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with Measurable Data in
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Abstract. We study the global regularity in generalized Morrey spaces of the so-
lutions to variational inequality and obstacle problem related to divergence form
parabolic operator in bounded non-smooth domain. We impose minimal regularity
conditions as to the coefficients of the operator so also to the boundary of the domain.
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1. Introduction

The obstacle problem for partial differential equations arises naturally in the
classical elasticity theory as one of the simplest unilateral problems in the study
of mechanics of elastic membranes. Roughly speaking, it aims to find the equi-
librium position of an elastic membrane, the boundary of which is keeping fixed
and which is constrained to stay above a prescribed obstacle. More generally,
the obstacle problems provide a basic analytic tool in the study of variational
inequalities and free boundary problems for PDEs and are involved in various
geometric and potential theory problems such as capacities of sets or minimal
surfaces. Their applications cover a broad spectrum of problems of modern tech-
nology, among them the study of fluid filtration in porous media, constrained
heating, elasto-plasticity, optimal control problems in the theory of Brownian
motion, phase transitions, groundwater hydrology, financial mathematics, and

S.-S. Byun: Department of Mathematics, Seoul National University, Seoul 151-747,
Korea; byun@snu.ac.kr
L. Softova: Department of Civil Engineering, Design, Construction and Environment,
Second University of Naples, Italy; luba.softova@unina2.it



154 S.-S. Byun and L. Softova

so on. We refer the reader to the classical texts by Murthy and Stampac-
chia [18], Kinderlehrer and Stampacchia [15], Friedman [12], Rodrigues [23] and
Caffarelli [9] for further discussions and more details.

The present paper deals with regularity in generalized Morrey spaces of the
weak solutions to variational inequalities for divergence form parabolic systems
with measurable coefficients in non-smooth domains. In that sense, it provides a
natural extension of the results in [3–6,8,11,13] which studied equations/systems
without obstacle in the framework of different functional spaces.

Our work is motivated by the recent papers [1,2,24] where the authors de-
veloped a sort of Calderón–Zygmund theory for nonlinear elliptic and parabolic
problems with irregular obstacles. To the difference of [1,2,24], we deal with dif-
ferential operators having coefficients only measurable in one variable, say x1,
allowing this way quite arbitrary discontinuities in that direction, while in the
other variables (x′, t) they have small mean oscillation (small BMO). This situ-
ation is closely related to the equilibrium equations of linearly elastic laminates
and composite materials which have been widely applied to various fields, see
[10,17]. Even if there have been recently a lot of works in this direction, most of
the obtained results consider single equations without obstacles. Another point
of difference with [1, 2, 24] consists of the fact that we derive here a general-
ized version of the gradient estimate in the settings of the generalized Morrey
spaces. Regarding the non-smooth domain considered here, we suppose that its
boundary is flat in the sense of Reifenberg [22]. Loosely speaking, this means
that the boundary is well approximated by hyperplanes at each point and at
each scale, and is a sort of “minimal regularity” of the boundary guaranteeing
the main results of the geometric analysis continue to hold true. For instance,
C1-smooth or Lipschitz continuous boundaries with small Lipschitz constants
belong to that category. The class of Reifenberg flat domains extends beyond
these common examples and contains domains with rough fractal boundaries
such as the von Koch snowflake. In addition a domain which is flat in the sense
of Reifenberg is also Jones-flat and possesses the extension properties. Moreover
the Reifenberg condition implies the two-sided (A) condition (11) that ensures
the existence of extension operator and hence also the trace operator on the
boundary of Ω.

Turning back to our problem, let Ω be a bounded domain in Rn with n ≥ 2
and Q = Ω × (0, T ] be a cylinder in Rn × R+. Denote by ∂Q the usual para-
bolic boundary

{
Ω × {t = 0}

}
∪
{
∂Ω × [0, T ]

}
. For a given vector function

ψ = (ψ1, . . . , ψm) : Q→ Rm satisfying

ψ ∈ L2(0, T ;H1(Ω,Rm)), ψt ∈ L2(Q;Rm),

ψi ≤ 0 a.e. on ∂Q, i = 1, . . . ,m,

we define the admissible set A consisting of vector functions

φ = (φ1, . . . , φm) ∈ C0(0, T ;L2(Ω;Rm)) ∩ L2(0, T ;H1
0 (Ω,Rm))
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such that

φi(·, 0) = 0 a.e. in Ω and φi ≥ ψi a.e. in Q, i = 1, . . . ,m.

Hereafter we adopt the standard summation convention on the repeated
indexes, with 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ m where m ≥ 1.

We are interested in vector-functions u = (u1, . . . , um) : Q→ Rm lying in A
and such that∫ T

0

〈φit, φi − ui〉 dt+

∫
Q

Aαβij (x, t)Dβu
j ·Dα

(
φi − ui

)
dxdt

≥
∫
Q

fαi (x, t) ·Dα

(
φi − ui

)
dxdt

(1)

for all φ∈A with φt∈L2(0, T ;H−1(Ω,Rm)), where F={fαi }∈L2(Q,Rmn) is a
given non-homogeneous term and 〈·, ·〉 denotes the pairing between H−1 and H1

0 .
Such a function u is called a weak solution to the variational inequality (1).

