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Abstract. A family of non-trivial, essentially non-self-adjoint wave equations which
satisfy Huygens’ principle is given. It is constructed on a 4-dimensional Lorentzian
space which is a product of two 2-dimensional spaces of constant curvature. Prior
to this example, the only known non-trivial Huygens equation was the scalar wave
equation on the exact plane wave spacetime as presented by Günther.
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1. Introduction

This paper concerns Hadamard’s problem of diffusion of waves for second order,
linear, homogeneous, partial differential equations of normal hyperbolic type for
an unknown function u in n independent variables. Such an equation may be
written in coordinate invariant form as

F (u) := gij∇i∇ju+ Ai∇iu+ Cu = 0 , (1)

where gij are the contravariant components of the metric tensor g of a Lorentz-
ian space (M,g) of signature 2−n and ∇i denotes the covariant derivative with
respect to the Lorentzian connection. The coefficients gij, Ai, and C as well
as M are assumed to be of class C∞.

This problem arises in the study of Cauchy’s problem for the equation (1)
which is the problem of determining a solution which assumes given values for u
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and its normal derivative on a given space-like (n − 1)-dimensional submani-
fold S. These given values are called the Cauchy data. The first general solution
to Cauchy’s problem for (1) was given by Hadamard [18]. Hadamard’s theory is
local in the sense that it is restricted to geodesic simply convex neighbourhoods
of M . A modern treatment is given by Friedlander [15]. The considerations of
this paper are entirely local.

The question of how the value of the solution u at a point x0 ∈M depends
on the Cauchy data is of considerable interest. Hadamard shows that in general
u(x0) depends on the data on and in the interior of the intersection of the
retrograde characteristic conoid C−(x0) with the initial surface S. If the solution
depends only on the data in an arbitrarily small neighbourhood of S ∩ C−(x0)
for every Cauchy problem and for every x0, one says that the equation satisfies
Huygens’ principle or is a Huygens equation. Examples of such equations are
the ordinary wave equations

∂2u

∂x12
−

2m∑
i=2

∂2u

∂xi2
= 0 , (2)

in an even number of variables n = 2m > 4, which we denote by EM. Hadamard
asked the fundamental question: for which equations is Huygens’ principle true?
This is called Hadamard’s problem in the literature. He showed that in order
for Huygens’ principle to be valid it is necessary that n be even and > 4. He
further showed that a necessary and sufficient condition for its validity is that
the elementary solution contain no logarithmic term. Since none other than (2)
were known, he suggested that as a first step one should attempt to prove that
every Huygens equation is equivalent to some equation of the form (2). This
suggestion has been called Hadamard’s conjecture in the literature (see Courant
and Hilbert [11, p. 765]).

Recall that two equations of the form (1) are said to be equivalent if they
are related by one of the following transformations called trivial transformations
that preserve the Huygens’ property of the equation:

(a) a transformation of coordinates,

(b) multiplication of the equation by a non-vanishing factor e−2φ, where φ is
a function on M (this transformation induces a conformal transformation
of the metric),

(c) replacement of the unknown function u by λu, where λ is a non-vanishing
function on M .

An equation (1) which is equivalent to an equation (2) is said to be trivial. Any
equation (1) which is equivalent to a self-adjoint equation, defined by Ai = 0,
is said to be essentially self-adjoint.

Hadamard’s conjecture has been proven in the physically interesting case
n = 4, gij constant by Mathisson [20, 21], Hadamard [19], and Asgeirson [3].
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However, it is known not to be true in general. The first counter-examples were
given by Stellmacher [26, 27] for n > 6. Further important results have been
obtained by Berest [4, 5] and Berest and Winternitz [6] in this case. Counter
examples for n = 4 have been given by Günther [16]. These examples arise from
the wave equation

