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Riesz-Like Bases in Rigged Hilbert Spaces

Giorgia Bellomonte and Camillo Trapani

Abstract. The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis
are generalized to a rigged Hilbert space D[t] ⊂ H ⊂ D×[t×]. A Riesz-like basis, in
particular, is obtained by considering a sequence {ξn} ⊂ D which is mapped by a
one-to-one continuous operator T : D[t] → H[‖ · ‖] into an orthonormal basis of the
central Hilbert space H of the triplet. The operator T is, in general, an unbounded
operator in H. If T has a bounded inverse then the rigged Hilbert space is shown to
be equivalent to a triplet of Hilbert spaces.
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1. Introduction

Riesz bases (i.e., sequences of elements {ξn} of a Hilbert space H which are
transformed into orthonormal bases by some bounded operator with bounded
inverse) often appear as eigenvectors of nonself-adjoint operators. The simplest
situation is the following one. Let H be a self-adjoint operator with discrete
spectrum defined on a subset D(H) of the Hilbert space H. Assume, to be more
definite, that each eigenvalue λn is simple. Then the corresponding eigenvectors
{en} constitute an orthonormal basis of H. If X is another operator similar
to H, i.e., there exists a bounded operator T with bounded inverse T−1 which
intertwines X and H, in the sense that T : D(H) → D(X) and XTξ = THξ,
for every ξ ∈ D(H), then, as it is easily seen, the vectors {ϕn} with ϕn = Ten
are eigenvectors of X and constitute a Riesz basis for H. There are, however,
more general situations, mostly coming from physical applications, where the
intertwining operator T exists but at least one between T and T−1 is unbounded.
This is actually the case of the so-called cubic Hamiltonian X = p2 + ix3

of Pseudo-Hermitian Quantum Mechanics, for which it has been proved that
there is no intertwining operator bounded with bounded inverse which makes it
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similar to a self-adjoint operator [28]. Of course, for studying these cases, one
also has to relax the notion of similarity since problems of domain may easily
arise (see [6, 7] for a full discussion of the various notions of (quasi-) similarity
that one may introduce).

Also, when studying the formal commutation relation [A,B] = 11, where B
is not the adjoint of A (the so-called pseudo-bosons studied by Bagarello [8,9]),
in the most favorable situation, one finds two biorthogonal families of vectors
{φk}, {ψk}, a positive intertwining operator K (Kϕn = ψn, n ∈ N) and the

family {en} with en = K−
1
2ϕn, n ∈ N, is an orthonormal family of vectors. But,

in general both K and K−1 are unbounded [10,11].
These examples motivate, in our opinion, a study of possible generalizations

of the notion of Riesz basis that could cover these situations of interest for
applications.

Whenever unbounded operators are involved, dealing with discontinuity
and with sometimes nontrivial domain problems becomes unavoidable. Both
difficulties can be by-passed if one enlarges the set-up from Hilbert spaces to
rigged Hilbert spaces.

A rigged Hilbert space (RHS) consists of a triplet (D,H,D×) where D is
a dense subspace of H endowed with a topology t, finer than that induced by
the Hilbert norm of H, and D× is the conjugate dual of D[t], endowed with the
strong topology t× := β(D×,D).

Of course, one could also pose the problem of extending the notion of Riesz
basis in the more general set-up of locally convex spaces, but the nature itself
of the notion of Riesz basis requires also a control of its behavior in the context
of duality and, as we shall see, a Riesz-like basis on a locally convex space D[t]
will automatically make of D the smallest space of rigged Hilbert space. Thus
it appears natural to consider rigged Hilbert spaces from the very beginning.

On the other hand, rigged Hilbert spaces (and their further generalizations
like e.g. partial inner product spaces) have plenty of applications. In Analysis
they provide the general framework for distribution theory; in Quantum Physics
they give a convenient description of the Dirac formalism [5, Chapter 7]. Finally,
rigged Hilbert spaces (e.g. those generated by the Feichtinger algebra) or lattices
of Hilbert or Banach spaces (mixed-norm spaces, amalgam spaces, modulation
spaces) play also an important role in signal analysis (see [5, Chapter 8], for an
overview).

