‘Q) = <I1 + Sijs 2_i+1 + ﬁ(xl + Si g + 2—i2l~—1)a2—i(6—a)i—1+a) .

Tij

The mapping b, ; ; maps a ball to half a square and has bi-Lipschitz constant L;
independent of ¢ and j, its exact formula can be found easily. Let us consider
Jacobi matrices of both by ; ; and by, 11 j
1 %O&(l‘l 4 Si ] T 2—i22'—1)a—12—i(,8—a)i—1+a
2, . .
0 71} (wy 485y + 27 i )egrilBra)—lta
1 —zpa(zy 4 554+ 2770
D,—1 (by; i(x1,29)) = " « .
b2j1j( 2, ,]( 1 2)) ( 0 Ti,j(xl + Sij + 2—z22—1)—a21(ﬁ—o¢)21—o¢

Dbz’i’j (.',U17 $2) = (

By a direct computation it is not difficult to check that all partial derivatives
are bounded by a constant, i.e. the second mapping b, ; ; has bi-Lipschitz con-
stant Lo ; ; dependent on ¢ and j, and it can be estimated by an same Ly common
for all 4 and j. The key observation is, that Ly, ; is a monotone sequence in
both ¢ and j. We have found a bi-Lipschitz mappings by ; joby; j: B(0,7;;) — @
with constant L = L;L, and the first part is proven.

The second part can be proven by verifying that the statement
lim; oo (85 — Sij+1 — 7ri;) = 0 holds true for every i € N.

To prove the third part we define P, ; C A, ;,
Py = (sij41,8i5) X (27727 ).

)
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We estimate ||Si’i |‘ and we easily find C(«, 8) such that C(«, 8) <

The fourth part is important for further calculations. We estimate the
indices j; o and j; o by the definition of r; ; (5). We observe that diam(Q;;, ) ~
“height of T; \ S on the left edge” and diam(Q;;, ) =~ 7ij, . for ji and that
diam(Q;j,,) ~ “height of T} \ S on the right edge” and diam(Q;;,,) ~ r

for j; 0. By this observation we have

%,Ji,0

. 1 o
9~ ih; -1 ~ TG, §k3‘22a 12_1310 - @
1 —22
(i O o heE
which implies (7). O

3.2. Proof of Theorem 1.1 for S+ 1 > p > a+ 1, a > 1. We denote
q=q(p) = qa, ;(p). We estimate the power of the norm

Ji,00

1 Eaqy < 1N Gasy + D I aiznsy < M MZags) + D D 1F15acn -

ieN 1€N j=ji 0

The part || f|%, (s) is bounded for any g € [1,00) thanks to Sobolev embedding

theorem for Lipschitz domains W'?(S) C L*(S),p > n = 2. Therefore we
have HfHLq(S < C and also |fg,, | < C. We estimate

1100
00 Ji,o0 ]zoo

st D [ (U@ =faul+ 3 VoSl +€)' e
=1 j=Jio k=j+1

oo Ji,00 ]7. oo (9)

<c+0y Z/ > (|szk JQui- 1') de

=1 j=ji0 Qi k=j+1
q
)d:v.

By (3), Lemma 2.1 for m = oo, Lemma 3.1(ii) and 7, ; <1 we have
00 Ji,00

OO/ (150t )" @ <3 [ (1560,

1=1j=7i0 1=1j=7i0 Qi

00 Ji,00

o Y | (1e)-fa,

=1 j=ji,0 Qi

q
|L°°(Qi,j)> dz

00 Ji,00

<Y [ (nT IDTIna,) @ g,

i= 1]—31 o Qi

h CZ\TIHDfIIWM(Q

<C
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By Lemma 2.1 and Lemma 3.1(iii) we have the following estimate

|sz‘,j_fQi,j—1’ = (][ |fQ” ( )’ dy +]£. . ’fQi,jfl_f<y)’ dy)

<0(][ o=y + Vo, =101 )