Throughout the paper, the tensor coefficients Aαβij : Q → Rmn×mn are as-
sumed to be uniformly elliptic and uniformly bounded, namely, we suppose that
there exist positive constants λ and Λ such that

λ|ξ|2 ≤ Aαβij (x, t)ξiαξ
j
β and ‖Aαβij ‖L∞(Q,Rmn×mn) ≤ Λ (2)

for all matrices ξ ∈Mm×n and for almost every point (x, t) ∈ Q.
According to the classical theory of the variational inequalities ([1,9,15,24]),

if F ∈ L2(Q,Rmn), there exists a unique weak solution u ∈ A of (1) satisfying
the estimate∣∣∣∣|Du|2

∣∣∣∣
L1(Q)

≤ c
(∣∣∣∣|F|2∣∣∣∣

L1(Q)
+
∣∣∣∣|ψt|2∣∣∣∣L1(Q)

+
∣∣∣∣|Dψ|2∣∣∣∣

L1(Q)

)
(3)

with a positive constant c depending only on λ,Λ,m and |Q|.
This paper addresses the question of how the estimate (3) in L1 can be

replaced with the one in the generalized Morrey space under minimal regularity
requirements on Aαβij and a lower level geometric assumptions on ∂Ω, which will
be specified in the next section.

2. Generalized parabolic Morrey spaces

Let us start with the description of the spaces that we are going to use and the
definitions of the families of domains that we need:

• parabolic cylinder centered in (y, τ) ∈ Rn+1 and of radius r > 0 :

Ir(y, τ) = Br(y)×(τ−r2, τ+r2) =
{

(x, t) ∈ Rn+1 : |x−y| < r, |t−τ | < r2
}

with Lebesgue measure |Ir| = c(n)rn+2. For each fixed (y, τ) ∈ Q we write
Qr = Q ∩ Ir(y, τ).
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• parabolic cube centered in (y, τ) = (y1, y′, τ), y′ = (y2, . . . , y
n) :

Cr(y, τ) =
{

(x1, x′, t) ∈ Rn+1 : |x1 − y1| < r, |x′ − y′| < r, |t− τ | < r2
}

with |Cr| = c(n)rn+2.

• x1-slice of Cr(y, τ) for some fixed x1 ∈ (y1 − r, y1 + r) :

Cx1r (y, τ) =
{

(x′, t) ∈ Rn−1 × R : (x1, x′, t) ∈ Cr(y, τ)
}
.

• elliptic cubes in Rn centered in y = (y1, y′) :

C ′r(y) =
{

(x1, x′) ∈ Rn : |x1 − y1| < r, |x′ − y′| < r
}

with Lebesgue measure |C ′r| = c(n)rn.

In what follows, we use the letter c to denote a constant that can be explicitly
computed in terms of known quantities such as λ,Λ,m, n, p and |Q|.

We call weight a positive measurable function ϕ : Rn+1 × R+ → R+.

Definition 2.1. Let Q be a cylinder in Rn+1. A function f ∈ Lq(Q), 1 < q <∞,
belongs to the generalized Morrey space Lq,ϕ(Q) if the following norm is finite

‖f‖Lq,ϕ(Q) = sup
(y,τ)∈Q
r>0

(
1

ϕ(Ir(y, τ))

∫
Qr

|f(x, t)|q dxdt
) 1

q

.

If ϕ ≡ rλ, λ ∈ (0, n + 2), then Lq,ϕ coincides with the classical Morrey

space Lq,λ. However, there exist examples of weights of more general form as

ϕ(r) = r ln(r + 2) or ϕ(Ir(y, τ)) =
(∫
Ir(y,τ)

w(x, t) dxdt
)α
, 0 < α < 1, where

w ∈ Aq is Muckenhoupt weight with q ∈
(
1, 1

α

)
(see [19]). One more example is

the following: the function f(x) = χ[−1,1]|x|−
1
2 ∈ L1,ϕ(R) with ϕ(I) =

∫
I |x|

α dx,

for α ∈ (−1,−1
2
), where I is any interval in R.

Let M denote the Hardy-Littlewood maximal operator in Rn+1. For any

f ∈ L1
loc(Rn+1) we have

Mf(y, τ) = sup
r>0

1

|Ir(y, τ)|

∫
Ir(y,τ)

|f(x, t)| dxdt.

If D ⊂ Rn+1 is a bounded domain and f ∈ L1(D), thenMf =Mf̃ , where f̃ is
the zero extension of f in Rn+1. It is well known thatM is a bounded sublinear
operator from Lq into itself. Precisely, if f ∈ Lq(Rn+1), q ∈ (1,∞), then∫

Rn+1

|f(x, t)|q dxdt ≤
∫
Rn+1

|Mf(x, t)|q dxdt ≤ c(q, n)

∫
Rn+1

|f(x, t)|q dxdt.
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Moreover, the following weak type estimate holds∣∣{(x, t) ∈ Rn+1 :Mf(x, t) > µ}
∣∣ ≤ cq

µq

∫
Rn+1

|f(x, t)|q dxdt, (4)

for any 1 ≤ q <∞ and any µ > 0.

Lemma 2.2 (Maximal inequality, [19]). Assume that there are constants κ1,
κ2, κ3 > 0 such that for any fixed (y, τ) ∈ Rn+1 and any r > 0 we have

κ1 ≤
ϕ(Is(y, τ))

ϕ(Ir(y, τ))
≤ κ2 for all r ≤ s ≤ 2r, (5)∫ ∞

r

ϕ(Is(y, τ))

sn+3
ds ≤ κ3

ϕ(Ir(y, τ))

rn+2
. (6)

Then, for any 1 < q <∞, there is a constant cq > 0 such that

‖f‖Lq,ϕ(Rn+1) ≤ ‖Mf‖Lq,ϕ(Rn+1) ≤ cq‖f‖Lq,ϕ(Rn+1) for all f ∈ Lq,ϕ(Rn+1).

