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Computations of Embedded Eigenfrequencies

of Water Waves
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Abstract. In this paper, we will investigate embedded eigenvalues in the framework
of the linearized theory of water waves. We assume that an approximation of an
embedded eigenvalue is provided. To the question, whether there is a trapped mode
near the computed solution, we provide an affirmative answer.
We will prove that, under certain assumptions on the data for a water wave problem
in an infinite channel Ω0, the result λ0 of the numerical computation can be justified
as follows: if the computational error ε is sufficiently small, there exists a water
domain Ωε which is a local regular perturbation of Ω0 and has an eigenvalue λε ∈
[λ0 − cε, λ0 + cε] embedded in the continuous spectrum. This conclusion is made by
means of an asymptotic analysis of the augmented scattering matrix, whose properties
guarantee a sufficient condition for the existence of trapped mode.
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1. Introduction

1.1. The problem. Localized oscillations in unbounded media, so called trap-
ped modes, are generated by eigenvalues of the corresponding boundary value
problem which are naturally divided into two classes with completely different
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properties. The first class contains eigenvalues in the discrete spectrum. They
are stable with respect to the small perturbations of the problem data. On the
contrary, eigenvalues embedded in continuous spectrum, which form the second
class, are intrinsically unstable. For those arbitrarily small perturbations may
remove them out of the spectrum and turn them into the points of complex
resonances (cf. examples in [1, 3, 21,22] and the review paper [13]).

In the framework of the linearized theory of water waves, there are several
examples of trapped modes and eigenvalues, see e.g. [29,30] and [15]. Moreover,
various approaches to find out stable eigenvalues and several criteria for the
existence of embedded eigenvalues have been developed. However, the most
used tools for detecting eigenvalues in the water wave problems are based on
numerical approximation schemes. For eigenvalues in the discrete spectrum,
the error estimates are supported by the above-mentioned stability property,
whereas for the embedded eigenvalues such estimates cannot subsist because
of the instability. In this paper, based on the concept of enforced stability of
embedded eigenvalues (cf. [22, 23]), we will provide a solid scheme to interpret
the approximate computations of trapped modes. Similar results were obtained
in [24] for an elementary problem in a two-dimensional acoustic waveguide.

Mathematically, we assume that a plane surface wave

eikxφ(y, z), k > 0, i =
√
−1

propagates over a water layer of constant depth d > 0 with an infinite cylinder
directed along the x-axis. It is either submerged (Figure 1a) or immovable
surface-piercing (Figure 1b). According to the linear theory of water waves, the
velocity potential satisfies, after separation of variables, the Helmholtz equation

−∆φ(y, z) + k2φ(y, z) = 0, (y, z) ∈ Ω, (1)

where Ω is the cross-section of the water domain in the (y, z)-plane. On the
free surface Γ = {(y, z) ∈ ∂Ω : z = 0} ⊂ R × {0}, the velocity potential fulfils
the kinematic (Steklov) boundary condition

∂zφ(y, 0) = λφ(y, 0), (y, 0) ∈ Γ, (2)

and the Neumann boundary condition (no normal flow)

∂νφ(y, z) = 0, (y, z) ∈ Σ, (3)

at the union of the bottom and the wetted surface of the obstacle denoted by Σ
(Figure 1). The domain Ω, open and connected set, is supposed to have a
Lipschitz boundary ∂Ω and to coincide with the strip Π = R× (−d, 0) outside
a rectangle of width R > 0:
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a)

b)

Figure 1: a) Submerged cylinder, b) surface piercing cylinder

a)

b)

Figure 2: Perturbated domain

Ω(R) = {(y, z) ∈ Ω : |y| < R}, Ω \ Ω(R) = Π+(R) ∪ Π−(R)

Π±(R) ={(y, z) ∈ Π : ±y > R}.
(4)

In the Steklov condition (2), λ = ω2

g
is the spectral parameter, where

ω > 0 is the angular frequency of the time-harmonic oscillations and g > 0
the acceleration due to gravity. In (3), ∂ν is the directional derivative along the
outward normal ν which is defined almost everywhere on ∂Ω and equals ∂z =

∂
∂z

on the free surface Γ.

If the obstacle is absent, the plane wave in the straight layer R × Π takes
the form

eikxw(y, z) = eikxeilyW (z),

where l ∈ R and

W (z) = emz + e−m(z+2d) (5)

with m =
√
k2 + l2 > 0. The spectral parameter λ = λ(m) in this case is given

by

λ(m) = m
1− e−2md

1 + e−2md
= m tanh(2md).

Notice that the mapping R+ ∋ m 7→ λ(m) ∈ R+ is one-to-one.
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It is known, [4] and [11], that the spectrum σ of the problem (1)–(3) consists
of the continuous spectrum σc = [λ†,+∞) with the cut-off point λ† = λ(k) and
of the discrete spectrum σd ⊂ (0, λ†), which is composed of finite number of
eigenvalues. There also may exist so called embedded eigenvalues which together
with σd form the point spectrum σp of the problem (1)–(3). Each point in σp
gives rise to a trapped mode, that is a solution of the problem (1)–(3) with the
exponential decay at infinity.

1.2. Assumptions and the main goal of the paper. Let λ0 ∈ (λ†,∞)
and let a function φ0, which belongs to the Sobolev space H1(Ω) and is nor-
malized in the Lebesgue space L2(Ω), satisfy the variational formulation of the
inhomogeneous problem (1)–(3)

(∇φ0,∇ψ)Ω + k2(φ0, ψ)Ω − λ0(φ0, ψ)Γ = f 0(ψ), ∀ψ ∈ H1(Ω), (6)

where ∇ = grad, (·, ·)Ω and (·, ·)Γ are the standard scalar products in the
Lebesgue spaces L2(Ω) and L2(Γ), respectively. We assume that the anti-linear
continuous functional f 0 ∈ H1(Ω)∗ has a compact support in Ω(R) and a rela-
tively small norm, i.e.

f 0(ψ) = 0 ∀ψ ∈ H1(Ω) : ψ(y, z) = 0, |y| < R,

and

ε := ∥f 0;H1(Ω)∗∥ ∈ (0, 1], (7)

∥φ0;H1(Ω)∥ = 1. (8)

In this paper, under certain assumptions, we will detect positive constants ε0
and c0 such that, in the case where ε in (7) belongs to the range (0, ε0), then one
can construct a small local perturbation Ωε of Ω0 = Ω for which the problem

−∆φε(y, z) + k2φε(y, z) = 0, (y, z) ∈ Ωε, (9)

∂zφ
ε(y, 0) = λεφε(y, 0), (y, 0) ∈ Γ, (10)

∂νεφ
ε(y, z) = 0, (y, z) ∈ Σε, (11)

has an eigenvalue λε ∈ (λ†,+∞) subject to the estimate

|λε − λ0| 6 c0ε. (12)

The couple {λ0, φ0} can be regarded as a computational result. Since the
computations are usually performed in a bounded domain Ω(Rc), the func-
tion φ0 is obtained by an extension over Π±(Rc). In this way the small discrep-
ancy f 0 involves both the computational and extension errors.
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The perturbed domain Ωε will be determined as follows, cf. Figures 2a
and 2b. Let Υ be a smooth open arc in ∂Ω\Γ and let its tubular neighbourhood
Uδ = {(y, z) : s ∈ Υ, |n| < δ} be such that it does not intersect the free
surface Γ for some δ > 0. Here (n, s) are the intrinsic curvi-linear coordinates,
n is the oriented distance to Υ (n < 0 inside Ω) and s is the arc length on Υ.
The boundary ∂Ωε coincides with ∂Ω outside the neighbourhood Uδ, but inside
Uδ is defined via the equation

n = εh(s), s ∈ Υ, (13)

where h ∈ C∞
0 (Υ) is a smooth profile function vanishing near the endpoints of Υ.

The perturbed curve Υε = ∂Ωε \ (∂Ω\Υ) is situated at a positive distance from
the free surface Γ. From this it follows that the Steklov conditions (2) and (10)
are imposed on the same set.

To prove the existence of the eigenvalue λε, some assumptions must be put
on the profile function h. This will be done in Section 4.2. In other words,
the choice of an appropriate perturbation profile requires “very fine” tuning of
parameters.

Since f 0 in (6) has a support in Ω(R), the Fourier method gives us the
representation

φ0(y, z) =
∑
τ=±

χτ (y)Kτe
−τθ1|y| cos(t1(

z
d
+ 1)) + φ̃0(y, z)

|φ̃0(y, z)| 6 C0e−θ2|y|, (y, z) ∈ Π±(R + d),

(14)

where χ± are smooth cut-off functions:

χ±(y) = 1 for ± y > R + d, χ±(y) = 0 for ± y < R, (15)

0 6 χ±(y) 6 1, χ+(y) = χ−(−y).

K± are some coefficients and θj =
√
k2 + d−2t2j , where tj ∈ (π(j − 1

2
), πj) are

positive roots of the transcendental equation

−t tan(t) = λ0d. (16)

Selecting either the real or imaginary part, we may always consider φ0

and K± as real valued. After a preparatory work we will modify in Section 2.1
the normalization condition (8) in terms of the coefficients K± from (14) which,
by our assumption, cannot vanish simultaneously.