1,7—1

p=2 % p—2 %
<c|r ( / |Df<y>\f’dy> +m,;1< / |Df(y)!”dy>
Qi,j Qi,j—1

By this estimate and the Holder inequality for sums and Lemma 3.1(ii) we get

Ji,o0 Ji, o0
d
Z /Qi’j (Z 1fQir = faun 1|> x

k=j+1
q

<cy [ Zk (/Qilef(y)V’dy) o

q

1
Jiyo0 »
< C|T}] Z rzk (/ |Df(y)]pdy) (11)
k= .77.0 i,k
a(p—1) N
ji,oo (p—2)p p ji,oo p; P
<oml | 3 > ([ prora
k:ji,O k:ji’() Qi»k
) a(p—1)
Ji, o0 p—2 P
<CIT| > it
k=ji,0
From (5), (9), (10), (11) and (3) we have
a(p—1)
ji,oo p—2 p
1£l140) < 0+02r22 Rl IR
J=Ji,0
a(p—1)
o0 ]zoo P
< C+CZZ gp— 2p‘1+2pzl((5 —eu(p=2) ~(8+1)) Z j =T
=1 —ij

We estimate the sum over j and by p > o+ 1 and (7) we get

Ji,00

a(p—2) i B=D(at+1-p)

G = < 02" 11 |
J

]—jz 0
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Finally we put the estimates together and we get

q - - ap—2q+2p i((ﬂ_a)Q(p_Q) _(B+1)) Zw @
||f||Lq(Q) S C + CZ 1 p 2 (a=1)p (2 (a—1)(p—1) )
i=1
[e.9]
<C+C Z z"%?(—(ﬂﬂ)ﬂ%).
i=1
The proof is complete, because the sum is finite if ¢ < B[i:r—ll_)i

Let us consider the case @ = 1. We have to change the definition (5) of s; ;
and r; ; and the definition (6) of @;; as follows,

Tivj::ri70(1—|—2_i(5_1)_1)j, for Ti70:2_i2_i(’8_1)_1i_1 and s, := ) 1.

We define @), ; as trapezoids which have the average of basis equal to their
width. We denote half of its width by r; ;, that is

Qi7j = T’l N {QZ’ c R2 X € (Si,j — 7“1'7]', SiJ’ + ri,j)}-

|

: |

: |
Q; |
Z,‘:] |

: |

|

|

i
i
i
i
i

i1, -1 ‘
2 kim0 ik = Tij 2 h—o ik Zi—o Tik
Figure 4: The domain @); ;

Let us denote, that the sequences r; ; and s; ; are strictly decreasing with
respect to index 7 in case a > 1, but these sequences are strictly increasing in
case o = 1.

The Lemma 3.1 holds and is proven in the same way as for a > 1, only the
indices of border Q; ; are j; . = —1 and analogously to (8)

9—iB;=1 ~ Tijio = (1+ Q*i(ﬁfl)*l)ji,OQ*iQ*i(ﬁfl)*lz’*l

we get
In(2)(i* — 4)
In(1 4 2-(-D-1)"

Jio =
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The idea of chaining the Poincaré inequality is analogous, and after an easy
modification we get our result. We can copy all arguments and calculations
from (9), (10), (11), then we use (3) for o = 1, the new definition of r;; and
the previous estimates for j; o, ji~o and we get

a(p—1)

00 Ji,0 b2 p
1|y S C+CY 227 @D [y
i=1 J=Ji,co

< C+C’Z R (1) (— i (1)) L2

p—2 ln(2)(7, —1) P
(1+2 i(B—1)— )P 1(1n(1+2 i(B—1)— 1>+2)

(14 27i8-D-1)35 1

where the final term comes from the sum of geometric series. The right hand
side can be estimated and after an easy calculation we have

2pta(p=2) ,a(B+1-p)=(B+1)p
p p

1 e < C+ C’Zi_
i=1

The right hand side is finite if ¢ < Z B +1
The complete proof for & = 1 with all details can be found in [11].

and the proof is complete.