As it is known, a Riesz basis {ξn} in a Hilbert space H is also a frame
[15, 17,19]; i.e., there exist positive numbers c, C such that

c‖ξ‖2 ≤
∞∑
n=1

| 〈ξ |ξn 〉 |2 ≤ C‖ξ‖2, ∀ξ ∈ H. (1)

The peculiarity of a Riesz basis relies in its exactness or minimality: a frame is
a Riesz basis if it ceases to be a frame when anyone of its elements is dropped
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out. The notion of frame is crucial in signal analysis and for coherent states
(see e.g. [15] and references therein) and in approximation theory [1, 18, 30]. A
further generalization is the notion of semi-frame [2] for which one of the above
frame bounds is absent (lower or upper semi-frames). For instance a lower
semi-frame has an unbounded frame operator, with bounded inverse.

The paper is organized as follows. In Section 2, after some preliminaries,
we discuss shortly the notion of basis in a rigged Hilbert space D[t] ⊂ H ⊂
D×[t×]. Then we introduce Bessel-like sequences in D×[t×] and Riesz-Fischer-
like sequences in D[t] and study, in the present context, their interplay in terms
of duality. In Section 3, we define {ξn} to be a Riesz-like basis if there exists
a one-to-one linear map T : D → H, continuous from D[t] into H[‖ · ‖], such
that {Tξn} is an orthonormal basis for the central Hilbert space H. Some
characterizations of these bases are given. Finally, we consider the special case
where T has also a continuous inverse. This additional assumption, even though
natural, reveals to be quite strong, since, as we will see, the rigged Hilbert space
D[t] ⊂ H ⊂ D×[t×] is in fact equivalent to a triplet of Hilbert spaces. An
application to nonself-adjoint Hamiltonians is briefly discussed in Section 3.2.

2. Preliminaries and basic aspects

2.1. Rigged Hilbert spaces and operators on them. Let D be a dense
subspace ofH. A locally convex topology t on D finer than the topology induced
by the Hilbert norm defines, in standard fashion, a rigged Hilbert space (RHS)

D[t] ↪→ H ↪→ D×[t×], (2)

where D× is the vector space of all continuous conjugate linear functionals on
D[t], i.e., the conjugate dual of D[t], endowed with the strong dual topology
t× = β(D×,D) and ↪→ denotes a continuous embedding. Since the Hilbert
space H can be identified with a subspace of D×[t×], we will systematically
read (2) as a chain of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. These
identifications imply that the sesquilinear form B(·, ·) that puts D and D× in
duality is an extension of the inner product of D; i.e., B(ξ, η) = 〈ξ |η 〉, for every
ξ, η ∈ D (to simplify notations we adopt the symbol 〈· |·〉 for both of them).

Example 2.1. Let T be a closed densely defined operator with domain D(T )
in Hilbert space H. Let us endow D(T ) with the graph norm ‖ · ‖T defined by

‖ξ‖T = (‖ξ‖2 + ‖Tξ‖2)
1
2 = ‖(I + T ∗T )

1
2 ξ‖, ξ ∈ D(T ).

With this norm D(T ) becomes a Hilbert space, denoted by HT . If H×T denotes
the Hilbert space conjugate dual of HT , then we get the triplet of Hilbert spaces

HT ⊂ H ⊂ H×T
which is a particular example of rigged Hilbert space.
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Example 2.2. Let D be a dense domain in Hilbert space H and denote by
L†(D) the *-algebra consisting of all closable operators A with D(A) = D,
which together with their adjoints, A∗, leave D invariant. The involution of
L†(D) is defined by A 7→ A†, where A† = A∗ �D. The *-algebra L†(D) defines
in D the graph topology t† by the family of seminorms

ξ ∈ D → ‖ξ‖A := ‖(I + A∗A)
1
2 ξ‖, A ∈ L†(D).

Since the topology t† is finer than the topology induced on D by the Hilbert
norm of H, it defines in natural way a structure of rigged Hilbert space.

Let now D[t] ⊂ H ⊂ D×[t×] be a rigged Hilbert space, and let L(D,D×)
denote the vector space of all continuous linear maps from D[t] into D×[t×]. If
D[t] is barreled (e.g. reflexive), an involution X 7→ X† can be introduced in
L(D,D×) by the equality〈

X†η |ξ
〉

= 〈Xξ |η 〉, ∀ξ, η ∈ D.