Moreover, we suppose that the problem (1)–(3) in Ω0 has no trapped mode
with the decay rate O(e−θ2|y|) as |y| → ∞, cf. formula (33) in Section 2.3. In
other words, neither our approximate solution φ0 nor any trapped mode at the
computed frequency ω0 =

√
gλ0 gets too fast exponential decay at infinity.
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We will discuss in Section 5.2, how to avoid these restrictions. We emphasize
that the existence of a trapped mode φ(y, z) = o(e−θ1|y|) just assures that λ0

is an embedded eigenvalue. However, this trapped mode has no relation to the
computations performed and this is just the reason to introduce the condition
above.

1.3. Structure of the paper. In Section 2, we proceed with the different
operator formulations of the problem (9)–(11) with appropriate radiation con-
ditions, see Theorems 2.1 and 2.2, bearing in mind two purposes. First, to give
a criterion for the existence of a trapped mode in Theorem 2.5, which is based
on the notion of the augmented scattering matrix Sε (cf. [9]) and involves the
linear combinations of exponential waves (wave “packets”). Second, to apply
the perturbation theory of linear operators we will use the technique of weighted
spaces with detached asymptotics, see e.g. [17, 19] which has never before ap-
plied in the theory of water waves. With the help of the perturbation theory,
we conclude the smooth (actually analytic) dependence of Sε on several param-
eters, which is needed for the fine tuning of the profile function and detection
of the eigenvalue. The latter allows us to prove in Section 4.3 the existence of
the desired perturbed water domain Ωε.

In Section 3 we perform a simple asymptotic analysis to construct the
asymptotics of special solutions to the problem (9)–(11) as well as the aug-
mented scattering matrix. We emphasize that the utilization of the weighted
spaces helps us to justify the asymptotics of Sε.

To make use of the derived asymptotic formulae, we start Section 4 with
reformulating the criterion for a trapped mode in Lemma 4.1. This reformu-
lated criterion is written in more convenient vector form which directly gives us
a system of non-linear equations to find the desired profile function h in (13).
The proof that the system of non-linear equations is solvable is given in Theo-
rem 4.2 and it uses the contraction principle. The main result on the embedded
eigenvalue λε is formulated in Theorem 4.3. In the final section we provide
an argument that an eigenvalue λε satisfying the estimate (12) can be found
under the assumptions (6)–(8) with a sufficiently small ε “almost always”, that
is when the numerical computations have been performed accurately enough.
We finish the paper with some conclusive remarks collected in Section 5.

As a preliminary remark to the quite technical presentation and rigorous
proofs of assertions, we can make the following conclusion. If the numerical
result is sufficiently accurate, i.e. the aggregate numerical error ε in (7) will not
exceed a certain bound ε0, which depends on λ0 and Ω0, then the mildly sloped
perturbation Ωε of Ω0 supports, indeed, a trapped mode with an eigenvalue
λε ≈ λ0, see (12) and (13). We emphasize that in case λ0 ∈ (0, λ†) perturbation
of the water domain is not needed whereas in the case λ0 > λ† the perturbation
compensates the intrinsic instability of embedded eigenvalues.
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2. Waves and scattering matrices

2.1. Oscillating waves and exponential wave packets. In the semi-strips
Π±(R) we introduce the functions

wε,out
0,± (y, z) = χ±(y)N

− 1
2

0,ε e
±ilεyW (z), wε,in

0,± (y, z) = χ±(y)N
− 1

2
0,ε e

∓ilεyW (z), (17)

which are called propagating waves. According to the sign convention wε,out
0,±

are the outgoing waves and wε,in
0,± the incoming waves in the water domain Ωϵ.

The cut-off functions χ± are used in (17) to localise the waves to the semi-
infinite parts Π±(R) of the channel. The function W ε is determined through
the formula (5) with the parameters

lε =
√
(mε)2 − k2 > 0, mε > k, λ(mε) = λε > λ†.

The normalisation factor N0,ε is chosen as

N0,ε = 2lε∥W ε;L2(−d, 0)∥2 = 2lε
(
2de−2mεd +

1− e−4mεd

2mε

)
> 0.

Moreover, we consider the perturbed spectral parameter

λε = λ0 + εΛ, (18)

where the correction term Λ will be found out in Section 4.2. The previous
formulae are valid in the case ε = 0 as well. Then W 0 is just given by (5).

The exponential waves, which are depicted in formula (14), must also be
normalized:

vε±(y, z) = e±θε1yV ε(z), V ε(z) = N
− 1

2
1,ε cos(tε1(d

−1z + 1)), (19)

N1,ε = 2θε1

∫ 0

−d

| cos(tε1(d−1z + 1))|2dz = θε1d

(
1 +

sin(2tε1)

2tε1

)
> 0.

Here and in the sequel θεj =
√
k2 + d−2(tεj)

2 and tεj ∈
(
π(j− 1

2
), πj

)
are the roots

of the transcendental equation (16) with the obvious replacement λ0 7→ λε.

We multiply the approximate solution φ0 with an appropriate constant, but
still denote the product as φ0. Then the decomposition (14) can be rewritten
in the form

φ0(y, z) =
∑
α=±

χα(y)Kαv
0
−α(y, z) + φ̃0(y, z) (20)

involving now the normalised exponential waves for ε = 0. After multiplying
the computed solution φ0 with a constant, it will convenient to change the
normalization condition (8) for

|K| =
√
K2

+ +K2
− = 1. (21)
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In this way we also change the quantity ε in (7), but still assume it to be small
in the sense of Theorem 4.3.

Following the approach of [9], see also [22, 23] and Remark 2.1 below, we
introduce the following exponential wave packets

wε,out
1,− (y, z)

=
1

2

(
K+χ+(y)−iK−χ−(y)

)
vε+(y, z) +

1

2

(
K−χ−(y)−iK+χ+(y)

)
vε−(y, z)

wε,in
1,− (y, z)

=
1

2

(
K+χ+(y)+iK−χ−(y)

)
vε+(y, z) +

1

2

(
K−χ−(y)+iK+χ+(y)

)
vε−(y, z)

wε,out
1,+ (y, z)

=−1

2

(
K−χ+(y)+iK+χ−(y)

)
vε+(y, z) +

1

2

(
K+χ−(y)+iK−χ+(y)

)
vε−(y, z)

wε,in
1,+ (y, z)

=−1

2

(
K−χ+(y)−iK+χ−(y)

)
vε+(y, z) +

1

2

(
K+χ−(y)−iK−χ+(y)

)
vε−(y, z).

(22)

We call these exponential wave packets outgoing and incoming similar
to standard oscillating waves. They form a new basis in the linear hull
span{χ±v

ε
±, χ∓v

ε
±} of exponential waves in Π−(R) ∪ Π+(R). The reason for

this modification of the basis becomes obvious when we consider the symplectic
form (i.e. anti-hermitian sesqui-linear form)

Q(u, v) =
∑
τ=±

τ

∫ 0

−d

(
v(τρ, z)∂yu(τρ, z)− u(τρ, z)∂yv((τρ, z)

)
dz

which appears as a line integral in the Green formula on the truncated domain
Ω(ρ) defined by (4). The symplectic form is independent on ρ > ρ0, if the func-
tions u and v satisfy the Helmholtz equation (9) in the semi-strips Π±(ρ0) and
the boundary conditions (10), (11) on their lateral sides. Due to the normal-
ization factors Nj,ε, j = 0, 1, both the oscillating waves and exponential wave
packets enjoy the relations

Q(wε,out
j,α , wε,out

k,τ ) = iδj,kδτ,α, Q(wε,in
j,α , w

ε,in
k,τ ) = −iδj,kδτ,α, (23)

Q(wε,out
j,α , wε,in

k,τ ) = 0, Q(wε,in
j,α , w

ε,out
k,τ ) = 0,

where δp,q is the Kronecker symbol, α, τ = ±, and j, k ∈ {0, 1}. The calculations
of the previous relations are straightforward and we omit them here, cf. [22,23].

The direction of propagation of the water waves can be determined by the
Sommerfeld principle. According to it, the wave propagates along the channel
from ∓∞ to ±∞ depending on the sign ± of the wave number lε so that wε,out

0,±
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are outgoing waves in Π±(R) and w
ε,in
0,± incoming. After a simple calculation, one

readily observes that this sign is also given by the sign of ImQ(w,w). At the
same time a much more cumbersome, but still a straightforward, calculation
shows that we can still distinguish the wave packets in (22) as outgoing and
incoming due to the fact that K± ∈ R and |K| = 1.

Remark 2.1. Clearly, there exist many possible bases which meet the nor-
malisation and orthogonality conditions (23) and therefore provide more useful
conclusions in Theorems 2.2 and 2.3. Our choice of the bases is adapted to
the decomposition (20) of the approximate solution φ0. The advantages of the
choice will become clear in the next subsections. In the papers [22–24] much
simpler structures were applied for other purposes.

