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Abstract. In this note, we consider a Neumann problem for nonlocal nonlinear dif-
fusion equation with reaction, which may be seen as a significant generalization of
the usual Neumann problem for the heat equation. For the blow-up solutions, the
blow-up rate estimates and spacial localization of blow-up set are studied.
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1. Introduction

In recent years, various nonlocal problems governed by differential equations
have been studied deeply due to their important values in sciences and tech-
nologies, and many interesting results have been established, please see, for
example, [8,10,13–15,17]) and some references mentioned below. In particular,
in the study of the population biology, a class of nonlocal diffusion equations
was proposed to model the spatial diffusion of certain types of populations (see,
e.g., [9]). Such class of equations shares many properties with the classical heat
equation and has, in some cases, better effects in applications than the tradi-
tional models such as reaction-diffusion equations, a prototype of which involves
the distribution u of the density of a single population satisfying the following
integral equation

ut(x, t) = J ∗ u− u(x, t) =

∫
Rn

J(x− y)u(y, t)dy − u(x, t), (1)
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where J(x − y) is interpreted as the probability distribution of jumping from
location y to location x, (J ∗u)(x, t) is the rate at which individuals are arriving
to position x from all other places and −u(x, t) = −

∫
Rn J(y−x)u(x, t)dy is the

rate at which they are leaving location x to travel to all other sites. Neumann
problem (1) is called a nonlocal diffusion equation, since the diffusion of the
density u at a point x and time t does not only depend on u(x, t), but on all
the values of u in a neighborhood of x through the convolution term J ∗ u.

Equations (1) and its variations have been extensively studied through the
last decades. In view of the biologically meaningful question whether or not
populations spontaneously form aggregates, some studies focused on the issue
whether solutions exist globally or blow up. Some significant contributions
along this line have been made, among them for instance are [6, 9, 16] and the
references therein.

A significant generalization for Neumann problem (1) is following the non-
linear nonlocal diffusion equation with reaction

ut(x, t)=

∫
Ω

(
J
( x−y

uα(y, t)

)
u1−nα(y, t)−J

( x−y

uα(x, t)

)
u1−nα(x, t)

)
dy+χuk(x, t), (2)

x ∈ Ω, t > 0, where Ω is a connected bounded smooth domain in Rn (n≥ 1),
χ > 0, 0 < α ≤ 1

n
are constants, and the kernel J : Rn → R, with compact sup-

port in the unit ball and
∫
Rn J(x)dx = 1, is a non-negative, smooth, symmetric

radially and strictly decreasing function.

Let us note that in (2), the integral is only in Ω, which means the diffusion
takes place only in Ω, no individual may enter or leave the domain, this is called
Neumann boundary conditions (see [1] for details).

Here, some recent work closely related to Neumann problem (2) is men-
tioned. Pazoto and Rossi [11] studied the global well-posedness and asymptotic
behavior of the solutions for (2) when α = 0, χ = 1 and Ω = Rn. Pézez-Llanos
and Rossi [12] considered the blow-up conditions, blow-up rates, and blow-up
set for (2) when α = 0, χ = 1 and Ω is bounded. As to α = 1, χ = 0 and
Ω = [−L,L], Bogoya et al. [4] established the existence and uniqueness of solu-
tions and a comparison principle for (2), and proved that the solutions approach
the mean value of the initial conditions asymptotically as t → ∞. Moreover,
from Bogoya et al. [5] and Cortazar et al. [7] one can find results on the asymp-
totic behavior of the solutions for a nonlinear nonlocal diffusion operator under
blowing-up boundary conditions of Dirichlet or Neumann type. Let us notice in
particular that in [3] the blow-up phenomenon for Neumann problem (2) with
a more general source function is analyzed and the blow-up rate estimates are
given for some particular sources. However, the author did not consider the
spacial location of the set where the solution blows up.

Following these work, in the present paper we are interested in studying the
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Neumann problem (2) equipped with an initial condition

u(x, 0) = u0(x), x ∈ Ω. (3)

The line, which we will go along is that we establish the blow-up rate estimates
for the blow-up solutions, which allows us to localize the blow-up set near any
point in Ω just by taking an initial datum being very large near that point and
not so large in the rest of the domain. The theorems formulated are extensions
of many previous results on the nonlocal diffusion equations.

2. Results and proofs

Denote QT = Ω × (0, T ). We begin by introducing the Banach space
YT = C([0, T ];C(Ω)) equipped the norm

∥z∥YT
= max

0≤t≤T
∥z(·, t)∥L∞(Ω) = max

0≤t≤T
max
Ω

|z(x, t)|.

We use the following nature definition of solution, sub- and supersolution.