Impose in addition a kind of monotonicity condition on ϕ, precisely

ϕ(Ir(y, τ)) ≤ ϕ(Is(z, ξ)) for all Ir(y, τ) ⊂ Is(z, ξ). (7)

This implies the boundedness of the quantity

sup
(y,τ)∈Q
r>0

|Ir(y, τ) ∩Q|
ϕ (Ir(y, τ))

≤ κ4, (8)

with a positive constant κ4 depending on n, ϕ and Q. In fact, since Q is a
bounded domain, there exists d > 0 such that Q ⊂ Id(0, 0). Then, if r ≥ 2d for
any (y, τ) ∈ Q we have

|Ir(y, τ) ∩Q|
ϕ(Ir(y, τ))

≤ |Q|
ϕ(Id(0, 0))

.

On the other hand, if 0 < r < 2d, then we see from (6) that κ3
ϕ(Ir(y,τ))
rn+2 ≥∫∞

2d
ϕ(Is(y,τ))
sn+3 ds ≥ ϕ(I2d(y, τ))

∫∞
2d

1
sn+3 ds ≥ ϕ(Id(0, 0)) 1

(n+2)(2d)n+2 . It implies

that for some positive constant c = c(n) it holds

|Ir(y, τ) ∩Q|
ϕ(Ir(y, τ))

≤ crn+2

ϕ (Ir(y, τ))
≤ cκ3(n+ 2)(2d)n+2

ϕ(Id(0, 0))
.

Suppose now that f ∈ Lp,ϕ(Q) with p ∈ (2,∞) and ϕ satisfying (7), then
f ∈ Lp(Q). Precisely, for a fixed (y, τ) ∈ Q we have

sup
(z,ξ)∈Q

max
{
|y − z|,

√
|τ − ξ|

}
< diamQ.
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Hence there exists r∗ < diamQ such that Q ⊂ Ir∗(y, τ) and this gives that

‖f‖Lp(Q) ≤ ϕ(Ir∗(y, τ))
1
p‖f‖Lp,ϕ(Q) ≤ ϕ(I2d(0, 0))

1
p‖f‖Lp,ϕ(Q).

Then the Hölder inequality implies

‖f‖2
L2(Q) ≤ |Q|

1− 2
p‖|f |2‖

L
p
2 (Q)
≤ |Q|1−

2
pϕ(I2d(0, 0))

2
p‖|f |2‖

L
p
2 ,ϕ(Q)

. (9)

3. Statement of the problem and main result

Our goal is to derive regularity estimate for the weak solution to the variational
inequality (1) in the framework of the generalized Morrey spaces. More pre-
cisely, under additional regularity assumptions on the coefficients in (1) and a
suitable geometric condition on the boundary of Ω, we will show that for every
p ∈ (2,∞) and for every ϕ satisfying (5)–(7), it holds that

|Du|2 ∈ L
p
2
,ϕ(Q)

provided

|F|2 ∈ L
p
2
,ϕ(Q) and |ψt|2, |Dψ|2 ∈ L

p
2
,ϕ(Q).

To do this, we first define integral average of Aαβij over x1-slice of Cr(y, τ),
x1 ∈ (y1 − r, y1 + r),

A
αβ

ij Cx1r (y,τ)
(x1) =

1

|Cx1r (y, τ)|

∫
Cx1r (y,τ)

Aαβij (x1, x′, t) dx′dt.

Definition 3.1. We say that (Aαβij ,Ω) are (δ, R)-vanishing of codimension 1, if
the following properties are satisfied:

• For every point (y, τ) ∈ Q and for every number r ∈ (0, 1
3
R] with

dist(y, ∂Ω) = min
x∈∂Ω

dist(y, x) >
√

2r,

there exists a coordinate system depending on (y, τ) and r, whose variables
we still denote by (x, t) so that in this new coordinate system (y, τ) ≡ (0, 0)
is the origin and

1

|Cr(0, 0)|

∫
Cr(0,0)

∣∣∣Aαβij (x, t)− Aαβij Cx1r (0,0)
(x1)

∣∣∣2 dxdt ≤ δ2.
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• For any point (y, τ) ∈ Q and for every number r ∈ (0, 1
3
R] such that

dist(y, ∂Ω) = min
x∈∂Ω

dist(y, x) = dist(y, x0) ≤
√

2r,

there exists a coordinate system depending on (y, τ) and r, whose variables
we still denote by (x, t) such that in this new coordinate system (x0, τ) ≡
(0, 0) is the origin and Ω verifies the Reifenberg condition

Ω∩{x∈C ′3r(0) : x1>3rδ} ⊂ Ω∩C ′3r(0) ⊂ Ω∩{x∈C ′3r(0) : x1>−3rδ} (10)

while the coefficients have small BMO with respect to (x′, t)

1

|C3r(0, 0)|

∫
C3r(0,0)

∣∣∣Aαβij (x, t)− Aαβij Cx13r (0,0)
(x1)

∣∣∣2 dxdt ≤ δ2.

Some remarks are in order to clarify the notion just introduced. If (Aαβij ,Ω)
are (δ, R)-vanishing of codimension 1, then, for each point and for each small
scale, there is a coordinate system such that the coefficients have small bounded
mean oscillation (briefly BMO) in the (x′, t)-variables with no regularity re-
quired with respect to x1, that is, the coefficients can be only measurable in the
direction x1.

The domain Ω is (δ, R)-Reifenberg flat (see [22,26]). Moreover, (10) implies
(cf. [20, 21]) existence of a constant γ = γ(δ, n, ∂Ω) ∈ (0, 1

2
) such that

γ |C ′3r(0)| ≤ |C ′3r(0) ∩ Ω| ≤ (1− γ)|C ′3r(0)| (11)

for each cube C ′3r(0) centered in some point x0 ∈ ∂Ω that we call 0 and r ∈ (0, R
3

].
The constant δ will be determined later, it belongs to (0, 1

8
) and it is in-

variant under a scaling (see Lemma 4.3). Moreover, by means of the scaling
invariant property of the problem (1), (2), the constant R can be assumed to
be any value greater than or equal to 1.