4. Proof of the optimality of ¢(p) for Q, 3

We fix ¢ > ¢q(p). We define a function g by the choice of proper functions
g; - T; — R and the sequence d; of positive numbers. We define

0 for (z1,29) € S,
g(r1,72) = .
d;gi(x1,x9) for (zq,29) € T;\ S, for all i € N.

Clearly

19110, dellgz\lwlp and [|g[|7q(q) = Zd?HgiH%q(Ti)- (12)
=1

The choice of g; and d; depends on p and « + 1, so we split the proof into two
parts.
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4.1. The case p < a + 1. Let us consider p € [1,a + 1). We define

gi(z1,x) := <x1 4+ _1> — (2_Z i) for (z1,20) €T;\ S,
i(B+1) 2 (13)

di = (2772 0 ga.

For fixed i € N we estlmate the norm in the space L4(T;). By (3) the height
of T; for zy € (— i '2~ P2t =2 ’)) i

) = ((y +27%1) oo (14)
and we get
19ill 70z
2~ 1—_2*2'2
_[ ‘(x +27 ) 2P0 Uy da
o 1 1 1 (15)
27% o~ ‘
—/ ’(w1+21 i) =@ ) (w2 ) Y2 e gy
0

We want to estimate the size of the integral. The integrand is positive
and concave, so we can estimate its value by its maximum. More precisely,
we replace the integrand by constant function (277 3~1)~%¢ (27171) "glamifjat

hence
3=i_g—i®

! —i2 . —1\—« —7, ta—1 jo~ 1

2 i o —i—i
~ jOd—29i"aq—i 1,3.

By (13) we get

HgH%Q(Q) = ngHginLq(Ti) > CZiOQO = 00.
i=1 i=1

We need to prove the convergence of ||g||€v17p(ga). First of all we estimate

19ill5y1.0(7,) < 2max{llgill Loz, 1 DGill Loz, }-

The estimate of the norm of g; in LP(7;) is analogous to (16), by replacing p
by ¢ we get [|g:[|7p ) = §oP=297ep=i=i8 \We use ¢ > q(p) = p and we estimate
the norm of ¢ in LP(Q2)

. —i—i a-p
1912, Zd”HgZHLP(T <0 i) < oo
i=1
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We express the norm of g; by a derivative || Dgi(21, 22)||70 () = Ir 89;11’“ |’ da.
The estimate is similar to (15). The proof splits in two cases. Firstly, we

consider p > 1 and we get

/ ‘091

g—i_g—i’

dz < C / L (g 2T g s et g
0

~1(g—i_g-i?) (17)

0

S C 2i(_/8+01)z'0£—1 |:($1 + 2—1'27:—1)( )(O‘+l)i|

< C2i(—ﬁ+a)ia71(27122-71)(17p)(a+1).
It follows that

= (B+1)
1090y =D _ &1 Dgillogr <ZC’zquq+p(““)2( Frrat ) i (p=a1) < o0

i=1

The proof of the finiteness of the norm in case p = 1 is similar, except the
estimate in (17) involves [(z1+ C)~tdx; = log|z1 + C|. It is easy to finish the
proof in this case, too.

4.2. The case p > a + 1. We define

gi(x1,19) = (xl 49 71) — (2’1'21"1)0‘ for (x1,29) € T; \ S,
d; = 2i(%+a)@-a+%‘

We use (12), (14) and we estimate the norms of g; as in the previous case.
Analogously to (15) and (16) we have

g—i_g—i2
7 2 e o2 1val?
lgil% iz = / (wr4+277Y)" = (252U
27~ (18)

i ) (¢+)a
~ / (.I’l -+ 27222'71) 22047@52-0471 dl’l
0

~ j-a—29~i(qa+1+5)