2.2. The standard and augmented scattering matrices. It is known (see
[32], [25, Chapter 5] and [28]) that each of the incoming waves in (17) generates
the solutions of the problem (9)–(11) which have the asymptotic form

ζε±(y, z) = wε,in
0,± (y, z) +

∑
α=±

wε,out
0,± (y, z)sα± + ζ̃ε±(y, z),

where ζ̃ε± ∈ H1(Ωε) is a remainder with the decay rate O(e−θε1|y|). The trans-
mission sε∓± and reflection sε±± coefficients compose the scattering matrix

sε =

[
sε++ sε+−
sε−+ sε−−

]
which is, owing to the normalisation factors in (17), unitary and symmetric:

(sε)−1 = (sε)∗ := (sε)⊤, sε = (sε)⊤,

where (·)⊤ stands for the transposition and a for complex conjugation as usual.
The incoming wave packets in (22) give rise to similar solutions. To simplify

the notation, we introduce the vectors

wε,out/in = (w
ε,out/in
0,+ , w

ε,out/in
0,− , w

ε,out/in
1,+ , w

ε,out/in
1,− )

= (w
ε,out/in
1 , w

ε,out/in
2 , w

ε,out/in
3 , w

ε,out/in
4 ). (24)

Notice that we have enumerated the waves with just one subscript i∈{1, 2, 3, 4}.
The corresponding row vector of solutions is denoted by

Zε = (Zε
1 , Z

ε
2 , Z

ε
3 , Z

ε
4) = (Zε

0,+, Z
ε
0,−, Z

ε
1,+, Z

ε
1,−). (25)

and has the decomposition

Zε(y, z) = wε,in(y, z) + wε,outSε + Z̃ε(y, z). (26)
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Here the remainder term Z̃ε = (Z̃ε
1 , Z̃

ε
2 , Z̃

ε
3 , Z̃

ε
4) gets the decay rate O(e−θε2|y|).

The matrix Sε is a 4× 4-matrix which we call an augmented scattering matrix.
As we shall later see, it becomes an algebraic indicator for trapped modes, see
[9,22–24]. To derive the general properties of the augmented scattering matrix,
we will need an operator formulation of the problem (9)–(11) in weighted spaces
with detached asymptotics, cf. [16, 19].

2.3. Operator formulation. Let W 1
β (Ω

ε) be the Kondratiev space with the
exponentially weighted norm

∥u;W 1
β (Ω

ε)∥ =
(
∥eβ|y|∇u;L2(Ωε)∥2 + ∥eβ|y|u;L2(Ωε)∥2

) 1
2
, (27)

where β ∈ R is the weight index. The space consists of all functions in H1
loc(Ω

ε)
with the finite norm (27). Obviously,W 1

0 (Ω
ε) = H1(Ωε), but for β > 0 the space

is smaller than H1(Ωε), because it includes functions with exponential decay
at infinity. The weak solution ϕε ∈ W 1

β (Ω
ε) of the inhomogeneous problem

(9)–(11) satisfies the integral identity, see e.g. [19],

(∇ϕε,∇ψ)Ωε + k2(ϕε, ψ)Ωε − λε(ϕε, ψ)Γ = F ε(ψ) ∀ψ ∈ W 1
−β(Ω

ε). (28)

If the right hand side of (28) is a continuous functional in W 1
−β(Ω

ε)∗ (notice
the change of the weight index), all terms in (28) become defined properly due
to the evident trace inequality

∥eβ|y|ϕε;L2(Γ)∥ 6 c∥ϕε;W 1
β (Ω

ε)∥

and the extension of the scalar product (·, ·) by duality between the appropriate
weighted Lebesgue spaces L2

β(Ω
ε) and L2

−β(Ω
ε). As a result, the problem (28)

is associated with the continuous mapping

Aε
β : W 1

β (Ω
ε) → W 1

−β(Ω
ε)∗, Aε

β(λ
ε)ϕε = F ε. (29)

By the theory of elliptic problems in domains with cylindrical outlets to infinity,
it has the Fredholm property if and only if the model water wave problem in the
strip Π has no exponential solution of the form eθyV (z) such that Re θ = −β.
Recalling the decompositions of the waves in (14) and (19), we fix the weight
index

β ∈ (θε1, θ
ε
2), (30)

It is important to note that a fixed β ∈ (3π
2
, 2π) verifies (30) for any ε > 0.

Our choice of the weight index β is based on the following observations on
{λ0, φ0} in Section 1.2. First of all, waves (17) and (22) are contained in the
space W 1

−β(Ω
ε), but do not belong to the space W 1

β (Ω
ε). Secondly, the solution

φ0 ∈ H1(Ω0) of the problem (6) does not belong to the space W 1
β (Ω

0) because
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of the assumption (21), cf. (16), but the remainder term φ̃0 does. Finally, owing
to our assumption on the absence of trapped modes in problem (1)–(3) with
the decay rate o(e−θ01 |y|), the operator A0

β(λ
0) is an isomorphism and below we

are able to extend this property to Aε
β(λ

ε) for any ε ∈ (0, ε0].
As was mentioned above, the following assertion is proved in [10], see also

[25, Chapter 3 and 5].

Theorem 2.2. Assume that the weight index β satisfies (30). Then the op-
erators Aε

β(λ
ε) and Aε

−β(λ
ε) are Fredholm. Moreover, if ϕε ∈ W 1

−β(Ω
ε) is a

solution of the problem (28) with β replaced by −β and F ε ∈ W 1
−β(Ω

ε)∗, we
have

ϕε(y, z) =
∑
τ=±

∑
j=0,1

(
aεj,τw

ε,out
j,τ (y, z) + bεj,τw

ε,in
j,τ (y, z)

)
+ ϕ̃ε(y, z) (31)

for some coefficients aεj,τ , b
ε
j,τ ∈ C and ϕ̃ε ∈ W 1

β (Ω
ε). Furthermore, there holds

the estimate

∥ϕ̃ε;W 1
β (Ω

ε)∥+
∑
τ=±

∑
j=0,1

(|aεj,τ |+|bεj,τ |)6cε
(
∥F ε;W 1

−β(Ω
ε)∗∥+∥ϕε;W 1

−β(Ω
ε)∥

)
. (32)

Note that the dual space W 1
−β(Ω

ε)∗ is included into W 1
β (Ω

ε)∗ and contains
continuous functionals defined on the space of exponentially growing functions.
So in some sense the functional F ε decays exponentially as well and (31) implies
an asymptotics for the exponentially growing solution ϕε. A proof of the next
assertion, which is based on the assumption introduced above on the absence
of trapped modes with fast decay that

kerA0
β(λ

0) = 0, (33)

will be divided into two steps. The case ε = 0 is treated first. For small ε we
use the perturbation argument.

Theorem 2.3. There exist positive constants ε0 and c0 such that, for ε ∈ [0, ε0],
the problem (28) with F ε ∈ W 1

−β(Ω
ε)∗ and the replacement β 7→ −β has a unique

solution ϕε ∈ W 1
−β(Ω

ϵ) admitting the asymptotic form

ϕε(y, z) =
∑
τ=±

∑
j=0,1

aεj,τw
ε,out
j,τ (y, z) + ϕ̃ε(y, z) (34)

and there hold the estimate

∥ϕ̃ε;W 1
β (Ω

ε)∥+
∑
τ=±

∑
j=0,1

|aεj,τ | 6 c0∥F ε;W 1
−β(Ω

ε)∗∥. (35)
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Proof. Since by definition Aε
−β(λ

ε) is the adjoint of Aε
β(λ

ε), the assumption (33)
and Theorem 2.2 ensure that A0

−β(λ
0) and A0

β(λ
0) are Fredholm operators and

isomorphisms, respectively. Thus the problem (28) at ε = 0 admits a solution of
the form (31). Moreover, the formula on the index increment, see [25, Theorem
4.1.4], shows that

dimker(A0
−β(λ

0)) = dimker(A0
β(λ

0)) + 4.

Here the integer 4 is just half of the number of linearly independent oscillating
and exponential waves in the outlets Π±(R), which fall into W 1

−β(Ω
ε) \W 1

β (Ω
ε).

Together with (33) this means that to find a particular solution in the form (34),
one has to verify that any solution (31) of the homogeneous (F ε = 0) prob-
lem (28), having either b0jτ = 0 or a0jτ = 0, is necessarily trivial.

In the first case (b0j,± = 0), we insert ϕ0 on both positions in the Green
formula on the truncated channel Ω(ρ) and obtain

0=Q(ϕ0, ϕ0)=Q
(∑
α=±

∑
j=0,1

a0j,αw
0,out
j,α ,

∑
τ=±

∑
k=0,1

a0k,τw
0,out
k,τ

)
= i

∑
α=±

∑
j=0,1

|a0j,α|2, (36)

i.e. a0j,± = 0. In proving the previous equality we have used the relations (23)
and the fact that the input of remainders with fast decay vanishes as ρ→ +∞.
Hence ϕε = ϕ̃ε ∈ W 1

β (Ω
ε) and thus, by the assumption (33), ϕε = 0. The

estimate (35) at ε = 0 follows from the estimate (32).
To cover the case ε > 0, we introduce the space W1,ε

β (Ωε) consisting of
functions in the form (34). It will become a Banach space when endowed with
the norm

∥ϕ;W1,ε
β (Ωε)∥ = ∥ϕ̃ε;W 1

β (Ω
ε)∥+

∑
τ=±

∑
j=0,1

|aεj,τ |.

It is called weighted space with detached asymptotics, see [25, Chapter 5] and [19].
It depends on the spectral parameter λε through formulae (16)–(20) and (19),
(22) for waves, but can be identified with C4 ×W 1

β (Ω
ε) both algebraically and

topologically.
The decomposition (34) ought to be regarded as a radiation condition which

permits only outgoing waves wε,out
j,± in the asymptotics of the solution. The

operator formulation of the problem (28) with such a radiation condition dwells
upon the mapping

Aε
β(λ

ε) : W1,ε
β (Ωε) → W 1

−β(Ω
ε)∗. (37)

Due to the first part of the theorem, the operator A0
β(λ

0) is an isomorphism.
Now we want to interpret Aε

β(λ
ε) as a small perturbation of A0

β(λ
0) reducing

both operators onto C4 ×W 1
β (Ω

0), which evidently concludes the proof.
In the tubular neighbourhood Uδ of Υ, we make the coordinate change

(y, z) 7→ (yε, zε) from the Cartesian coordinates to the curvilinear coordinates,
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where the point (yε, zε) has the coordinates

nε = n− εh(s), sε = s. (38)

We then set

(yε, zε) = (yε, zε)χΥ(y, z) + (y, z)(1− χΥ(y, z)), (39)

where χΥ ∈ C∞
0 (Uδ) is a cut-off function, χΥ = 1 in the neighbourhood of Υ.