Finally, the numbers
√

2r and 3r are choosen on purpose since we need
enough space to make rotate the cylinder Cr(y, τ) in any spatial direction.

Theorem 3.2. For any given p ∈ (2,∞) and weight ϕ satisfying (5)–(7), sup-

pose that |F|2 ∈ L
p
2
,ϕ(Q) and |ψt|2, |Dψ|2 ∈ L

p
2
,ϕ(Q). Then there exists a

small constant δ = δ(λ,Λ,m, n, p, ϕ) such that if the couple
(
Aαβij ,Ω

)
is (δ, R)-

vanishing of codimension 1, then |Du|2 ∈ L p
2
,ϕ(Q) and we have the estimate∥∥|Du|2

∥∥
L
p
2 ,ϕ(Q)

≤ c
(∥∥|F|2∥∥

L
p
2 ,ϕ(Q)

+
∥∥|ψt|2∥∥L p2 ,ϕ(Q)

+
∥∥|Dψ|2∥∥

L
p
2 ,ϕ(Q)

)
, (12)

where c is a positive constant depending on λ,Λ,m, n, p, ϕ and Q.
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4. Auxiliary Results

In this section, we prove several preliminary results that we are going to use in
the rest of the paper. The main tools in our approach are the Hardy-Littlewood
maximal inequality and a Vitali type covering lemma.

Because of the scaling invariance property of the Reifenberg domain (cf. [6,
Lemma 5.2]), we can take R = 1 hereafter. Fix (y0, τ0) ∈ Q, take a parabolic
cylinder Ir(y0, τ0) and denote Qr = Ir(y0, τ0) ∩ Q. For the weak solution u
of (1), we define the super-level sets

C = {(x, t) ∈ Qr : M(|Du|2) > N2} (13)

and

D = {(x, t) ∈ Qr : M(|Du|2) > 1} ∪ {(x, t) ∈ Qr : M(|F|2) > δ2}
∪ {(x, t) ∈ Qr : M(|ψt|2 + |Dψ|2) > δ2}.

(14)

Let us note that the sets are defined locally and for N > 1 the following inclusion
holds

C ⊂ D ⊂ Qr.

For a.a. (y, τ) ∈ C and for each ρ > 0 we define the function

Θ(ρ) =
|C ∩ Cρ(y, τ)|
|Cρ(y, τ)|

.

Then Θ ∈ C0(0,∞) and by the Lebesgue Differentiation Theorem

Θ(0) = lim
ρ→0+

Θ(ρ) = 1, lim
ρ→+∞

Θ(ρ) = 0.

Lemma 4.1. Let Ω be a bounded (δ, 1)-Reifenberg flat domain. Suppose that

(i) there exists ε ∈ (0, 1) such that Θ(1) < ε for a.a. (y, τ) ∈ C;

(ii) for each ρ > 0 such that Θ(ρ) ≥ ε it holds Qr ∩ Cρ(y, τ) ⊂ D.

Then

|C| ≤ ε

(
10
√

2

1− δ

)n+2

|D|.

Proof. Since Θ(1) < ε, there exists ρ(y,τ) ∈ (0, 1) such that Θ(ρ(y,τ)) = ε and
Θ(ρ) < ε for all ρ > ρ(y,τ).

Consider a family of parabolic cubes {Cρ(y,τ)(y, τ)}(y,τ)∈C which forms an
open covering of C. By the Vitali covering lemma, there exists a disjoint sub-
collection {Cρi(yi, τi)}i≥1 with ρi=ρ(yi,τi)∈(0, 1), (yi, τi)∈C such that Θ(ρi)=ε,∑

i≥1

|Cρi(yi, τi)| ≥ c(n)|C| and C ⊂
⋃
i≥1

C5ρi(yi, τi).
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Since Θ(5ρi) < ε, we have

|C ∩ C5ρi(yi, τi)| < ε|C5ρi(yi, τi)| = ε5n+2|Cρi(yi, τi)|.

Furthermore, making use of the measure density condition obtained from the
(δ, 1)-flatness condition, see [6], we get

|Cρi(yi, τi)| ≤

(
2
√

2

1− δ

)n+2

|Qr ∩ Cρi(yi, τi)|.

Now we have |C| =
∣∣∣⋃i≥1

(
C ∩ C5ρi(yi, τi)

)∣∣∣ ≤ ∑
i≥1 |C ∩ C5ρi(yi, τi)| <

ε
∑

i≥1 |C5ρi(yi, τi)| ≤ ε5n+2
∑

i≥1 |Cρi(yi, τi)| ≤ ε
(

10
√

2
1−δ

)n+2∑
i≥1 |Qr∩Cρi(yi, τi)|.

Having in mind that Θ(ρi) = ε, {Cρi(yi, τi)}i≥1 are mutually disjoint, and con-

dition (ii), we get

|C| ≤ ε1

∣∣∣⋃
i≥1

Qr ∩ Cρi(yi, τi)
∣∣∣ ≤ ε1|D|

with ε1 = ε
(

10
√

2
1−δ

)n+2

.

The next result follows from the standard measure theory.

Lemma 4.2. Let h ∈ L1(Q) be a nonnegative function, ϕ be a weight satisfying
(5)–(7), q ∈ (1,∞) and ζ > 0, θ > 1 be constants. Then h ∈ Lq,ϕ(Q) if and
only if

S := sup
(y,τ)∈Q
r>0

∑
k≥1

θkq|{(x, t) ∈ Qr : h(x, t) > ζθk}|
ϕ(Ir(y, τ))

<∞.

Moreover,
1

c
S ≤ ‖h‖qLq,ϕ(Q) ≤ c(1 + S),

where c = c(θ, ζ, q, ϕ,Q).