Definition 2.1. A pair of nonnegative functions ũ, û ∈ C([0, T ];C(Ω)) are,
respectively, called supersolution and subsolution of problem (2), (3) in QT if ũ
satisfies

ũt(x, t) ≥
∫
Ω

(
J
( x− y

ũα(y, t)

)
ũ1−nα(y, t)− J

( x− y

ũα(x, t)

)
ũ1−nα(x, t)

)
dy

+ χũk(x, t),

ũ(x, 0) ≥ u0(x),

(4)

and û satisfies (4) in the reverse order. Further, we say that u is a solution of
problem (2), (3) if it is both a subsolution and a supersolution of (2)- (3) in QT .

On YT we define the mapping Γ as

Γ(u)(x, t) =

∫ t

0

∫
Ω

(
J
( x− y

uα(y, τ)

)
u1−nα(y, τ)− J

( x− y

uα(x, τ)

)
u1−nα(x, τ)

)
dydτ

+ χ

∫ t

0

|u|k−1u(x, τ)dτ + u0(x)

for each u ∈ YT .
Similar to [12, Theorem 1.1], we can prove that Γ is well defined. Moreover,

Γ is a strict contraction on an appropriate ball of YT . This enables us to obtain
the following result.
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Theorem 2.2. Given a positive initial datum u0. Then there exists tmax =
tmax(u0) > 0 and a unique solution u ∈ C([0, tmax);C(Ω)) of problem (2), (3).
Also, if tmax < +∞, then

lim sup
t→tmax

∥u(·, t)∥L∞(Ω) = +∞.

Moreover, we have∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx+ χ

∫
Ω

∫ t

0

uk(x, τ)dτdx

for every t ∈ [0, tmax).

We shall also need the following comparison principle for Neumann problem
(2), (3).

Theorem 2.3. Let ũ, û be supersolution and subsolution of Neumann problem
(2), (3) in QT , respectively. Then ũ(x, t) ≥ û(x, t) for all (x, t) ∈ QT .

Proof. The proof is a trivial modification of that of [2, Theorem 3.6], hence we
omit it here.

Corollary 2.4. Let u ∈ C([0, tmax);C(Ω)) be a solution of problem (2), (3)
with a positive initial datum u0. Then u(x, t) > 0 for all (x, t) ∈ Qtmax.

In the following theorem we will analyze the blow-up condition and blow-up
rate.

Theorem 2.5. Given a positive initial datum u0. We have the following asser-
tions:

(1) if 0 < k ≤ 1, then the solution of problem (2), (3) is global.

(2) if k > 1, then the solution u of problem (2), (3) blows up in a finite
time tmax. Moreover, we have

lim
t→tmax

(tmax − t)
1

k−1 max
x∈Ω

u(x, t) =
( 1

χ(k − 1)

) 1
k−1

,

tmax ≤ 1

χ(k − 1)

(
|Ω|∫

Ω
u0(x)dx

)k−1

.

(5)

Proof. Let us consider the following ODE

w′(t) = χwk(t). (6)

It is easy to verify that if 0 < k ≤ 1, then the continuous solution of (6) with

w(0) = max
x∈Ω

u0(x)
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is a global supersolution of problem (2), (3), which together with Theorem 2.3
proves that the assertion (1) holds.

For the case when k > 1, we see that the continuous solution of (6) with

w(0) = min
x∈Ω

u0(x) > 0

is a subsolution of problem (2), (3), which, thanks to Theorem 2.3, implies that
the corresponding solution blows up in a finite time.

In the sequel, let tmax < ∞ be the maximal existence time of the solution
u corresponding to a positive initial datum u0. To establish the blow-up rate,
we can estimate

ut(x, t) ≥ −
∫
Rn

J
( x− y

uα(x, t)

)
u1−Nα(x, t)dy + χuk(x, t) = −u(x, t) + χuk(x, t).

So,

max
x∈Ω

ut(x, t) ≥ max
x∈Ω

uk(x, t)
(
χ−

(
max
x∈Ω

u(x, t)
)1−k)

. (7)

On the other hand, letting x∗ ∈ Ω such that maxx∈Ω u(x, t) = u(x∗, t), we
have

J
( x∗− y

uα(y, t)

)
u1−nα(y, t) ≤ J

( x∗− y

uα(x∗, t)

)
u1−nα(x∗, t), y ∈ Ω, t ∈ (0, tmax).

Accordingly, one finds

ut(x
∗, t)=

∫
Ω

(
J
( x∗−y

uα(y, t)

)
u1−nα(y, t)− J

( x∗−y

uα(x∗, t)

)
u1−nα(x∗, t)

)
dy + χuk(x∗, t)

≤ χuk(x∗, t),

which enables us to conclude that u(x∗, t) ≥
(

1
χ(k−1)(tmax−t)

) 1
k−1

. Therefore,

invoking (7) it follows that

max
x∈Ω

ut(x, t) ≥ max
x∈Ω

uk(x, t)χ(1− (k − 1)(tmax − t)).