Hence, in this case, L(D,D×) is a †-invariant vector space.
If D[t] is a smooth space (e.g. Fréchet and reflexive), then L(D,D×) is a

quasi *-algebra over L†(D) [3, Definition 2.1.9].
Let E ,F ∈ {D,H,D×} and L(E ,F) the space of all continuous linear maps

from E [tE ] into F [tF ]. We put

C(E ,F) := {X ∈ L(D,D×) : ∃Y ∈ L(E ,F), Y ξ = Xξ,∀ξ ∈ D}.

In particular, if X ∈ C(D,H) then its adjoint X† ∈ L(D,D×) has an extension
from H into D×, which we denote by the same symbol.

The space L(D,D×) has been studied at length by several authors (see
e.g. [22–24,29]) and several pathologies concerning their multiplicative structure
have been considered (see also [3, 5] and references therein). Recently some
spectral properties of operators of these classes have also been studied [13].

2.2. Topological bases and Schauder bases. Let E [tE ] be a locally convex
space and {ξn} a sequence of vectors of E . We adopt the following terminology:

(i) the sequence {ξn} is complete or total if the linear span of {ξn} is dense
in E [tE ];

(ii) the sequence {ξn} is a topological basis for E if, for every φ ∈ E , there
exists a unique sequence {cn} of complex numbers such that

φ =
∞∑
n=1

cnξn, (3)

where the series on the right hand side converges in E [tE ].
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Every coefficient cn = cn(φ) in (3) can be regarded as a linear functional on E
and, following [20], we say that

(iii) a topological basis {ξn} of E [tE ] is a Schauder basis if the coefficient func-
tionals {cn} are tE -continuous.

Remark 2.3. We notice the following well-known facts.

(a) If E has a total sequence, then it is a separable space.

(b) Every topological basis is a complete sequence; the converse is false, in
general.

(c) If {ξn} is a topological basis for E , then {ξn} is ω-independent; i.e., if∑∞
n=1 cnξn = 0, then cn = 0, for every n ∈ N. This in turn implies that

the sequence {ξn} consists of linearly independent vectors.

(d) If E [tE ] is a Fréchet space, then every topological basis is a Schauder basis
([20, Section 14.2, Theorem 5]).

By a slight modification of [20, Section 14.3, Theorem 6] we have

Proposition 2.4. A complete sequence of vectors {ξn} ⊂ E is a Schauder basis
of E [tE ] if, and only if, for every n ∈ N and every continuous seminorm p
on E [tE ], there exists a continuous seminorm q on E [tE ] such that

p

(
n∑
i=1

ciξi

)
≤ q

(
n+m∑
i=1

ciξi

)

where c1, . . . , cn+m are arbitrary complex numbers and m is an arbitrary natural
number.

As is known, a Riesz basis {ξn} in Hilbert space H is transformed by some
bounded operator into an orthonormal basis of H; this is equivalent to saying
that a new (and equivalent) inner product can be introduced in H which makes
of {ξn} an orthonormal basis. A similar notion for locally convex spaces, calls
immediately on the stage rigged Hilbert spaces.

Proposition 2.5. Let {ξn} ⊂ E be a Schauder basis of E [tE ] and assume that
there exists a one-to-one continuous linear map T from E [tE ] into some Hilbert
space K[‖ · ‖] such that {Tξn} is an orthonormal basis of K. Then there exists
an inner product 〈· |·〉+ on E × E such that the topology induced on E by the
norm ‖ · ‖+ is coarser than tE and {ξn} is an orthonormal basis.

Proof. Define 〈ξ |η 〉+ := 〈Tξ |Tη 〉, ξ, η ∈ E . Then all the statements follow
immediately.

Then, under the conditions of Proposition 2.5, one can consider E as a
subspace of the Hilbert space completionH+ of E [‖·‖+], so that a rigged Hilbert
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space can be built in natural way: E [tE ] ⊂ H+ ⊂ E×[t×E ]. This is essentially the
reason why, as announced in the Introduction, we will confine ourselves within
this framework.