Proof. For a.a. (y, τ) ∈ Q we have

1

ϕ(Ir(y,τ))

∫
Qr

hq(x, t) dxdt =
1

ϕ(Ir(y,τ))

∫
{(x,t)∈Qr:h≤ζθ}

hq(x, t) dxdt

+
∑
k≥1

1

ϕ(Ir(y,τ))

∫
{(x,t)∈Qr:ζθk<h≤ζθk+1}

hq(x, t) dxdt
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and hence

1

ϕ(Ir(y, τ))

∫
Qr

hq(x, t) dxdt

≤ (ζθ)q
|Qr|

ϕ(Ir(y, τ))
+
∑
k≥1

(ζθk+1)q

ϕ(Ir(y, τ))

∣∣{(x, t) ∈ Qr : h(x, t) > ζθk}
∣∣

= (ζθ)q

(
|Qr|

ϕ(Ir(y, τ))
+
∑
k≥1

θkq
∣∣{(x, t) ∈ Qr : h(x, t) > ζθk}

∣∣
ϕ(Ir(y, τ))

)
.

Taking the supremum over (y, τ) ∈ Q, r > 0 and making use of (8), we get

‖h‖qLq,ϕ(Q) ≤ c (1 + S)

with a constant depending on q, n, ϕ, ζ, θ and Q. On the other hand

1

ϕ(Ir(y, τ))

∫
Qr

hq(x, t) dxdt

=
q

ϕ(Ir(y, τ))

∫
Qr

(∫ h(x,t)

0

ξq−1dξ

)
dxdt

=
q

ϕ(Ir(y, τ))

∫ ∞
0

∣∣{(x, t) ∈ Qr : h(x, t) > ξ}
∣∣ξq−1 dξ

≥ q

ϕ(Ir(y, τ))

∑
k≥1

∣∣{(x, t) ∈ Qr : h(x, t) > ζθk}
∣∣ ∫ ζθk

ζθk−1

ξq−1 dξ

= ζq(1− θ−q) 1

ϕ(Ir(y, τ))

∑
k≥1

θkq
∣∣{(x, t) ∈ Qr : h(x, t) > ζθk}

∣∣.
Taking again the supremum over (y, τ) ∈ Q, r > 0, we get ‖h‖qLq,ϕ(Q) ≥

1
c
S.

In the proof of our main theorem, we employ the fact that the obstacle
problem here considered is invariant under scaling and normalization. This
property follows by straightforward calculations.

Lemma 4.3. Let u ∈ A be the weak solution to the problem (1), (2). Assume
that (Aαβij ,Ω) are (δ, R)-vanishing of codimension 1. Fix M > 1, 0 < ρ < 1,
and define the rescaled maps

Ãαβij (x, t) = Aαβij (ρx, ρ2t), ũ(x, t) =
u(ρx, ρ2t)

Mρ
,

F̃(x, t) =
F(ρx, ρ2t)

M
, ψ̃(x, t) =

ψ(ρx, ρ2t)

Mρ
,
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and the sets Ω̃ =
{
x
ρ

: x ∈ Ω
}

, Q̃ = Ω̃× (0, T̃ ] =
{(

x
ρ
, t
ρ2

)
: (x, t) ∈ Q

}
and

Ã =
{
φ̃ ∈ C0(0, T̃ ;L2(Ω̃,Rm)) ∩ L2(0, T̃ ;H1

0 (Ω̃,Rm)) :

φ̃i(·, 0) = 0 a.e. in Ω̃ and φ̃i ≥ ψ̃i a.e. in Q̃, i = 1, . . . ,m
}
.

Then

1. Ãαβij : Q̃→ Rmn×mn satisfy the basic condition (2) with the same constants
λ and Λ.

2.
(
Ãαβij , Ω̃

)
are (δ, R

ρ
)-vanishing of codimension 1.

3. ũ ∈ Ã is the weak solution to the resulting variational inequality:∫ T̃

0

〈φ̃it, φ̃i−ũi〉 dt+
∫
Q̃

Ãαβij (x, t)Dβũ
j ·Dα

(
φ̃i−ũi

)
dxdt≥

∫
Q̃

f̃αi ·Dα

(
φ̃i−ũi

)
dxdt,

for all φ̃ ∈ Ã with φ̃t ∈ L2(0, T̃ ;H−1(Ω̃,Rm)).

5. Global gradient estimate

Let u ∈ A be weak solution to (1), (2). Fix p ∈ (2,∞) and take ϕ satisfying
(5)–(7). Suppose that

|F|2 ∈ L
p
2
,ϕ(Q) and |ψt|2, |Dψ|2 ∈ L

p
2
,ϕ(Q).

We will show that Du ∈ L p
2
,ϕ(Q) with the estimate (12) under the regularity

requirements staying in Definition 3.1. Recall that Qr = Q ∩ Ir(y0, τ0) for a
fixed point (y0, τ0) ∈ Q. Denote in addition Ωr = Ω∩Br(y0), ∂Ωr = ∂Ω∩Br(y0)
and ∂Qr = ∂Q ∩ Ir(y0, τ0).

Now, in order to apply Lemma 4.1 we need the following result.

Lemma 5.1. There exists a large constant N = N(λ,Λ,m, n) > 1 such that
for each 0 < ε < 1 there exists a small δ > 0, depending on known quantities,

such that if
(
Aαβij ,Ω

)
are (δ, R)-vanishing of codimension 1 and if Cρ(y, τ) with

(y, τ) ∈ Qr and ρ ∈ (0, 1) satisfies∣∣{(x, t)∈Qr:M(|Du|2)>N2
}
∩ Cρ(y, τ)

∣∣ ≥ ε |Cρ(y, τ)| (15)

then

Qr ∩ Cρ(y, τ) ⊂
{

(x, t)∈Qr:M(|Du|2)>1
}
∪
{

(x, t)∈Qr:M(|F|2)>δ2
}

∪
{

(x, t)∈Qr:M(|ψt|2+|Dψ|2)>δ2
}
.