�u = 0 , (3)

where � = gij∇i∇j denotes the wave operator, on the Lorentzian space with
metric

ds2 = 2dx1dx2 − aαβdxαdxβ, (α, β = 3, 4) (4)

where the symmetric matrix (aαβ) is positive definite with elements that are
functions only of x1. The above metric may interpreted in the framework of
general relativity as an exact plane wave solution of the vacuum or Einstein-
Maxwell field equations. It has been studied in this context by Ehlers and
Kundt [14] in a different coordinate system where it has the form

ds2 = 2dv[du+ (Dz2 +Dz2 + ezz)dv]− 2dzdz , (5)

where D and e = e are functions only of v. It should be noted that the Ricci
scalar R vanishes identically for the above metric and that the corresponding
Weyl curvature tensor Cijkl is Petrov type N [28] in general. We shall denote
equation (3), where gij is given by (4) or (5), by EPW.

2. The example

Until the present, EPW (and those equations equivalent to it) was the only
known non-trivial Huygens equation. Indeed, a number of results [1, 2, 8–10,
13, 22–24, 29] suggest that it might be the unique non-trivial such equation for
n = 4. However, the following example, announced recently in [12]1 without
proof, shows that this supposition is not true. Consider the Lorentzian space
(M,g) = (M1,g

1
)×(M2,g

2
), where (M1,g

1
) is a 2-dimensional Lorentzian space of

constant curvature and (M2,g
2
) is a 2-dimensional Riemannian space of constant

curvature. There exist systems of coordinates (u, v) on M1 and (z, z̄) on M2

with respect to which the metrics g
1

and g
2

have the respective forms

ds1
2 =

2dudv[
1− 1

8
(R + β)uv

]2 ,
ds2

2 = − 2dzdz[
1 + 1

8
(R− β)zz

]2 ,
1The example given therein is incomplete, since the vector field Ai is undefined.
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where R (the Ricci scalar) and β are any real constants. Since (M,g) is a
product, the metric (M,g) is expressible as

ds2 = gijdx
idxj = ds1

2 + ds2
2 , (6)

where gij denotes the covariant components of g. The properties of (M,g) that
are key for the construction of our example are the following (see Stephani et
al. [28, Sections 12.1, 35.2], and Cahen and McLenaghan [7]):

(i) it possesses an isometry group G6 which acts transitively on M ,

(ii) it has a non-vanishing Weyl conformal curvature tensor of Petrov type D
iff R 6= 0,

(iii) it is a Riemannian symmetric space, that is the covariant derivative of the
Riemann curvature tensor vanishes identically.

Consider also the one-form

A=Aidx
i

=
1

2
(H3+H3)(1−αuv)−1(vdu−udv)+

1

2
(H3−H3)(1+δzz)−1(zdz−zdz), (7)

where Ai denotes the covariant components of A and2

|H3| =
(
βR

60

) 1
2

, H3 −H3 =

(
β2

630

(
5
R

β
− 3

)(
2
R

β
− 3

)) 1
2

,

α =
1

8
(R + β) , δ =

1

8
(R− β) .

The main purpose of the present paper is to prove the following theorem:

Theorem 2.1. The equation (1), where gij is given by (6), where Ai = gijAj
with Ai given by (7), and where

C =
1

2
Ai;i +

1

4
AiAi +

1

6
R , (8)

satisfies Huygens’ principle if
R

β
=

3

5
. (9)

Proof. It follows from (9) that the metric and one-form A may be simplified to

ds2 =
2dudv[

1− 1
3
Ruv

]2 − 2dzdz[
1− 1

12
Rzz

]2 (10)

and
A = H3(1− αuv)−1(vdu− udv) , (11)

2In [12] the value of the quantity H3 −H3 is not given.
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respectively, where H3 is real with

H3 = ±1

6
R (12)

and

α =
1

3
R , δ = − 1

12
R . (13)

We shall denote the equation (1) where gij is defined by (10), Ai by (11), C by
(8), and (12) and (13) are satisfied, by ERB.