Comparing (38) and (13), we see that the coordinate change (y, z) 7→ (yε, zε)
transforms Ωε to Ω0. By (38) and (39), it becomes non-degenerate for a small ε.
Furthermore, it is “almost identical”, i.e. it’s Jacobi matrix satisfies

Jε(y, z) =
d(yε, zε)

d(y, z)
, |Jε(y, z)− I2| 6 c0ε, |∇pJε(y, z)| 6 cpε,

where p = 1, 2 and IN is the N × N unit matrix. Hence the Laplace op-
erator ∆ in Ωε and the normal derivative ∂νε on Σε in the coordinates (35)
turn into the second and first order differential operators Lε(yε, zε,∇(yε,zε)) and
N ε(yε, zε,∇(yε,zε)), which differ from ∆(yε,zε) and ∂ν(yε,zε) by differential opera-
tors with small coefficients supported in Ω ∩ Uδ.

We also observe that the waves wε,out
j,± differ by O(ε) from the waves w0,out

j,± on
the compact sets {(y, z) : ±y ∈ [R,R + d], z ∈ [−d, 0]} ⊃ supp|∇χ±| by (15).
This and the coordinates (39) demonstrate that the changes (y, z) 7→ (yε, zε)
and wε,out

j,± 7→ w0,out
j,± turn (37) into an operator

Âε
β(λ

ε) : C4 ×W 1
β (Ω

0) →W 1
−β(Ω

0)∗

satisfying the following estimate in the operator norm ∥Âε
β(λ

ε)−A0
β(λ

0)∥ 6 c0ε.
As a result, Aε

β(λ
ε) inherits the isomorphism property from A0

β(λ
0) for a small ε.

Besides the estimate (35) is valid with a constant c0 independent on ε.

2.4. Properties of the augmented scattering matrix and the criterion
for trapped modes. Theorems 2.2 and 2.3 demonstrate that W1,ε

β (Ωε) belongs
to the pre-image Aε

−β(λ
ε)−1W 1

−β(Ω
ε)∗ of the subset W 1

−β(Ω)
∗ ⊂ W 1

β (Ω)
∗ and,

moreover,

Aε
−β(λ

ε)−1W 1
−β(Ω

ε)∗ = W1,ε
β (Ωε)⊕ span{Zε

0,±, Z
ε
1,±}, (40)

where {Zε
j,±} is a basis in the subspace ker(Aε

−β(λ
ε)), whose dimension is 4

(cf. the proof of Theorem 2.3). To describe a particular basis we observe that
by the definitions of the waves and cut-off functions in formulae (15), (17)
and (22), wj,in

j,± satisfies the boundary conditions (10), (11) and

f ε,in
j,± = −∆wε,in

j,± − k2wε,in
j,±
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is a smooth function with a support in Ωε(R + d). Thus the problem (28) with
the right hand side

F ε ∈ W 1
−β(Ω

ε)∗, F ε(ψ) = (f ε,in
j,± , ψ)Ωε

has a solution Zε
j,± ∈ W1,ε

β (Ωε) such that the sum Zε
j,± = wε,in

j,± +Zε
j,± ∈ W 1

−β(Ω
ε)

becomes a non-trivial solution of the homogeneous problem. Furthermore, these
four solutions inherit the linear independence from the incoming waves and their
row vector (25) admits the representation (26).

Theorem 2.4. The 4× 4-matrix Sε in (26) is unitary and symmetric.

Proof. First we prove that the column vectors of the matrix Sε are orthonormal.
This can be seen by the calculation similar to (36):

0 = Q(Zε
j,α, Z

ε
k,τ )

= Q
(
wε,in

j,α +
∑
κ=±

∑
p=0,1

wε,out
p,κ Sε

pκ,jα, w
ε,in
k,τ +

∑
η=±

∑
q=0,1

wε,out
q,η Sε

qη,kτ

)
= −iδj,kδα,τ + i

∑
η=±

∑
p=0,1

Sε
pη,jαS

ε
pη,kτ , j, k = 0, 1; α, τ = ±.

To verify the symmetry, we observe that due to formulae (17), (19) and (22)
the row vectors of waves in (24) have the relationship wε,in(y, z) = wε,out(y, z).
Using this we obtain

Zε(Sε)−1 = (wε,in+wε,outSε)(Sε)−1+Z̃ε(Sε)−1 = wε,out(Sε)−1+wε,in+Z̃ε(Sε)−1.

Therefore, the difference

Zε − Zε(Sε)−1 = wε,out(Sε − (Sε)−1) + Z̃ε − Z̃ε(Sε)−1 ∈ W1,ε
β (Ωε)4

satisfies the homogeneous problem (28) and is zero by Theorem 2.3. In other
words, we get

Sε = (Sε)−1 = (Sε)∗ = (Sε)⊤

which proves the symmetry.

Repeating the calculation (36) again we get the following assertion.

Proposition 2.5. Let aε = (aε0+, a
ε
0−, a

ε
1,+, a

ε
1,−)

⊤ ∈ C4 be a column vector,
where its elements are the coefficients in the decomposition (34) of the solution
ϕε ∈ W1,ε

β (Ωε) to the problem (28) with the right hand side F ε ∈ W 1
−β(Ω

ε)∗.
Then aε satisfies the equation

i(Sε)∗aε = F ε(Zε). (41)
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The next theorem will be our main tool for identification of the eigen-
value λε. For the reader’s convenience we present here a condensed proof of
a sufficient condition for an embedded eigenvalue, which was detected in [9]
for general elliptic boundary value problems and applied in [22, 23] for other
concrete problems in mathematical physics.

We split the augmented scattering matrix into blocks of size 2× 2:

Sε =

[
Sε
◦◦ Sε

◦•
Sε
•◦ Sε

••

]
(42)

and divide the solution and the wave row vector in the same way:

Zε = (Zε
◦ , Z

ε
•), w

ε,in/out = (wε,in/out
◦ , wε,in/out

• ), (43)

where Zε
◦ = (Zε

0+, Z
ε
0−), Z

ε
• = (Zε

1,+, Z
ε
1,−) and so on.

Theorem 2.6. A spectral parameter λε is an eigenvalue of the problem (9)–(11)
if and only if −1 is an eigenvalue of the 2×2-block Sε

••. If a
ε
•=(aε1,+, a

ε
1,−)

⊤∈C2

is the corresponding eigenvector, then the linear combination

Zε
•a

ε
• = aε1,+Z

ε
1,+ + aε1,−Z

ε
1,−

belongs to H1(Ωε) and therefore is a trapped mode.

Proof. According to (42) and (43), we can rewrite the decomposition (26) as
follows:

Zε
◦ = wε,in

◦ + wε,out
◦ S◦◦ + wε,out

• S•◦ + Z̃ε
◦ ,

Zε
• = wε,in

• + wε,out
◦ S◦• + wε,out

• S•• + Z̃ε
• . (44)

Let then aε• ∈ ker(Sε
•• + I2) be a non-zero vector and set aε◦ = (0, 0)⊤. Then

for a vector aε = (aε◦, a
ε
•)

⊤ we obtain by the unitary property of the augmented
scattering matrix

0 = |aε|2 − |aε•|2 = |Sεaε|2 − |aε•|2 = |Sε
◦•a

ε
•|2 + |Sε

••a
ε
•|2 − |aε•|2 = |Sε

◦•a
ε
•|2.

Hence Sϵ
0•a

ϵ
• = 0 and we derive from (44) that

Zε
•a

ε
• = wε,in

• aε• +wε,out
◦ Sε

◦•a
ε
• +wε,out

• Sε
••a

ε
• + Z̃ε

•a
ε
• = wε,in

• −wε,out
• + Z̃ε

•a
ε
•. (45)

Recalling the formulae (22), we see that both exponentially growing waves χ±v
ε
±

in Π± disappear from the difference wε,in
1± − wε,out

1± . Therefore the function (45)
gets exponential decay at infinity, falls into H1(Ωε), and becomes a trapped
mode.
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On the contrary, based on the representation (40), any non-trivial solution
φε ∈ H1(Ωε) ⊂ W 1

−β(Ω
ε) of the homogeneous problem (28) is a linear combina-

tion Zεaε for some aε ∈ C4 \ {0}. Thus

φε=Zε
◦a

ε
◦+Z

ε
•a

ε
•

=wε,in
◦ aε◦+w

ε,out
◦ (Sε

◦◦a
ε
◦+S

ε
◦•a

ε
•)+w

ε,in
• aε•+w

ε,out
• (Sε

•◦a
ε
◦+S

ε
••a

ε
•)+φ̃

ε, (46)

where φ̃ε ∈ W 1
β (Ω

ε).
The inclusion φε ∈ H1(Ωε), in particular, requires that the coefficients of

the oscillatory waves w
ε,in/out
0± vanish. It means that aε◦ = 0 and Sε

◦•a
ε
• = 0.