(16)
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Proof. Because of the scaling invariance property of Ω (cf. [6, Lemma 5.2]) we
can take arbitrary R ≥ 1. For technical convenience we choose R = 49 and take
also ρ and r such that C ′6ρ ⊂ Br(y0) with y ∈ Ωr.

We argue by contradiction supposing that in Qr the maximal functions do
not satisfy (16), hence Cρ(y, τ) satisfies (15) but the claim (16) is false. Then
there exists a point (y1, τ1) ∈ Qr ∩ Cρ(y, τ) such that for every σ > 0 we have

1

|Cσ(y1, τ1)|

∫
Qr∩Cσ(y1,τ1)

|Du(x, t)|2 dxdt ≤ 1,

1

|Cσ(y1, τ1)|

∫
Qr∩Cσ(y1,τ1)

|F(x, t)|2 dxdt ≤ δ2 (17)

1

|Cσ(y1, τ1)|

∫
Qr∩Cσ(y1,τ1)

(
|ψt(x, t)|2 + |Dψ(x, t)|2

)
dxdt ≤ δ2.

We consider only the lateral boundary case C ′6ρ(y) ∩ ∂Ωr 6= ∅. The interior
case C ′6ρ(y) ∩ ∂Ωr = ∅ can be handled in a simpler way, since there is no is-
sue related to the boundary. The estimates on the corner and on the bottom
can be treated in the same way as in the estimates near the lateral bound-
ary with a proper extension of F and ψ defined on (0, T ) to R. Take a lateral
boundary point y2 ∈ C ′6ρ(y)∩∂Ωr. According to Definition 3.1, there exist a new
coordinate system, modulo reorientation of the axes and translation whose vari-
ables we denote by (z, ξ) such that in this new coordinate system, the origin is
(y2+42ρδ~n0, τ) ≡ (0, 0). Here ~n0 is unit inward vector at y2 denoting the normal
direction z1. Then in the new coordinate system the considered points become
(y, τ) ≡ (w, ζ), (y1, τ1) ≡ (w1, ζ1) and (w1, ζ1) ⊂ Cρ(w, ζ) ⊂ C7ρ(0, 0) for δ < 1

8
.

According to Definition 3.1 we can write

Ωr ∩ {C ′42ρ(0) : z1 > 0} ⊂ Ωr ∩ C ′42ρ(0) ⊂ Ωr ∩
{
C ′42ρ(0) : z1 > −84ρδ

}
, (18)

and

−
∫
C42ρ(0,0)

∣∣∣Aαβij (z, ξ)− Aαβij Cz142ρ(0,0)
(z1)

∣∣∣2 dzdξ ≤ δ2. (19)

Since C42ρ(0, 0) ⊂ C49ρ(w1, ζ1), by (17) we get

1

|C42ρ(0, 0)|

∫
C42ρ(0,0)∩Qr

|Du(z, ξ)|2 dzdξ

≤ 2

(
49

42

)n+2
1

|C49ρ(w1, ζ1)|

∫
C49ρ(w1,ζ1)∩Qr

|Du(z, ξ)|2 dzdξ

< 2n+3.

(20)
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In a similar manner, we get

1

|C42ρ(0, 0)|

∫
C42ρ(0,0)∩Qr

|F(z, ξ)|2 dzdξ < 2n+3δ2,

1

|C42ρ(0, 0)|

∫
C42ρ(0,0)∩Qr

(
|ψξ(z, ξ)|2 + |Dψ(z, ξ)|2

)
dzdξ < 2n+3δ2.

(21)

Using now the concept of localizable solutions, introduced in [24, 25], we find
that∫ ζ3

ζ2

〈φiξ, φi − ui〉 dξ +

∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβu
j ·Dα

(
φi − ui

)
dzdξ

≥
∫
C42ρ(0,0)∩Qr

fαi (z, ξ) ·Dα

(
φi − ui

)
dzdξ

(22)

with ζ2 = −(42ρ)2, ζ3 = (42ρ)2 and i = 1, . . . ,m. The inequality (22) holds for
all φ ∈ C0

(
ζ2, ζ3;L2(C ′42ρ(0) ∩ Ωr,Rm)

)
∩ L2

(
ζ2, ζ3;H1

0 (C ′42ρ(0) ∩ Ωr,Rm)
)

with
φt∈L2(ζ2, ζ3;H−1(C ′42ρ(0) ∩ Ωr,Rm)) such that φi(·, ζ2) = 0 a.e. in C ′42ρ(0) ∩ Ωr

and φi ≥ ψi a.e. in C42ρ(0, 0) ∩ Qr. Let us note that the weak solution in (1)
coincides with the localizable solution in (22) under a H1-extension property of
the domain, as it was shown in [24, 25]. Needless to say, δ-Reifenberg domain
enjoys such a property, see [14,16,21].

Let k ∈ C0(ζ2, ζ3;L2(C ′42ρ(0) ∩ Ωr,Rm)) ∩ L2(ζ2, ζ3;H1
0 (C ′42ρ(0) ∩ Ωr,Rm))

be the weak solution of the systemkiξ−Dα

(
Aαβij (z, ξ)Dβk

j
)

=ψiξ−Dα

(
Aαβij (z, ξ)Dβψ

j
)

in C42ρ(0, 0)∩Qr

ki=ui on C42ρ(0, 0)∩∂Qr

(23)

with i = 1, . . . ,m. Remembering ki = ui ≥ ψi on C42ρ(0, 0) ∩ ∂Qr and employ-
ing the comparison principle (see [1, Lemma 2.8]), we deduce ki ≥ ψi a.e. in
C42ρ(0, 0) ∩Qr. We then substitute φ = k into (22) to deduce∫ ζ3

ζ2

〈kiξ, ki−ui〉 dξ +

∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβu
j ·Dα

(
ki−ui

)
dzdξ

≥
∫
C42ρ(0,0)∩Qr

fαi (z, ξ)·Dα

(
ki−ui

)
dzdξ.