To prove that Huygens’ principle is satisfied by ERB, we utilize Hadamard’s
necessary and sufficient condition [19] (see also Friedlander [15, Theorem 5.7.1]
or Günther [17, Theorem 1.4, p. 233])

[G(V )(x0, x)] = 0, ∀x0 ∈M, (14)

where the brackets [ · · · ] signify the restriction of the enclosed function to the
null conoid

C(x0) = C+(x0) ∪ C−(x0) ,

and where G denotes the adjoint operator for (1) defined by

G(v) = �v − (Aiv);i + Cv . (15)

The function V is defined by

V (x0, x) =
1

2π
exp

{
−1

4

∫ s(x)

0

(gijΓ;ij − 8− AiΓ,i)
dt

t

}
, (16)

where the integration is along the geodesic joining x0 and x, Γ(x0, x) is, up to
a sign, the square of the geodesic distance between x0 and x, and s is an affine
parameter. We note that Γ(x0, x) = 0, iff x0 and x are connected by a null
geodesic; hence, the null conoid C(x0) is defined by Γ(x0, x) = 0, for all x ∈M .

The convenience of the condition (14) results in part from the fact that the
function V defined by (16) may be expressed as

V (x0, x) =
1

2π
(ρ(x0, x))−

1
2 exp

{
1

4

∫ s(x)

0

AiΓ,i
dt

t

}
, (17)

where

ρ(x0, x) = 8(g(x)g(x0))
1
2

∣∣∣∣det

(
∂2Γ

∂xi∂xj0

)∣∣∣∣−1
is the discriminant function, and g(x) = det(gij(x)). In what follows, we
choose x0 to be the point with coordinates u = v = z = z = 0; this can
be done without loss of generality, since the isometry group G6 acts transitively
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on M , that is given any two points x, y ∈ M there exists g ∈ G6 such that
x = g(y).

Furthermore, since M is decomposable into two 2-dimensional spaces of
constant curvature, we have by a result of Ruse et al. ([25, p. 215]),

Γ = Γ1 + Γ2

where Γ1 is the square of the geodesic distance on the Lorentzian 2-space with
metric

ds1
2 =

2dudv[
1− 1

3
Ruv

]2 (18)

and Γ2 is the square of the distance on the Riemannian 2-space with metric

ds2
2 = − 2dzdz[

1− 1
12
Rzz

]2 . (19)

We denote the covariant components of the metric tensor for (18) by g
1
ab (where

the indices a, b range over x1 = u, x2 = v), and for (19) by g
2
cd (where the indices

c, d range over x3 = z, x4 = z). We may then explicitly determine Γ1 following
Ruse et al. ([25, p. 14]). We let ya be a system of normal coordinates for (18)
about the origin, and

∗
g
1
ab =

∂xα

∂ya
∂xβ

∂yb
g
1
αβ

be the components of g
1

relative to these coordinates. Then

Γ1 = (
∗
g
1
ab)0y

ayb

where we have (
∗
g
1
ab)0 = (g

1
ab)0 . Such a system is given by

ya =
1√
αuv

tanh−1(
√
αuv)xa , (20)

which follows since
∗
g
1
ab y

b = (
∗
g
1
ab)0 y

b

(see ([25, p. 12]). We remark that the complex function tanh−1 is analytic in a
neighborhood of the origin, with McLaurin expansion

tanh−1(w) =
∞∑
k=0

w2k+1

2k + 1
, |w| < 1 .
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It follows that the coordinate transformation (20) is real, since tanh−1(
√
αuv)

is pure imaginary when
√
αuv is pure imaginary. Moreover, it also follows that

y1, y2 defined by (20) are analytic, and that the Jacobian of the transformation
becomes the identity matrix at the origin. Thus, the coordinate system defined
by (20) is regular. We then have

Γ1 =
2

α

[
tanh−1(

√
αuv )

]2
, (21)

which is real regardless of whether
√
αuv is real or pure imaginary. In similar

fashion we may then also obtain

Γ2 =
2

δ

[
tanh−1(

√
−δzz)

]2
(22)

for the space with metric (19). We observe that the functions Γ1,Γ2 then satisfy

g
1

abΓ1,aΓ1,b = 4Γ1 , g
2

cdΓ2,cΓ2,d = 4Γ2 ; (23)

hence, we also have gijΓ,iΓ,j = 4Γ . Before proceeding with the evaluation
of (14), we further note that