We estimate [|g||7q o) by

Hglldaiy =D dllgilltuqy > C D i%2° = 0.
=1

i=1

Now we need to prove the convergence of the norms of g and Dyg
in LP(Q). Analogously to (18), by replacing the position of ¢ by p we get
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1gill 7oz = i—oP=22~i(pat148) We use ¢ > ¢(p) > p and we estimate the norm
of g in LP(Q2)

Hg“iz)(ga) = deHgiHip(Ti) < 02@'72271’7@8)7 < 0.
i=1 i=1

Let us express the norm of g; by a derivative and we estimate

—i_g—i?

p i ; a— Qi .
dz < C/ (xl + 2—12,L'—1)( Dp+ 21(—6+a)2a—1 dflfl
0

15

. 2
ot _o—1

< 02%'(—5+a)2-a—1 [(lﬁ + 2—¢2i—1)ap—p+a+1] 5

N 0

< O p-atl)=29i(—ap+p—pf-1)

It follows that

where the finiteness follows from ¢ > ¢(p)

- - p—29=P 4 1)2=9
1Dgl 00y = D BNDGl oy < Y CP 7272 (proen) < o,
=1 =1

_ (B+1)p
~ B+l-p°

Acknowledgement. We would like to thank to author’s supervisor Stanislav
Hencl for introducing this field, pointing out this problem and supporting and
useful advices during work itself. We would like to thank to referees for careful
reading and valuable comments.

References

1]

Adams, R. A. and Fournier, J. J. F., Sobolev Spaces (Second edition). Pure
Appl. Math. (Amst.) 140. Amsterdam: Elsevier 2003.

Besov, O. V., Sobolev’s Embedding theorem for anisotropically irregural do-
mains. Burasian Math. J. 2 (2011)(1), 32 — 51.

Besov, O. V., I'in, V. P. and Nikolskii, S. M., Integral Representations of
Functions and Imbedding Theorems. Vols. I, II. New York: Wiley 1978, 1979.

Gol’dshtein, V. and Gurov, L., Applications of change of variables opera-
tors for exact embeddings theorems. Integral Equ. Oper. Theory 19 (1994)(1),
1-24.

Kilpeldinen, T. and Maly, J., Sobolev inequalities on sets with irregular bound-
aries. Z. Anal. Anwend. 19 (2000)(2), 369 — 380.

Labutin, D. A., Embedding of Sobolev spaces on Holder domains. Proc. Steklov
Inst. Math. 227 (1999), 163 — 172.



152 T. Roskovec

[7] Labutin, D. A., Sharpness of Sobolev inequalities for a class of irregural do-
mains. Proc. Steklov Inst. Math. 232 (2001), 211 — 215.

[8] Leoni, G., First Course in Sobolev Spaces. Grad. Stud. Math. 105. Provi-
dence (RI): Amer. Math. Soc. 2009.

[9] Maz’ya, V. G., Sobolev Spaces. Berlin: Springer 1985.

[10] Maz'ya, V. G. and Poborchi, S. V., Differentiable Functions on Bad Domains.
River Edge (NJ): World Scientific 1997.

[11] Roskovec, T., Sobolev embedding theorem on domains without Lipschitz
boundary (in Czech). Master Thesis. Fac. Math. Physics, Charles Univ. in
Prague 2012 (avialable at http://www karlin.mff.cuni.cz/~roskovec/mas.pdf).

[12] Sobolev, S. L., Some Applications of Functional Analysis in Mathematical
Physics. Providence (RI): Amer. Math. Soc. 1991.

[13] Trushin, B. V., Sobolev embedding theorems for a class of anisotropic irregular
domains. Proc. Steklov Inst. Math. 260 (2008), 287 — 309.

[14] Trushin, B. V., Continuity of embeddings of weighted Sobolev spaces in
Lebesgue spaces on anisotropically irregular domains. Proc. Steklov Inst. Math.
269 (2010), 265 — 283.

Received April 6, 2014; revised October 6, 2015