(24)

Taking as a test function k− u for (23), we have∫ ζ3

ζ2

〈kiξ, ki−ui〉 dξ +

∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβk
j ·Dα

(
ki−ui

)
dzdξ

=

∫
C42ρ(0,0)∩Qr

ψiξ
(
ki−ui

)
dzdξ +

∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβψ
jDα

(
ki−ui

)
dzdξ

(25)
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Combining (24) and (25), we obtain∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβ

(
kj−uj

)
·Dα

(
ki−ui

)
dzdξ

≤
∫
C42ρ(0,0)∩Qr

ψiξ
(
ki−ui

)
dzdξ +

∫
C42ρ(0,0)∩Qr

Aαβij (z, ξ)Dβψ
jDα

(
ki−ui

)
dzdξ

−
∫
C42ρ(0,0)∩Qr

fαi (z, ξ)·Dα

(
ki−ui

)
dzdξ.

We then use the uniform ellipticity condition (2) and the smallness assumptions
(20), (21), to conclude

1

|C42ρ(0, 0)|

∫
C42ρ(0,0)∩Qr

|D(k− u)|2 dzdξ ≤ cδ2.

Since k is the weak solution to the parabolic system, it follows from an argument,
very similar to that of [6, Lemma 4.8], that we can find a small positive constant
δ = δ(ε, λ,Λ,m, n) > 0 and a function v such that for such δ satisfying (18),
(19) and (21), one has

1

|C14ρ(0, 0)|

∫
C14ρ(0,0)∩Qr

|D(k− v)|2 dzdξ ≤ cδσ

for some σ = σ(λ,Λ,m, n) > 0, and

‖Dv‖2
L∞(C21ρ(0,0)∩Qr) ≤ N2

1 , (26)

where N1 is a universal constant depending on λ,Λ,m, and n. Therefore, for
any small η > 0 and δ = δ(η) we get

1

|C14ρ(0, 0)|

∫
C14ρ(0,0)∩Qr

|D(u− v)|2 dzdξ ≤ c(δ2 + δσ) = η2. (27)

Now, taking N = max
{

2N1, 2
n+2
2

}
, we get as follows.

|{(z, ξ) ∈ Qr : M(|Du|2) > N2} ∩ C7ρ(0, 0)|
|C7ρ(0, 0)|

≤ |{(z, ξ) ∈ Qr : M(|D(u− v)|2) > N2
1} ∩ C7ρ(0, 0)|

|C7ρ(0, 0)|

+
|{(z, ξ) ∈ Qr : M(|Dv|2) > N2

1} ∩ C7ρ(0, 0)|
|C7ρ(0, 0)|

(26)

≤ c

|C14ρ(0, 0)|

∫
C14ρ(0,0)∩Qr

|D(u− v)|2 dzdξ
(27)

≤ cη2,
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which implies∣∣{(z, ξ) ∈ Qr : M(|Du|2) > N2
}
∩ Cρ(w, ζ)

∣∣ ≤ cη2|Cρ(w, ζ)|,

since Cρ(w, ζ) ⊂ C7ρ(0, 0). However, this contradicts (15), since this estimate is
invariant under the change of variables and η > 0 is arbitrary, which completes
the proof.

Fix now ε > 0 and take δ and N as given in Lemma 5.1. Making use
of Lemma 4.1, we will obtain power decay estimate of the super-level sets of
M(|Du|2).

Lemma 5.2. Under the assumptions of Lemma 5.1, suppose in addition that
Θ(1) < ε for each (y, τ) ∈ Qr. Then for all positive integers k, we have∣∣{(x, t) ∈ Qr : M(|Du|2) > N2k

}∣∣
≤ εk1

∣∣{(x, t) ∈ Qr : M(|Du|2) > 1
}∣∣

+
k∑
i=1

εi1
∣∣{(x, t) ∈ Qr : M(|F|2) > δ2N2(k−i)})

+
k∑
i=1

εi1
∣∣{(x, t) ∈ Qr : M(|ψt|2 + |Dψ|2) > δ2N2(k−i)}∣∣

(28)

with ε1 = ε
(

10
√

2
1−δ

)n+2

.

Proof. The Lemma 5.1 and assumption Θ(1) < ε ensure the validity of the
hypothesis of Lemma 4.1 for the sets C and D, which gives immediately (28)
for k = 1. Further, we proceed with the proof by induction, in a similar manner
as in [7]. Suppose that (28) holds true for some k > 1. Define the vector-
functions u1 = u

N
, and F1 = F

N
and ψ1 = ψ

N
. It is easy to see that u1 is a

weak solution to the problem (1) with a right-hand side F1. Hence, Lemma 5.1
and the assumption Θ(1) < ε hold with sets C and D corresponding to u1 as
defined in (13) and (14). Then (28) holds true for u1 with the same k > 1.
The definitions of u1,F1 and ψ1 ensure the inductive passage from k to k + 1
for u.

We are in a position now to prove Theorem 3.2.