Then the equation (46) converts into

φε = wε,in
• aε• + wε,out

• (Sε
•◦a

ε
◦ + Sε

••a
ε
•) + φ̃ε. (47)

By the formulae (22) we conclude that the growing waves χ±v
ε
± are absent

in (47) provided aε• + Sε
••a

ε
• = 0. Hence the theorem is proved.

We emphasize that the inequality

dimker(Sε
•• + I2) > 0 (48)

is a criterion for trapped modes only under the condition (33) which ensures
the absence of trapped modes with fast decay. Otherwise, (48) reduces to a
sufficient condition, cf. [9]. Ignoring this fact may lead to mistakes in numerical
schemes to compute the embedded eigenvalue, see a discussion in [18]. If an
information on kerA0

β is not available, it is worth to employ so called fictitious
scattering operator, an infinite dimensional analog of scattering matrices, cf. [18]
and [26] for water waves.

3. Asymptotic analysis

3.1. Preliminaries. Since f 0 ∈ H1(Ω0)∗ has a compact support and therefore
belongs to W 1

−β(Ω
0)∗, Theorem 2.3 provides a unique solution φ(f) ∈ W1,0

β (Ω0)
of the problem (28), where β is replaced by −β and F ε by f 0. By (7) and (35),
the column vector af ∈ C4 and the remainder φ̃(f) ∈ W 1

β (Ω
0) satisfy the

estimate

|af◦ |2+|af• |2+∥φ̃(f);W 1
β (Ω

0)∥ 6 c∥f 0;W 1
−β(Ω

0)∗∥ 6 c∥f 0;H1(Ω0)∗∥ 6 cε. (49)

Clearly, φ0−φ(f) ∈ W 1
−β(Ω

0) is a solution of the homogeneous problem (28).
Hence it is a linear combination of the solutions Zj,±. However, according to (22)
we have

wε,in
1,− − wε,out

1,− = iK+χ+v
ε
− + iK−χ−v

ε
+.
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Moreover, the equality (20) can be written as

φ0 = −i(w0,in
1,− − w0,out

1,− ) + φ̃0. (50)

Thus

φ0 − φ(f) = −iZ0
1,− = −iZ0

4 (51)

and comparing the coefficients in the decompositions of φ0, φ(f) and Z0
1,− yields

−af♯ = −iS0
♯4, i− af4 = −iS0

44. (52)

Here we have used the alternative notation (cf. (24), (25)) in which

af♯ = (af0+, a
f
0−, a

f
1,+) = (af1 , a

f
2 , a

f
3) and af4 = af1,−.

Hence the augmented scattering matrix has a following block structure:

Sε =

[
Sε
♯♯ Sε

♯4

Sε
4♯ Sε

44

]
, (53)

where Sε
♯♯ is 3× 3-block, Sε

44 ∈ C and according to the symmetry of Sε

Sε
4♯ = (Sε

♯4)
⊤ = (Sε

1−,0+, S
ε
1−,0−, S

ε
1−,1+) = (Sε

41, S
ε
42, S

ε
43).

Here we have ε = 0, but the notation will be used also in the case ε > 0. The
formulae (49) and (52) mean that

|S0
44 + 1| 6 cε, |S0

♯4| 6 cε. (54)

The immediate objective is to find a perturbed water domain Ωε such that

Sε
44 = −1, (55)

Sε
♯4 = 0 ∈ C3. (56)

Note that owing to (55) the vector (0, 1)⊤ ∈ C2 belongs to ker(Sε
•• + I2) and

therefore the criterion (48) is satisfied. Equality (56) is a direct consequence
of (55). In order to fulfil (55) we will derive the asymptotics

Sε = S0 + εS ′ + εS̃ε (57)

to detect an explicit form of the last column S ′
4 in S ′ and estimate the remain-

der S̃ε.
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3.2. Asymptotic ansätze. The small perturbations (13) of the boundary ∂Ω0

and (18) provoke small changes in the special solutions Z0
j± of the homogeneous

problems so that in a finite part of the domain we may employ the standard
and simple asymptotic expansion

Zε(y, z) = Z0(y, z) + εZ ′(y, z) + · · · (58)

for the solution vector (25), where Z ′ is the correction term to be found. The
dots stand for the higher order terms which are inessential in our asymptotic
procedure. We emphasize that the coordinate functions of the vectors Z0 and Z ′

are originally defined in the domain Ω0, but are extended across the smooth
arc Υ to Ω0 ∪ Uδ ⊃ Ωε with preservation of differential properties.

Clearly, the sum Z0(y, z) + εZ ′(y, z) on the right of (58) cannot get the
necessary asymptotic form (26) at infinity due to the Taylor formula

wε,in/out(y, z) = w0,in/out(y, z) + εw′,in/out + · · · (59)

for waves and wave packets (17) and (22) caused by the perturbation (18) of
the spectral parameter. At this point, we consider (58) as the inner expansion
in the framework of the method of matched asymptotic expansions, cf. [7, 31]
and interpretation of the method in [20, 21]. Besides the ansätze (57) and (59)
convert (26) into the outer expansion which is acceptable only at a large distance
from the obstacle:

Zε = w0,in + εw′,in + · · ·+ (w0,out + εw′,out + · · · )(S0 + εS ′ + · · · )
= w0,in + w0,outS0 + ε(w′,in + w′,outS0 + w0,outS ′) + · · · .

The matching procedure for the inner and outer expansions provides the
representation formulae

Z0 = w0,in + w0,outS0 + · · · , (60)

Z ′ = w′,in + w′,outS0 + w0,outS ′ + · · · . (61)

Let us describe the correction term in (59). The waves (17) and (22) involve
the cut-off functions χ± and we specify these definitions as

w
ε,in/out
j± = χ(y)w

ε,in/out
j± , (62)

where w
ε,in/out
j± is defined only in Π+(R) ∪ Π−(R) and χ(y) stands for χ+(y) in

Π+(R) and for χ−(y) in Π−(R). Moreover, w
ε,in/out
j± satisfies

−∆w
ε,in/out
j± (y, z) + k2w

ε,in/out
j± (y, z) = 0, (y, z) ∈ Π+(R) ∪ Π−(R) (63)

∂zw
ε,in/out
j± (y, 0)− λεw

ε,in/out
j± (y, 0) = 0, (y, 0) ∈ Γ+(R) ∪ Γ−(R)

−∂zwε,in/out
j± (y,−d) = 0, (y,−d) ∈ Σ+(R) ∪ Σ−(R).
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The boundary parts Γ±(R) and Σ±(R) are defined analogously to (4). Applying
the Taylor formula in ε to equations (63) and using them at ε = 0 gives us the
equations for the correction terms w′,in/out:

−∆w
′,in/out
j± (y, z) + k2w

′,in/out
j± (y, z) = 0, (y, z) ∈ Π+ ∪ Π−(R) (64)

(∂z − λ0)w
′,in/out
j± (y, 0) = Λw

0,in/out
j± (y, 0), (y, 0) ∈ Γ+(R) ∪ Γ−(R) (65)

− ∂zw
′,in/out
j± (y,−d) = 0, (y,−d) ∈ Σ+(R) ∪ Σ−(R), (66)

where
w

′,in/out
j± (y, z) = χ(y)w

′,in/out
j± (y, z). (67)

3.3. Determination of the correction term. Clearly, the correction term Z ′

in (58) must satisfy the Helmholtz equation

−∆Z ′(y, z) + k2Z ′(y, z) = 0, (y, z) ∈ Ω0, (68)

and the inhomogeneous Steklov condition

∂zZ
′(y, 0)− λ0Z ′(y, 0) = ΛZ0(y, 0), (y, 0) ∈ Γ, (69)

at the free surface. Both of these are obtained directly by inserting the ansätze
into the problem (9)–(11) and extracting the coefficients of ε. What is left is to
determine the right hand side in the Neumann boundary condition

∂νZ
′(y, z) = G(y, z), (y, z) ∈ Σ. (70)

To do so, we need to transfer the homogeneous condition (11) from Σε onto Σ.
Since the perturbation of the boundary occurs in the neighbourhood Uδ of the
smooth curve Υ, where both Z0 and Z ′ are smooth functions, we may apply
the Taylor formula in the n-variable. First of all, we recall the formula for the
normal derivative ∂νε on the curve Υε given by (13):

∂

∂νε
=

(
1 +

ε2|∂sh(s)|2

(1 + nκ(s))2

)− 1
2
( ∂

∂n
− ε∂sh(s)

(1 + nκ(s))2
∂

∂s

)
(71)

where κ(s) is the curvature of Υ at the point s. By (13) we know that n = O(ε)
on Υε and, hence,

∂

∂νε

(
Z0 + εZ ′ + · · ·

)∣∣∣
n=εh(s)

=
∂Z0

∂n

∣∣∣
n=εh(s)

+ ε
(
− ∂sh

∂Z0

∂s
+
∂Z ′

∂n

)∣∣∣
n=εh(s)

+ · · ·

=
∂Z0

∂n

∣∣∣
n=0

+ εh
∂2Z0

∂n2

∣∣∣
n=0

+ ε
(
− ∂sh

∂Z0

∂s
+
∂Z ′

∂n

)∣∣∣
n=εh(s)

+ · · · . (72)
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The Helmholtz equation in the curvilinear coordinates

− 1

1 + nκ

∂

∂n
(1 + nκ)

∂Z0

∂n
− 1

1 + nκ

∂

∂s

1

1 + nκ

∂Z0

∂s
+ k2Z0 = 0

shows that ∂2nZ
0 = −∂2zZ0 + k2Z0 at n = 0, because ∂nZ

0 = 0 when n = 0,
cf. the problem (1)–(3) for Z0. Collecting the coefficients of ε in (72), we obtain
the boundary condition (70) with the right-hand side

G(y, z) = ∂sh(s)∂sZ
0(y, z)− h(s)∂2nZ

0(y, z)

= ∂sh(s)∂sZ
0(y, z) + h(s)∂2sZ

0(y, z)− k2Z0(y, z)

= ∂s(h(s)∂sZ
0(y, z))− k2Z0(y, z), (y, z) ∈ Σ.