Let D[t] ⊂ H ⊂ D×[t×] be a rigged Hilbert space and {ξn} a Schauder
basis for D[t]. Then, every f ∈ D can be written as

∑∞
n=1 cn(f)ξn, for uniquely

determined suitable coefficients cn(f). Since every cn is a continuous linear
functional on D[t], there exists a sequence {ζn} ⊂ D× such that

cn(f) = 〈ζn |f 〉, ∀n ∈ N, f ∈ D.

For every n ∈ N, the vector ζn is uniquely determined. If we take f = ξk, then
it is clear that cn(ξk) = δn,k. Hence 〈ζn |ξk 〉 = δn,k; i.e., the sequences {ξn} and
{ζn} are biorthogonal. More precisely,

Proposition 2.6. Let {ξn} be a topological basis for D[t]. The following state-
ments are equivalent.

(i) {ξn} is a Schauder basis.

(ii) {ξn} is minimal; i.e., ξk 6∈ span{ξm;m 6= k}
t
, for every k ∈ N.

(iii) There exists a unique sequence {ζn} ⊂ D× such that {ξn} and {ζn} are
biorthogonal.

(i) ⇔ (ii) is proved in [20, Section 14.2, Proposition 3], and (ii) ⇒ (iii) in [20,
Section 14.2, Proposition 1]; (iii)⇒ (ii) is trivial. See also [17, Theorem 6.1.1].

Proposition 2.7. Let {ξn} be a Schauder basis for D[t]. Then there exists a
sequence {ζn} of vectors of D× such that

(i) the sequences {ξn} and {ζn} are biorthogonal;

(ii) for every f ∈ D,

f =
∞∑
n=1

〈ζn |f 〉ξn; (4)

(iii) The partial sum operator Sn, given by

Snf =
n∑
k=1

〈ζk |f 〉ξk, f ∈ D,

is continuous from D[t] into D[t] and has an adjoint S†n everywhere defined
in D× given by

S†nΨ =
n∑
k=1

〈Ψ |ξk 〉ζk, Ψ ∈ D×.

The proof is straightforward.
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Proposition 2.8. Let {ξn} be a Schauder basis for D[t]. Then, the following
statements hold.

(i) The sequence {ζn} in (4) is complete in D×[τ ], where τ is a topology of
the conjugate dual pair (D×,D). If D[t] is reflexive, {ζn} is complete also
with respect to t×.

(ii) The sequence {ζn} is a basis for D× with respect to the weak topology; i.e.,
if Ψ ∈ D× one has

〈Ψ |f 〉 =

〈
∞∑
k=1

〈Ψ |ξk 〉ζk |f

〉
=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk |f 〉 , ∀f ∈ D. (5)

Proof. (i): Assume that {ζn} is not complete. Then there exists f 6= 0, f ∈ D
(regarded as the conjugate dual of D×[τ ]) such that 〈ζn |f 〉 = 0, for every n ∈ N.
From (4) it follows that f = 0, a contradiction. If D[t] is reflexive, the statement
follows from the equality of t and the Mackey topology τ(D×,D).

(ii): Assume first that Φ ∈ D× is of the form Φ =
∑n

k=1 ckζk. Then it
is easily seen that S†nΦ = Φ. Now, if Ψ ∈ D×, for every f ∈ D and for
every ε > 0, there exists Φ =

∑n
k=1 ckζk such that | 〈Ψ− Φ |f 〉 | < ε. On

the other hand, since Snf → f , there exists nε ∈ N such that for n > nε,
| 〈Ψ− Φ |Snf − f 〉 | < ε. Thus we have∣∣〈S†nΨ−Ψ |f

〉∣∣ ≤ ∣∣〈S†nΨ− S†nΦ |f
〉∣∣+

∣∣〈S†nΦ− Φ |f
〉∣∣+ | 〈Φ−Ψ |f 〉 |

= | 〈Ψ− Φ |Snf 〉 |+ | 〈Φ−Ψ |f 〉 |
≤ | 〈Ψ− Φ |Snf − f 〉 |+ 2| 〈Φ−Ψ |f 〉 |
< 3ε.

Hence S†nΨ→ Ψ weakly, or

〈Ψ |f 〉 =

〈
∞∑
k=1

〈Ψ |ξk 〉ζk |f

〉
=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk |f 〉 .