Proof of Theorem 3.2. Assume that the norms of F and ψ are small enough.
More precisely, we can obtain this by taking

K := ‖|F|2‖
L
p
2 ,ϕ(Q)

+ ‖|ψt|2‖L p2 ,ϕ(Q)
+ ‖|Dψ|2‖

L
p
2 ,ϕ(Q)

,

ũ =
δu(x, t)√

K
, F̃ =

δF(x, t)√
K

, ψ̃ =
δψ(x, t)√

K
(29)
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instead of u, F and ψ in (1).

Consider the super-level set C defined for ũ. For each (y, τ) ∈ C holds
|C∩C1(y,τ)|
|C1(y,τ)| ≤ c|C| ≤ c

∫
Qr
M(|Dũ|2)(x, t) dxdt ≤ c

∫
Qr
|Dũ(x, t)|2 dxdt ≤

c
∫
Q
|Dũ(x, t)|2 dxdt ≤ c

∫
Q

(
|F̃(x, t)|2 + |ψ̃t|2 + |Dψ̃|2

)
dxdt ≤ c

(
‖|F̃|2‖

L
p
2 ,ϕ(Q)

+

‖|ψ̃t|2‖L p2 ,ϕ(Q)
+ ‖|Dψ̃|2‖

L
p
2 ,ϕ(Q)

)
≤ cδ2 where we have used (9). Taking δ small

enough we get

Θ(1) =
|C ∩ C1(y, τ)|
|C1(y, τ)|

≤ cδ2 < ε.

Now we can apply Lemma 4.2 with h =M(|Dũ|2), θ = N2, λ = 1 and q = p
2
.

Thus, using Lemma 5.2, we get

Σ ≡
∞∑
k=1

N2k p
2

∣∣{(x, t) ∈ Qr : M(|Dũ|2) > N2k
}∣∣

ϕ(Ir(y, τ))

≤
∞∑
k=1

Nkpεk1 |{(x, t) ∈ Qr :M(|Dũ|2) > 1}|
ϕ(Ir(y, τ))

+
∞∑
k=1

Nkp

k∑
i=1

εi1

∣∣∣{(x, t) ∈ Qr :M(|F̃|2) > δ2N2(k−i)
}∣∣∣

ϕ(Ir(y, τ))

+
∞∑
k=1

Nkp

k∑
i=1

εi1

∣∣∣{(x, t) ∈ Qr :M(|ψ̃t|2 + |Dψ̃|2) > δ2N2(k−i)
}∣∣∣

ϕ(Ir(y, τ))

≤
∞∑
k=1

(Npε1)k
|Qr|

ϕ(Ir(y, τ))

+
∞∑
i=1

(Npε1)i
∞∑
k=i

N (k−i)p

∣∣∣{(x, t) ∈ Qr :M(|F̃|2) > δ2N2(k−i)
}∣∣∣

ϕ(Ir(y, τ))︸ ︷︷ ︸
Σ′

+
∞∑
i=1

(Npε1)i
∞∑
k=i

N (k−i)p

∣∣∣{(x, t) ∈ Qr :M(|ψ̃t|2 + |Dψ̃|2) > δ2N2(k−i)
}∣∣∣

ϕ(Ir(y, τ))︸ ︷︷ ︸
Σ′′

(8)

≤
∞∑
k=1

(Npε1)k (κ4 +Σ ′ +Σ ′′) .

To estimate Σ ′ and Σ ′′ we apply the maximal inequality, Lemma 2.2, and
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the measure estimate Lemma 4.2. Precisely

Σ ′ =
1

ϕ(Ir(y, τ))

∞∑
k=i

N2(k−i) p
2

∣∣∣{(x, t) ∈ Qr :M
( |F̃|2
δ2

)
> N2(k−i)

}∣∣∣
≤ c

ϕ(Ir(y, τ))

(
|Qr|+

∫
Qr

M
( |F̃|2
δ2

) p
2
(x, t) dxdt

)

≤ c

ϕ(Ir(y, τ))

(
|Qr|+

∫
Qr

|F̃(x, t)|p

δp
dxdt

)
.

In a similar way we estimate also Σ ′′.

Σ ′′ ≤ c

ϕ(Ir(y, τ))

(
|Qr|+

∫
Qr

|ψ̃t(x, t)|p + |Dψ̃(x, t)|p

δp
dxdt

)
.

Unifying the above estimates and applying again (8), we get

Σ ≤ c
∞∑
k=1

(Npε1)k
[
κ4 +

1

ϕ(Ir(y, τ))

∫
Qr

|F̃(x, t)|p

δp
dxdt

+
1

ϕ(Ir(y, τ))

∫
Qr

|ψ̃t(x, t)|p + |Dψ̃(x, t)|p

δp
dxdt

]
.

Since S is the supremum of Σ over (y, τ) ∈ Q and r > 0, we obtain

S ≤ c
∞∑
k=1

(Npε1)k
[
1 +

1

δp
‖F̃‖pLp,ϕ(Q) +

1

δp

(
‖ψt‖pLp,ϕ(Q) + ‖Dψ̃‖pLp,ϕ(Q)

)]
≤ c

∞∑
k=1

(Npε1)k ,

where we have used (29) in the last inequality above.

We now recall ε1 =ε
(

10
√

2
1−δ

)n+2

and 0<δ< 1
8
, to see that ε1≤c1ε, the constant

c1 depending only on n. Taking ε small enough such that Npε1≤Npc1ε< 1, we

get S<∞. In view of Lemma 5.1 and the substitution (29), we get

‖M(|Du|2)‖
p
2

L
p
2 ,ϕ(Q)

≤ c

(
‖|F|2‖

p
2

L
p
2 ,ϕ(Q)

+ ‖|ψt|2‖
p
2

L
p
2 ,ϕ(Q)

+ ‖|Dψ|2‖
p
2

L
p
2 ,ϕ(Q)

)
,

which gives (12) through the maximal inequality.
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