Integrating the inequality above in (t, tmax), we thus have

max
x∈Ω

u(x, t) ≤ (χ(tmax − t))
1

1−k

(
(k − 1)− (k − 1)2(tmax − t)

2

) 1
1−k

. (8)

Taking the limit as t → tmax, we obtain the first assertion in (5).
Finally, integrating problem (2), (3) in Ω and applying Fubini’s theorem

one has

∂

∂t

∫
Ω

u(x, t)dx = χ

∫
Ω

uk(x, t)dx ≥ χ|Ω|1−k

(∫
Ω

u(x, t)dx

)k

,

which implies that the second assertion in (5) remains true.
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Next we deal with the spacial location of the set where the solution blows
up. The blow-up set of solution u will be denoted by

S(u) = {x ∈ Ω : there exists xn → x, tn → tmax, u(xn, tn) → ∞},

where tmax is the maximal existence time of u.
We denote Dr(x) the ball in Ω centered at x with radius r. Below the

letters Ci will denote various positive constants.

Theorem 2.6. Let k ≥ 2− nα. Then for every x0 ∈ Ω and ε > 0, there exists
an initial datum u0 such that S(u) is contained in Dε(x0).

Proof. Given x0 ∈ Ω and ε > 0. Let

u0(x) = Mg(x) + µ, x ∈ Ω,

where g is a nonnegative smooth function with supp(g) ⊂ D ε
2
(x0) and M,µ > 0

are constants to be specified later. Note that u0(x) = µ for every x ∈ Ω\Dε(x0).
Also, since tmax ≤ C1

Mk−1 due to (5), one can choose an appropriate M such
that tmax is as small as we need below.

From (8) it follows that

max
x∈Ω

u(x, t) ≤ C2(χ(tmax − t))−
1

k−1

for small tmax as appropriate, which enables us to estimate

ut(x, t) ≤
∫
Ω

J
( x−y

uα(y, t)

)
u1−nα(y, t)dy+χuk(x, t) ≤ C3(tmax−t)−

1−nα
k−1 +χuk(x, t).

Let v be the continuous solution of the following ODE:

v′(t) = C3(tmax − t)−
1−nα
k−1 + χvk(t)

with initial datum v(0)=µ. Then from Theorem 2.3 it follows that u(x, t)≤v(t)
for x ∈ Ω \Dε(x0).

In the sequel, we write

λ(s) = e−
1−nα
k−1

sv(t),

where s = − ln(tmax − t). It is clear that λ(s) > 0. Moreover, we have

λ′(s) = −1− nα

k − 1
λ(s) + C3e

−s + χe−nαsλk(s), (9)

which implies that λ′(−lntmax) < 0 for µ, tmax small enough.
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We claim that
λ′(s) < 0 for all s > −lntmax. (10)

Indeed, if this is not the case, there exists a first time s∗ such that λ′(s∗) = 0.
At the time s∗ we obtain

λ′′(s∗) = −1− nα

k − 1
λ′(s∗)− C3e

−s∗ + χe−nαs∗λk−1(s∗)(kλ′(s∗)− nαλ(s∗))

= −C3e
−s∗ − χnαe−nαs∗λk(s∗).

From which we see that λ′′(s∗) < 0, a contradiction. Hence, from (9) and (10)
one finds that

λ(s) → 0 as s → +∞. (11)

Assume that γ is a constant satisfying

1− knα

k
≤ γ(1− nα) ≤ (k − 1)(1− nα)

k
.

From (9) we have

λ′(s) +
γ(1− nα)

k − 1
λ(s) = λ(s)

(
− (1− γ)(1− nα)

k − 1
+ χe−nαsλk−1(s)

)
+ C3e

−s.

Letting s be large enough, we have, thanks to (11), that

λ′(s) +
γ(1− nα)

k − 1
λ(s) ≤ C3e

−s.

Accordingly, λ(s) ≤ C4e
− γ(1−nα)

k−1
s, which together with (9) enables us to obtain

λ′(s) +
1− nα

k − 1
λ(s) ≤ C3e

−s + χCk
4 e

−( kγ(1−nα)
k−1

+nα)s.

So, λ′(s) + 1−nα
k−1

λ(s) ≤ C5e
−( kγ(1−nα)

k−1
+nα)s. Therefore, we get

λ(s) ≤ C6e
− 1−nα

k−1
s,

which implies that v(t)≤C6 and hence u(x, t) is bounded for every x∈Ω\Bµ(x0),
as desired. This completes the proof.
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