For f ∈ D ⊂ D×, (5) gives in particular

‖f‖2 =
∞∑
k=1

〈f |ξk 〉 〈ζk |f 〉 , ∀f ∈ D;

so that the series on the right hand side is convergent, for every f ∈ D.

Remark 2.9. There is a wide interest and a rich literature on bases or frames
in locally convex spaces (in particular, Banach spaces) and on their existence,
see e.g. [16,25] and [14] and references therein.
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2.3. Bessel- and Riesz-Fischer-like sequences. We assume, from now on,
that D[t] is complete and reflexive.

Definition 2.10. Let {ζn} be a sequence in D×. We say that {ζn} is a Bessel-
like sequence if, for every bounded subset M of D[t],

sup
η∈M

∞∑
k=1

| 〈ζk |η 〉 |2 =: γM <∞. (6)

Proposition 2.11. A sequence {ζn} of elements of D× is Bessel-like if and
only if

∞∑
k=1

| 〈ζk |η 〉 |2 <∞, ∀η ∈ D

and the analysis operator

F : η ∈ D[t]→ {〈ζk |η 〉} ∈ `2[‖ · ‖2]

is continuous.

Proof. Let {ζn} be Bessel-like. From (6) it is clear that for every η ∈ D,∑∞
k=1 | 〈ζk |η 〉 |2 <∞.

Now we prove that

U : {an} ∈ `2 →
∞∑
n=1

anζn

is a well-defined continuous linear map from `2[‖ · ‖2] into D×[t×].
We begin with proving that

∑∞
n=1 anζn converges in D×[t×]. Let M be a

bounded subset of D[t]. Then, for n > m,

sup
η∈M

∣∣∣∣∣
〈

n∑
k=1

akζk −
m∑
k=1

akζk |η

〉∣∣∣∣∣ = sup
η∈M

∣∣∣∣∣
〈

n∑
k=m+1

akζk |η

〉∣∣∣∣∣
≤ sup

η∈M

n∑
k=m+1

|ak 〈ζk |η 〉 |

≤

(
n∑

k=m+1

|ak|2
) 1

2

· sup
η∈M

(
∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ γ
1
2
M

(
n∑

k=m+1

|ak|2
) 1

2

→ 0, as n,m→∞.
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Hence the partial sums
∑n

k=1 akζk constitute a Cauchy sequence in D×[t×] and,
since D×[t×] being reflexive is1 quasi-complete [27, Chapter IV, 5.5, Corollary 1],
the series converges in D×. Moreover, by simple modifications of the previous
inequalities it follows also that

sup
η∈M

∣∣∣∣∣
∞∑
k=1

ak 〈ζk |η 〉

∣∣∣∣∣ ≤ γ
1
2
M‖{an}‖2.

Thus, U is continuous from `2[‖ · ‖2] into D×[t×] and therefore by the reflexivity
of D[t], U has a continuous adjoint map U † : D[t] → `2[‖ · ‖2]. It is easily
checked that

U †η = {〈ζn |η 〉}, ∀η ∈ D.
Thus U † = F and F is continuous.

Conversely, let us assume that {〈ζk |η 〉} ∈ `2 and that F is continuous. This
implies that there exists a continuous seminorm p on D[t] such that

‖Fη‖2 =

(
∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ p(η), ∀η ∈ D.

Thus, if M is a bounded subset of D[t], we get

sup
η∈M

∞∑
k=1

| 〈ζk |η 〉 |2 = sup
η∈M
‖Fη‖22 ≤ sup

η∈M
p(η)2 <∞, ∀η ∈ D.

Hence {ζn} is a Bessel-like sequence.

As usual, we will call the operator F †: {an} ∈ `2 →
∑∞

n=1 anζn ∈ D×, the
syntesis operator of the sequence {ζn}.

From Proposition 2.11 and from the fact that (6) is not affected from a
possible reordering of the elements {ζn} it follows that if {ζn} is a Bessel-like
sequence and {an} ∈ `2 then the series

∑∞
n=1 anζn converges unconditionally in

D×[t×].
If {ζn} is a Bessel-like sequence, then the operator F †F (we keep for it the

name of frame operator, as usual) is a continuous linear map from D[t] into
D×[t×]; i.e., F †F ∈ L(D,D×). Clearly,

F †Fη =
∞∑
k=1

〈ζk |η 〉 ζk

where the series on the right hand side converges in D×[t×]. The operator F †F
is positive, in the sense that

〈
F †Fη |η

〉
≥ 0, for every η ∈ D.