AiΓ,i = gijAjΓ,i

= (1− αuv)2
[
−H3(1− αuv)−1uΓ,u +H3(1− αuv)−1v Γ,v

]
= 0 . (24)

In view of (24), the function V given in (17) takes the form

V =
1

2π
ρ−

1
2 . (25)

In order to calculate the final term of (14), as determined by (15), we first
compute

Ai ;i = g−
1
2 (g

1
2 gijAj),i

= g−
1
2 [(g

1
2 guvAu),v + (g

1
2 gvuAv),u]

= (1− αuv)2Au,v + (1− αuv)2Av,u

= 0

and AiAi = 2guvAuAv = −2H 2
3 uv . Thus, in view of (12) we have

C = − 1

72
R2uv +

1

6
R . (26)
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Next, for the middle term of (14) we use (25) to compute (noting that Ai ;i = 0)

(AiV );i = Ai ;iV + AiV;i = gijAjV,i =
1

2π

[
guvAu

∂ρ−
1
2

∂v
+ gvuAv

∂ρ−
1
2

∂u

]
. (27)

Since our space is decomposable into spaces of constant curvature, we have (see
[25, p. 215 and p. 30]) that

ρ = ρ1ρ2 , (28)

where

ρ1 =

(
sin2
√
κ1Γ1

κ1Γ1

) 1
2

, (29)

ρ2 =

(
sin2
√
κ2Γ2

κ2Γ2

) 1
2

, (30)

and

κ1 = −2α = −2

3
R , κ2 = −2δ =

1

6
R . (31)

Note that since κ1Γ1 is real, the expression
√
κ1Γ1 is either real or pure imagi-

nary according to the sign of κ1Γ1. The complex sine function satisfies sin(iw) =
i sinh(w), so in the latter case the quantity sin2

√
κ1Γ1 in (29) will be real and

negative. It follows that ρ1 (and by a similar argument, ρ2) will be real. Using
the equations (28)–(31) along with (21), (22), we obtain from (27) (after some
lengthy but straightforward computation)

(AiV );i = − 1

4π
ρ−

3
2

[
guvAuρ2

∂ρ1
∂v

+ gvuAvρ2
∂ρ1
∂u

]
= − 1

4π
ρ−

3
2

[
guvρ2

∂ρ1
∂Γ1

(
Au

∂Γ1

∂v
+ Av

∂Γ1

∂u

)]
= 0 . (32)

It remains to calculate the first term of (14). Since our space is decompos-
able, we have

�V = �1V +�2V ,

where

�1V = g
1

− 1
2∂a

(
g
1

1
2 g
1

ab∂bV
)

and

�2V = g
2

− 1
2∂c

(
g
2

1
2 g
2

cd∂dV
)
,

and g
1
, g
2

denote the determinants of the metrics in (18), (19) respectively. Then
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from (25) and (28) we have

2π�V =
(
ρ
− 1

2
2 �1ρ

− 1
2

1 + ρ
− 1

2
1 �2ρ

− 1
2

2

)
= ρ

− 1
2

2

[
−1

2
ρ
− 3

2
1

(
−3

2
ρ−11 g

1

ab∂aρ1∂bρ1 +�1ρ1

)]
+ ρ

− 1
2

1

[
−1

2
ρ
− 3

2
2

(
−3

2
ρ−12 g

2

cd∂cρ2∂dρ2 + �2ρ2

)]
=− 1

2
ρ−

1
2

(
ρ−11

[
2Γ1(2ρ

′′
1 − 3ρ−11 (ρ′1)

2) + ρ′1�1Γ1

]
+ ρ−12

[
2Γ2(2ρ

′′
2 − 3ρ−12 (ρ′2)

2) + ρ′2�2Γ2

])
,

where the indices a, b and c, d range as appropriate for the metrics (18), (19)
respectively, and the equations (29), (30), and (23) have also been used. In
order to proceed further, we require the expressions

�1Γ1 = 2 + 2 (κ1Γ1)
1
2 cot (κ1Γ1)