(73)

Notice that the profile function h is extended in (73) by zero from Υ over the
whole Σ so that the boundary condition (70) is inhomogeneous on Υ only.

The right hand side ΛZ0 in the boundary condition (69) has a fast growth
at infinity and at the moment Theorem 2.3 does not apply. However, searching
for a solution for (68)–(70) in the form

Z ′ = Z+ (χw′,in + χw′,outS0), (74)

we take the relations (64)–(67) into account and conclude that the new unknown
Z satisfies the boundary value problem

−∆Z(y, z) + k2Z(y, z) = F1(y, z), (y, z) ∈ Ω (75)

∂zZ(y, 0)− λ0Z(y, 0) = ΛZ̃0(y, 0), (y, 0) ∈ Γ (76)

∂νZ(y, z) = G(y, z), (y, z) ∈ Σ, (77)

where
F1(y, z) = [∆, χ](w′,in(y, z) +w′,out(y, z)S0) (78)

and
[∆, χ] = ∆χ+ 2∇χ · ∇

is the commutator of the Laplace operator and the cut-off function χ. We
remind here our convention on the factor χ in (62) and (67).

The boundary conditions in (76) require some explanation. First, the sub-

stitution Z ′ 7→ Z changes the right hand side of (69) into the product ΛZ̃0 due
to formulae (26) and (65). Secondly, the commutators [∂z, χ±] in (76) and (77)
vanish, because the cut-off functions (15) depend only on y and on Π±(R) the
normal derivative ∂ν = −∂z. There also the equalities (65) and (66) are valid.

The boundary value problem (75)–(77) can be reformulated as the integral
identity

(∇Z,∇ψ)Ω + k2(Z, ψ)Ω − λ0(Z, ψ)Γ = F(ψ) ∀ψ ∈ W 1
β (Ω). (79)
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The linear functional

F(ψ) = (F1, ψ)Ω + (G,ψ)Σ + Λ(Z̃0, ψ)Γ

is continuous in W 1
−β(Ω)

∗ due to the inclusion Z̃0 ∈ W 1
β (Ω)

4 and because F1

andG have compact supports. Now, for ε = 0, we may apply Theorem 2.3 which
delivers a unique solution Z ∈ W1,0

β (Ω)4. It has an asymptotic behaviour, which
according to (61) and (74), must be written as follows:

Z(y, z) = w0,out(y, z)S ′ + Z̃(y, z), Z̃ ∈ W 1
β (Ω)

4. (80)

The correction term (74) in (58) is constructed while the coefficient matrix S ′

in (80) is calculated by means of formula (41) in Proposition 2.5 with ε = 0:

i(S0)∗S ′ = J, (81)

J = (F1, Z
0)Ω + (G,Z0)Σ + Λ(Z̃0, Z0)Γ.

Since S0 is unitary, we finally obtain the desired correction term in (57):

S ′ = −iS0J. (82)

3.4. Justification of the asymptotics. Applying asymptotic structures de-
veloped in [20], see also [22, 23], we introduce the global approximation of the
solution vector Zε in (25):

Zas(y, z) = Xε(y)(Z
0(y, z) + εZ ′(y, z))

+ χ(y)wε,in(y, z) + χ(y)wε,out(y, z)(S0 + εS ′)

−Xε(y)
(
χ(y)w0,∈(y, z) + χ(y)w0,out(y, z) + χ(y)w′,in(y, z)

+ χ(y)w0,out(y, z)S0 + εw0,out(y, z)S ′
)

=: Xε(y)Z0(y, z) + χ(y)Z∞(y, z)−Xε(y)χ(y)Zm(y, z)

(83)

where χ = χ± are cut-off functions as in (15) and Xε ∈ C∞(R) is such that

Xε(y)=1, for |y|6ε−1, Xε(y)=0, for |y|>d+ε−1, |∂kyXε(y)|6ck. (84)

Note that these cut-off functions have overlapping supports, cf. Figure 3. Due
to this fact the truncated inner Z0 and outer Z∞ expansions are overlapping in
the zones {(y, z) : R < |y| < d + ε−1, z ∈ (−d, 0)} and we have to compensate
by subtracting Zm which involves all terms matched in the previous section.
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Figure 3: The graphs of the cut-off functions

Next we show that (∆− k2)Zas is small. A direct calculation gives us

(∆−k2)Zas=Xε(∆−k2)Z0+χ(∆−k2)Z∞−Xεχ(∆−k2)Zm

+[∆, Xε](Z0(y,z)−Zm(y,z))+[∆, χ](Z∞(y,z)−Zm(y,z)).

Here, the second and third terms vanish, since Z∞ and Zm are composed of
the waves w

ε,in/out
j± , w

0,in/out
j± and w

′,in/out
j± which satisfy the Helmholtz equation.

The first term is zero in Ω0, but nonzero in Ωε \ Ω0. However, Z0 and Z ′ were
extended smoothly to Ω0 ∪ Uδ ⊃ Ωε and hence

−∆Z0(y, z) + k2Z0(y, z) = O(|n|) = O(ε), (y, z) ∈ Ωε \ Ω0,

because the curved thin strip Ωε\Ω0 has the width of order ε in the n-direction,
cf. the over-shadowed region in Figure 2. By the Newton-Leibnitz formula the
inequality

∥ψ;L2(Ωε \ Ω0)∥2 6 cε∥ψ;H1(Ωε ∩ Ωε)∥2

is valid for all ψ ∈ H1(Ωε). With the previous bounds we get∣∣∣(Xε(∆− k2)Z0, ψ)Ωε

∣∣∣ 6 cε

∫
Ωε\Ω0

|ψ(y, z)|dzdy 6 cε2∥ψ;H1(Ωε(R)∥. (85)

Coefficients of the first order differential operator [∆, χ] are located in the
set {(y, z) : R 6 |y| 6 R + d, z ∈ [−d, 0]}. On the other hand, the difference
Z∞(y, z)− Zm(y, z) become small for |y| ≪ ε−1. In fact, Z∞(y, z) − Zm(y, z)
gets order ε2 due to the Taylor formula (59) with the remainder O(ε2(1+ |y|)2)
which turns into O(ε2) under the constrain |y| 6 R + d. Hence we obtain the
estimate

|([∆, χ](Z∞ −Zm), ψ)Ωε 6 cε2∥ψ;L2(Ωε(R + d))∥. (86)

Both the bounds in (85) and (86) can be replaced by cε2∥ψ;W 1
−γ(Ω

ε)∥ with any
γ ∈ R due to the boundedness of Ωε(R) ⊂ Ωε(R + d). In particular, we can
choose γ = β.

The smallness of [∆, Xε](Z0−Zm) follows similarly. Here the coefficients
of [∆, Xε] are nonzero only in the set {(y, z) : ε−16 |y|6 d+ε−1, z ∈ [−d, 0]}.
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By choosing ε small enough, we have R ≪ ε−1. Now the difference Z0(y, z) −
Zm(y, z) = Z̃0(y, z)+ εZ̃(y, z) becomes exponentially small for |y| > ε−1. How-
ever, to express the smallness, we need to diminish the weight index and choose

γ ∈ (π, β) ⊂ (θε1, θ
ε
2).

Then we can write∣∣([∆, Xε](Z0 −Zm), ψ)Ωε

∣∣
6 c∥eβ|y|(Z̃0 + εZ̃);L2(Ωε)∥ ∥e−β|y|ψ;L2(Ωε(d+ ε−1) \ Ωε(ε−1))∥

6 ce
γ−β
ε ∥e−γ|y|ψ;L2(Ωε)∥

6 ce
γ−β
ε ∥e−γ|y|ψ;W 1

−γ(Ω
ε)∥.

Finally, collecting all the previous estimates, we obtain |((∆− k2)Zas, ψ)Ωε| 6
cε2∥ψ;W 1

−γ(Ω
ε)∥, which implies

∥(∆− k2)Zas;W 1
−γ(Ω

ε)∗∥ 6 cε2. (87)

In a similar manner we process the discrepancy in the Steklov condition:

(∂z − λε)Zas = Xε(∂z − λε)(Z0 − χZm) + χ(∂z − λε)Z∞

= Xε(∂z − λε)(Z̃0 + εZ̃)

= Xε

(
∂zZ̃

0 − λ0Z̃0 + ε(∂zZ̃− λ0Z̃− ΛZ̃0)− ε2ΛZ̃
)

= −ε2ΛXεZ̃.