1A locally convex space is said to be quasi-complete if every closed bounded subset is
complete.
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Remark 2.12. A sequence {ξn} of elements of D can also be considered as
a sequence in D×. Hence the notion of Bessel-like sequence can be given also
in this case, and analysis and synthesis operators act in the very same way as
before. Moreover, if both series

∑∞
k=1 akξk and

∑∞
k=1 aσ(k)ξσ(k) converge in D[t],

where σ : N→ N is a bijection, then they have the same sum, since
∑∞

k=1 akξk
converges unconditionally in D×[t×].

Proposition 2.13. A sequence {ζn} of elements of D× is Bessel-like if and only
if, for every orthonormal basis {en} in H, there exists W ∈ C(H,D×) such that
Wen = ζn, for every n ∈ N.

Proof. Let {ζn} be Bessel-like and {en} an orthonormal basis for H. For f ∈ H,
f =

∑∞
k=1 〈f |ek 〉 ek, we define Wf =

∑∞
k=1 〈f |ek 〉 ζk. This series converges in

D×[t×] as seen in Proposition 2.11 and it is clear that Wen = ζn, for every n ∈ N.
We now prove that W ∈C(H,D×). Let us consider a bounded subsetM of D[t];
then,

sup
η∈M
| 〈Wf |η 〉 | = sup

η∈M

∣∣∣∣∣
〈
∞∑
k=1

〈f |ek 〉 ζk |η

〉∣∣∣∣∣
= sup

η∈M

∣∣∣∣∣
∞∑
k=1

〈f |ek 〉 〈ζk |η 〉

∣∣∣∣∣
≤

(
∞∑
k=1

| 〈f |ek 〉 |2
) 1

2

sup
η∈M

(
∞∑
k=1

| 〈ζk |η 〉 |2
) 1

2

≤ γ
1
2
M‖f‖.

Conversely, assume that, given an orthonormal basis {en}, there exists
W ∈C(H,D×) such that Wen=ζn. Then, if M is a bounded subset of D[t],

sup
η∈M

∞∑
k=1

|〈ζk|η 〉|2 = sup
η∈M

∞∑
k=1

|〈Wek|η 〉|2 = sup
η∈M

∞∑
k=1

∣∣〈ek∣∣W †η
〉∣∣2 = sup

η∈M
‖W †η‖2<∞.

Hence {ζn} is a Bessel-like sequence.

As in the case of Hilbert spaces, Bessel-like sequences have a dual counter-
part.

Definition 2.14. Let {ξn} be a sequence in D. We say that {ξn} is a Riesz-
Fischer-like sequence, if for every orthonormal basis {en} of H, there exists
S ∈ C(D,H) such that Sξn = en, for every n ∈ N.
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For an arbitrary sequence {ξn} in D, we define, a second analysis operator V
as follows: D(V ) =

{
Φ ∈ D× :

∞∑
k=1

| 〈Φ |ξk 〉 |2 <∞

}
V Φ = {〈Φ |ξk 〉}, Φ ∈ D(V )

(7)

Proposition 2.15. If {ξn} is a Riesz-Fischer-like sequence, then V : D(V )→ `2

is surjective.

Proof. Let {an}∈`2 and {en} an orthonormal basis ofH. Put f=
∑∞

k=1akek∈H.
Then,

an = 〈f |en 〉 = 〈f |Sξn 〉 =
〈
S†f |ξn

〉
, ∀n ∈ N.

Then Φ = S†f ∈ D(V ) and V Φ = {an}.

Let {ωn} denote the canonical basis in `2; i.e., ωn = {δkn}, for every n ∈ N.
Then, for every n ∈ N, there exists ζn ∈ D× (in general, nonunique) such that
δkn = 〈ζn |ξk 〉 , n, k ∈ N.

The duality between Riesz-Fischer-like sequences and Bessel-like ones is then
stated by the following

Proposition 2.16. {ξn} is a Riesz-Fischer-like sequence in D if and only if
there exists a Bessel-like sequence {ζn} in D× such that {ξn} and {ζn} are
biorthogonal.