1
2 , (33)

and

�2Γ2 = 2 + 2 (κ2Γ2)
1
2 cot (κ2Γ2)

1
2 (34)

(see [25, p. 30]). We note that the right hand sides of both (33) and (34) are real
because of the identity cot(iw) = −i coth(w) satisfied by the complex cotangent
function. Using (33) and (34) along with (29) and (30), we then obtain

2π�V=−1

2
ρ−

1
2

[
−κ1

2
(2+cot2(κ1Γ1)

1
2 )−κ2

2
(2+cot2(κ2Γ2)

1
2 )+

1

2
(Γ−11 +Γ−12 )

]
. (35)

In order to simplify the first term in the above equation, we use (21) to write

κ1Γ1 = −4
(
tanh−1

√
αuv

)2
, so that

tan (κ1Γ1)
1
2 = tan

(
2i tanh−1

√
αuv

)
= i tanh

(
2 tanh−1

√
αuv

)
=

2i
√
αuv

1 + αuv
.

Thus,

cot2 (κ1Γ1)
1
2 =

(1 + αuv)2

−4αuv
.

We likewise obtain

cot2 (κ2Γ2)
1
2 =

(1− δzz)2

4δzz
.

Hence, the equation (35) simplifies to

�V =

[
− 3

16
R +

1

8
(

1

uv
− 1

zz
) +

1

8
(α2uv − δ2zz) − 1

4
(Γ−11 + Γ−12 )

]
V . (36)
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Finally, in order to verify the necessary and sufficient condition (14), we
must evaluate the quantity G(V ) on the conoid C(x0). We therefore set

Γ = Γ1 + Γ2 = 0 . (37)

Using (21) and (22), the equation (37) may be written as

tanh−1
(

1

3

√
3Ruv

)
= ±2 tanh−1

(
1

6

√
3Rzz

)
.

Applying the function tanh to both sides and squaring, we obtain

uv =
144zz

(12 +Rzz)2
. (38)

Thus, using (36)–(38), (32), and (26), the equation (14) becomes

[G(V )] =

(
−1

6
R +

2R2zz

(12+Rzz)2
− 1

4

Γ1+Γ2

Γ1Γ2

− 2R2zz

(12+Rzz)2
+

1

6
R

)
[V ] = 0 ,

which completes the proof.

We observe that ERB is an essentially non-self-adjoint equation; that is, it
is not equivalent to any self-adjoint equation. To see this it is enough to note
that, since R 6= 0 by (9), it follows that dA 6= 0 by (11) and (12). Thus A
is not a closed one-form; however, by [12, Equation (3.3)], A closed is a nec-
essary condition for the existence of a trivial transformation to set Ā = 0.
We thus have proved that ERB is a Huygens equation which is equivalent to
neither EM nor EPW, both of which are self-adjoint equations.

3. Conclusion

It is known [9,24,29] that there exist no Petrov type D spaces on which the es-
sentially self-adjoint equation (1) satisfies Huygens’ principle. Thus Hadamard’s
problem is completely solved in this case. However, the existence of ERB shows
that the problem remains open for the essentially non-self-adjoint equation (1)
on type D background spaces. In a subsequent paper, it will be shown that ERB

is (up to a trivial transformation) the unique non-trivial, essentially non-self-
adjoint Huygens equation on a general conformally symmetric space of Petrov
type D.
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(1990), 217 – 223.

[25] Ruse, H. S., Walker, A. G. and Willmore, T. J., Harmonic Spaces. Rome:
Edizioni Cremonese 1961.

[26] Stellmacher, K. L., Ein Beispiel einer Huygensschen Differentialgleichung
(in German). Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II 10 (1953),
133 – 138.

[27] Stellmacher, K. L., Eine Klasse huygensscher Differentialgleichungen und ihre
Integration (in German). Math. Ann. 130 (1955), 219 – 233.

[28] Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C. and Herlt, E.,
Exact Solutions to Einstein’s Field Equations. Second Edition. Cambridge:
Cambridge Univ. Press 2003.
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