(88)

In deriving this we have used several issues. First, Z∞ is composed of waves (17)

and (22), which verify the Steklov condition (10). Similarly, Z̃0 satisfies the
Steklov condition by its definition (26). The factor in ε-term vanishes because

of (76) which hold for Z̃ as well. With the help of (88) we finally deduce the
estimate

|((∂z − λε)Zas, ψ)Ωε| 6 cε2∥XεZ̃;W
1
β (Ω

0)∥∥ψ;W 1
−β(Ω

ε)∥
6 cε2∥ψ; ;W 1

−γ(Ω
ε)∥.

(89)

All the terms in (83) meet the homogeneous Neumann condition on Σε \Υ.
Furthermore, the cut-off functions Xε = 1 and χ± = 0 on Υε. Hence, we have

∂νεZ
as(y, z) = ∂νεZ

0(y, z) + ε∂νεZ
′(y, z), (y, z) ∈ Υε. (90)

Since Z0 and Z ′ are smooth in Ω0 ∩ Uδ our calculations in (71)–(73) above
demonstrate that the right hand side of (90) is nothing but O(ε2). Therefore
we get

|(∂νεZas, ψ)Σε|6cε2∥ψ;L2(Σε)∥6cε2∥ψ;H1(Ωε(R))∥6cε2∥ψ;W 1
−γ(Ω

ε)∥. (91)



234 S. A. Nazarov and K. M. Ruotsalainen

In view of (84) the vector function (83) admits the representation

Zas = wε,in + wε,out(S0 + εS ′) + Z̃as, Z̃as ∈ W 1
γ (Ω

ε).

Thus the difference Zε −Zas falls into W1,ε
γ (Ωε) and fulfils the integral identity

(28) where β = −γ. The right hand side F as ∈ W 1
−γ(Ω

ε)∗ is bounded as follows

∥F as;W 1
−γ(Ω

ε)∗∥ 6 cε2

according to the estimates (87), (89) and (91).
Using Theorem 2.3 with β = γ we conclude that ∥Zε−Zas;W1,ε

γ (Ωε)∥ 6 cε2.
Since the norm in the weighted space with detached asymptotics involves the
coefficient matrix εS̃ε = Sε−S0−εS ′ of the decomposition Zε−Zas we achieve
the desired estimate for the remainder in (57).

Theorem 3.1. Let λε be as in (18) and assume that Λ6c0 for ε∈(0, ε0], ε0>0.
Then the augmented scattering matrix Sε in the regularly perturbed domain Ωε,
see (13), takes the asymptotic form (57), where S ′ and S0 satisfy (82) and

|S̃ε| 6 C0ε, (92)

where C0 is independent on ε.

4. Detection of an eigenvalue

4.1. Reformulating the criterion. Since only the main correction term S ′

is constructed in the asymptotics (57) of the augmented scattering matrix Sε,
the inequality (48) cannot be satisfied directly. To avoid this difficulty, we are
going to find an equivalent formulation of the criterion for the existence of a
trapped mode.

In the meanwhile, we do not possess any information about the 3 × 3 -
block S0

♯♯ of the matrix S0 in (53). But in any case we may choose a phase
η ∈ [0, 2π) such that the matrix

S0
♯♯ + e2iηI3 (93)

is non-singular and the norm of the inverse matrix is of order 1, that is, much
smaller than ε−1. This condition can be achieved because the eigenvalues of S0

♯♯

are at a distance O(ε) from the unit circle in the complex plane by the esti-
mates (54).

Lemma 4.1. There exists ε0 > 0 such that, for ε ∈ (0, ε0], the system (55), (56)
is equivalent with the following four relations for the blocks in (53)

Re(eiη(Sε
♯♯)

∗Sε
♯4) = 0 ∈ R3, (94)

Im(Sε
44) = 0. (95)
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Proof. Since Sε is unitary, the condition (55) implies (56). Therefore, (94)
and (95) hold true.

Assume then that the relations (94) and (95) are attested. Taking into
account the mutual orthogonality of columns in a unitary matrix we can write

0 = eiη(Sε
♯♯)

∗Sε
♯4 + eiη(Sε

4♯)
∗Sε

44

= −e−iη(Sε
♯♯)

⊤Sε
♯4 + eiηSε

44(S
ε
♯4)

= −e−iη
(
Sε
♯♯ − e2iηSε

44I3
)
Sε
♯4

= −e−iη
(
S0
♯♯ + e2iηI3 +O(ε)

)
Sε
♯4.

(96)

Here the first equality follows from (94) stating that eiη(Sε
♯♯)

∗Sε
♯4 is purely imagi-

nary. In the second equality we have applied the symmetry of Sε
♯♯, which follows

trivially from the symmetry of Sε. Finally, the last equality is a consequence of
the asymptotic formulae (54). In (96), O(ε) stands for a 3× 3-matrix with the
elements of order ε. For small ε, the matrix S0

♯♯ + e2iηI3 + O(ε) is non-singular
according to our assumption on (93). Thus the vector Sε

♯4 = 0 and |Sε
44| = 1,

which together with (94) and (95) ensure that Sε
44 is a real number situated

close to −1. That is Sε
44 = −1.

4.2. Refining the asymptotics of the augmented scattering matrix. To
satisfy (94) and (95), we need to know the fourth column Sε

4 of the augmented
scattering matrix Sε generated by the coefficients in the solution Zε

4 = Zε
j−,

see (25) and (26). By (82) and (54) we have

S ′
4 = iJ4 +O(ε) = i

(
(F1, Z

0
4)Ω + (G,Z0

4)Σ + Λ(Z̃0, Z0
4)Γ

)
+O(ε).

Formulae (49) and (51) show that

∥Z0
4 − iφ0;W1,0

β (Ω0)∥ 6 cε.

Hence, remembering that F1 and G have compact supports and that Z̃0 has a
fast decay, we obtain

S ′
4 = (F1, φ

0)Ω + (G,φ0)Σ + Λ(Z̃0, φ0)Γ +O(ε). (97)

First of all, we specify an explicit formula for S ′
44. Namely, according to (50),

(73), (78) and (97), we write

S ′
44 =

(
[∆, χ](w′,in

1,− −w′,out
1,− ), φ0

)
Ω
− iΛ(φ̃0, φ0)Γ + iB(h;φ0, φ0) +O(ε), (98)

where
B(h;φ, ψ) = (h∂sφ, ∂sψ)Υ + k2(hφ, ψ)Υ. (99)
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To get −B(h;φ0, φ0) in (98), we have integrated by parts in (∂s(h∂sφ
0) −

k2hφ0, φ0)Υ using the knowledge that φ0|Υ is smooth and h ∈ C∞
0 (Υ). More-

over, the first term on right hand side of (98) can be transformed into(
[∆, χ](w′,in

1,− −w′,out
1,− ), φ0

)
Ω

=
(
(∆− k2)(χw′,in

1,− − χw′,out
1,− )φ0

)
Ω
−

(
χ(∆− k2)(w′,in

1,− −w′,out
1,− ), φ0

)
Ω

=
(
(∂z − λ0)(χw′,in

1,− − χw′,out
1,− ), φ0

)
Γ

= Λ(χ(w0,in
1,− −w0,out

1,− ), φ0
)
Γ
.

In the end we arrive at

S ′
44 = iΛ∥φ0;L2(Γ)∥2 − iB(h;φ0, φ0) +O(ε). (100)

Setting

Λ = λ′ + λ̃ε, (101)

λ′ = ∥φ0;L2(Γ)∥−2B(h;φ0, φ0), (102)

we further obtain

S ′
44 = iλ̃ε∥φ0;L2(Γ)∥2 + S̃ ′

44, |S̃ ′
44| 6 cε. (103)

Let us then consider the column vector S ′
♯4 ∈ C3 which, according to (54)

and (81), can be solved from the equation

(S0
♯♯)

∗S ′
♯4

=−iJ♯4+O(ε) (104)

=−
(
[∆, χ](w′,in

♯ +w′,out
♯ S0

♯♯+w′,out
4 S0

4♯), φ
0
)
Ω
−Λ

(
Z̃0

♯ , φ
0
)
Γ
+B(h;Z0

♯ , φ
0)+O(ε).

We proceed in the same manner as in the calculation of S ′
44. First of all, we get

rid of the wave w0.out
4 = w0.out

1,− in the asymptotics of Z0
♯ by setting

ϕ0
♯ = Z0

♯ − S0
♯4w

0,out
4 = w0,in

♯ − w0,out
♯ S0

♯♯ + Z̃0
♯ .

From the second inequality in (54), we derive the estimate

∥Z0
♯ − ϕ0

♯ ;W
1,0
β (Ω0)∥ 6 cε,

so that we may replace Z0
♯ by ϕ0

♯ in (104). Repeating the calculations above we
then obtain

(S0
♯♯)

∗S ′
♯4 = −Λ(ϕ0

♯ , φ
0)Γ + B(h;ϕ0

♯ , φ
0) +O(ε). (105)



Interpretation of Approximate Computations of Trapped Modes 237

A similar expression has appeared in (100). However, the first integral on the
right hand side of (105) must be understood in the Cauchy sense:

(ϕ0
♯ , φ

0)Γ = lim
ρ→∞

∫
Γ(ρ)

ϕ0
♯ (y, 0)φ

0(y, 0)dy, (106)

where Γ(ρ) = {(y, 0) ∈ Γ : |y| 6 ρ}. The absence of the exponential wave w0,out
1,−

in ϕ0
♯ ensures the existence of the limit in (106). Indeed, we get

lim
ρ→∞

∫
Γ(ρ0+ρ)\Γ(ρ)

ϕ0
♯ (y, 0)φ

0(y, 0)dy = 0, ρ0 > 0,

because φ0 decays exponentially, the waves w
0,in/out
0,± and the remainder are at

least bounded while the functions

y 7→ w
0,in/out
1,+ (y, 0)

(
K+χ+(y)v

0
−(y, 0) +K−χ−(y)v

0
+(y, 0)

)
are odd in view of (22).

Taking (99), (103) and (105) into account, we represent the profile func-
tion h in (13) as follows:

h(s) = δ1h1(s) + δ2h2(s) + δ3h3(s) = h♯(s)δ♯, (107)

where δ♯ = (δ1, δ2, δ3)
⊤ ∈ R3 is a new parameter vector and the functions hj

compose the row vector h♯ = (h1, h2, h3) and satisfy the orthonormality condi-
tions

Re
(
eiη(B(hp;ϕ0

q, φ
0)− B(hp;φ0, φ0)

∥φ0;L2(Γ)∥−2
(ϕ0

q, φ
0)Γ

)
= δp,q, p, q = 1, 2, 3. (108)

Then inserting (99), (102) and (108) into the equation (104), we obtain

Re(eiη(S0
♯♯)

∗S ′
♯4) = δ♯ − λ̃εRe(eiη(ϕ0

♯ , φ
0)Γ) + Sε

♯ , |Sε
♯ | 6 cε.

4.3. The desired profile function and the detection of the eigenvalue.
Using (103), we rewrite the equation (95) as follows:

λ̃ε − t0 = T ε
0 (λ̃

ε, δ♯), (109)

where

t0 = ∥φ0;L2(Γ)∥−2ε−1Im(S0
44),

T ε
0 (λ̃

ε, δ♯) = −∥φ0;L2(Γ)∥−2Im(ε−1S̃ε
44 + S̃ ′

44).
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Similarly, the equations (94) can be transformed into

δ♯ − λ̃εRe(eiη(ϕ0
♯ , φ

0)Γ)− t♯ = T ε
♯ (λ̃

ε, δ♯), (110)

where

t♯ = ε−1Re(eiη(S0
♯♯)

∗S0
♯4),

T ε
♯ (λ̃

ε, δ♯) = −Sε
♯ − ε−1Re(eiη((S0

♯♯)
∗S̃ε

♯4 + (Sε
♯♯ − S0

♯♯)
∗Sε

♯4)).

Theorem 4.2. There exist ε0 > 0 and r0 > 0 such that for ε ∈ (0, ε0] the

non-linear system of equations (109), (110) has a unique solution (λ̃ε, δ♯) in the
ball

Bεr0 = {(λ̃ε, δ♯) ∈ R4 : |λ̃ε − t0|2 + |δ♯ − t♯ − t0Re(e
iη(ϕ0

♯ , φ
0)Γ)|2 6 εr20}.

Proof. First, recall that the coordinate change (y, z) 7→ (yε, zε) in (39) trans-
forms Ωε into the reference domain Ω0 and ∆, ∂νε into the differential opera-
tors Lε, N ε which depend smoothly (even analytically) on the parameters ε, δ♯
in (13), (107) and λ̃ε in (18) and (101). By general results in the perturbation
theory of linear operators, see e.g. [6], such dependence is inherited also by the
augmented scattering matrix Sε in the problem (9)–(11). Recall here that the
norm in the weighted space W1,0

β (Ωε) with detached asymptotics contains the
coefficients aεj± of the expansion (34).

Secondly, by means of the asymptotic analysis presented in Section 3 and
the transformations in Section 4.2 we obtain that

|t0|+ |t♯| 6 c, (111)

|T ε
0 (λ̃

ε, δ♯)|+ |T ε
♯ (λ̃

ε, δ♯)| 6 cε(1 + |λ̃ε|+ |δ♯|). (112)

The inequality (111) follows from (54), whereas (112) is the consequence
of (57), (92), (103) and (107).

The statement now follows from the contraction principle in view of the
previous estimates (111) and (112).

The system (109), (110) is equivalent with the relations (94), (95) which,
by Lemma 4.1, ensure the equality (55) and the criterion (44) for the existence
of trapped modes. In this way, Theorem 4.2 gives the main result of our paper.

Theorem 4.3. There exist positive ε0, r0 and c0 such that, for any ε ∈ (0, ε0],
conditions (6)–(7), (33) and (108) provide the profile function h of the
form (107) in (13). In the corresponding water domain Ωε, the water wave

problem (9)–(11) has an eigenvalue λε = λ0 + ελ′ + ελ̃ε, where λ′ is given

by (99) and |λ̃ε| 6 εr0 so that the inequality (12) is valid.
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5. Final comments on the assumptions

5.1. Perturbation profile function. To fulfil the orthonormality conditions
(106), it suffices to verify that the functions

Yq=∂sϕ
0
q∂sφ

0+k2ϕ0
qφ

0−∥φ0;L2(Γ)∥−2(ϕ0
q,φ

0)Υ(|∂sφ0|2+k2|φ0|2), q=1,2,3, (113)

are linearly independent in L2(Υ) and then to fix the phase η ∈ [0, 2π) prop-
erly. Furthermore, the perturbation of the arc Υ, in principle, may be chosen
arbitrarily. This can be done by a simple numerical scheme. However, in many
situations it is possible to show the necessary property theoretically. Let us
present an example.

We assume that k = 0 and set

Υ = {(y, z) : ±y ∈ (l, l + l0), z = −d}, (114)

where l0 is fixed and l > 0 is a large number, cf. Figure 2b. Then the last
factor |∂yφ0(y,−d)|2 in (113) gets the order e−2lθ01 , cf. (14). Observing that
under assumption S0

33 ̸= −1 (again we suppose that there is no trapped mode
in the reference domain Ω0), the functions ∂yϕ

0
q(y,−d) involving the oscillating

waves w
0,in/out
0± and one exponential wave w

0,in/out
1,+ cannot get the same order

everywhere on the intervals (114), we see that it remains to check the linear
independence of the products

∂yϕ
0
q(y,−d)∂yφ0(y,−d), q = 1, 2, 3, y ∈ Υ. (115)

Since ∂yφ
0(y,−d) ̸= 0 on Υ for a big l, the linear dependence of (115) means

that the gradient of a linear combination ϕ0
♯c♯ with some column vector

c♯ ∈ C3 \ {0} vanishes everywhere on Υ. This is impossible for the nontriv-
ial harmonic function ϕ0

♯c♯ due to the theorem on unique continuation, see [12,
Chapter 4]. In other words, conditions (108) can be achieved by perturbation
of the bottom at a distance from the obstacle. As mentioned above, to locate
the perturbation (13) near the obstacle, numerical experiments are needed.

5.2. Trapped mode with too fast decay. If the assumption (33) is violated,
a trapped mode at the frequency ω0 =

√
gλ0 exists, but the computation of φ0

in (6)–(7) has no relation to this particular trapped mode. However, one may
enlarge the weight index β and again provide the trivial kernel kerA0

β of the
problem operator (29) at ε = 0, but this time in the Kondratiev space of
functions with “very fast” decay at infinity. This change of weighted space does
not prevent our scheme for detecting an eigenvalue λε and a trapped mode close
to φ0. However, in this case much many exponential packets of type (22) must
be involved so that the size of the augmented matrix grows. Correspondingly,
a larger number of orthonormality conditions on the ingredients of the profile
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function h must be imposed. This makes our scheme much more cumbersome,
but does not affect its main conclusions.

A similar modification must be done in the case when condition (21) is
not fulfilled. Then the coefficients K± in the asymptotic form (14) become ei-
ther zero, or small comparable with the discrepancy of order ε in (7). In view
of (6) and (7) all coefficients in the Fourier decompositions of φ0 in Π±(R)
cannot get the order ε. Thus it suffices to choose a root tJ of the tran-
scendental equation (16) such that the coefficients on the exponential waves
e∓θjy cos(tj(d

−1z+1)) in Π±(R), where j = 1, . . . , J − 1 and θj =
√
k2 + d−2tj,

are as small as O(ε), but the coefficients KJ
± on e∓θJy cos(tJ(d

−1z + 1)) satisfy
the condition (21). Then taking β ∈ (θJ , θJ+1) we widen the family of exponen-
tial wave packets and enlarge the size of the augmented scattering matrix, but
still we can follow the scheme presented in Sections 3 and 4.

5.3. Shape of the water domain and the obstacle. If the channel
Π = R×ϖ and the obstacle in it are three-dimensional, where ϖ is a bounded
domain in the plane, our scheme in Sections 3 and 4 is still applicable. In this
case, instead of two oscillating waves (17), the number N of propagating waves
in Π ⊂ R3 increases to infinity when ω0 → ∞. In this way the size of the tradi-
tional scattering matrix becomes N × N . However, the size of the augmented
scattering matrix S0 can be (N + 2) × (N + 2) , if the coefficients K± of the
first exponentially decaying waves satisfy condition (21).

Based on the general results in the asymptotic theory of elliptic operators
in singularly perturbed domains, cf. [14], it is possible to consider non-smooth
profiles, in particular, perturbations with corners or bumps of small diameter.
The latter, however, requires a totally different techniques than those applied
in Section 2.3.

A reduction of the John problem ([8]) to the abstract spectral equation with
a continuous self-adjoint operator in Hilbert space, see e.g. [5], [27], can help
in derivation of similar result to Theorem 4.3 in the presence of freely floating
objects. This, however, is an open question up to now.
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