Proof. Suppose that {ξn} has a Bessel-like biorthogonal sequence. Then, for
every orthonormal basis {en} inH, there exists T ∈C(H,D×) such that Ten=ζn,
for every n ∈ N. Then,

δkn = 〈ζn |ξk 〉 = 〈Ten |ξk 〉 =
〈
en
∣∣T †ξk 〉 , n, k ∈ N.

This easily implies that T †ξk = ek, for every k ∈ N.
Conversely, suppose that {ξn} is a Riesz-Fischer-like sequence. Then, for

every orthonormal basis {en} in H, there exists S∈C(D,H) such that Sξn=en,
for every n ∈ N. Hence,

δkn = 〈Sξn |ek 〉 =
〈
ξn
∣∣S†ek 〉 .

Let us define ζk = S†ek, k ∈ N. Then {ζk} is Bessel-like and {ξn} and {ζn} are
biorthogonal.

For a sequence {ζn} ⊆ D×, we only get a partial result.

Proposition 2.17. Let {ζn} be a sequence in D×. If {ζn} possesses a biorthogo-
nal sequence {ξn} which is total and Riesz-Fischer-like, then {ζn} is a Bessel-like
sequence.
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Proof. Since {ξn} is Riesz-Fischer-like, for every orthonormal basis {en} in H,
there exists S ∈ C(D,H) such that Sξn = en, for every n ∈ N. Hence,

δkn = 〈Sξn |ek 〉 =
〈
ξn
∣∣S†ek 〉 .

This implies that
〈
ξn
∣∣S†ek − ζk 〉 = 0, for all k, n ∈ N. Since {ξk} is total, we

conclude that, for every k ∈ N, ζk = S†ek. Clearly, S† ∈ C(H,D×); hence, the
statement follows from Proposition 2.13.

Let us now assume that {ξn} is a Schauder basis for D[t] and that the dual
basis {ζn} is a Bessel-like sequence. Then, {ξn} is a Riesz-Fischer-like sequence
and by (5), we have, for every Φ ∈ D× and for every bounded subsetM of D[t],

sup
f∈M
|〈Φ |f 〉| ≤

(
∞∑
k=1

|〈Φ |ξk 〉|2
)1

2

sup
f∈M

(
∞∑
k=1

|〈ζk |f 〉 |2
)1

2

≤ γ
1
2
M

(
∞∑
k=1

|〈Φ |ξk 〉|2
)1

2

,

which, by putting Φ = f gives a lower estimate of (
∑∞

k=1 | 〈f |ξk 〉 |2)
1
2 , similar

to that one gets in the usual formulation in Hilbert spaces.

3. Riesz-like bases

3.1. Basic properties.

Definition 3.1. A Schauder basis {ξn} for D[t] is called a Riesz-like basis if
there exists an operator T ∈ C(D,H) such that {Tξn} is an orthonormal basis
for H.

It is clear that T is automatically one-to-one. It is easy to see that every
Riesz-like basis is a Riesz-Fisher-like sequence.

Since T maps D[t] into H[‖ · ‖] continuously, T † has a continuous extension
(which we denote by the same symbol) fromH[‖·‖] intoD×[t×]. The range R(T )
of T is dense in H since it contains the orthonormal basis {ek} with ek := Tξk,
k ∈ N. In particular, it may happen that R(T ) = H. Hence, the operator T−1

is everywhere defined and it is continuous if, and only if R(T †) = D×. We will
name {ξn} a strict Riesz-like basis, in this case. As we shall see in Theorem 3.9,
this imposes severe constraints on the topology t of D.

If {ξn} is a Riesz-like basis, we can find explicitly the sequence {ζn} ⊂ D×
of Proposition 2.7. The continuity of T and (4), in fact, imply

Tf =
∞∑
n=1

〈ζn |f 〉Tξn =
∞∑
n=1

〈ζn |f 〉en, ∀f ∈ D.

This, in turn, implies that 〈ζn |f 〉 = 〈Tf |en 〉, for every f ∈ D. Hence ζn = T †en,
for every n ∈ N.
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Clearly, for every n, k ∈ N,

〈ζk |ξn 〉 =
〈
T †ek |ξn

〉
= 〈ek |Tξn 〉 = 〈ek |en 〉 = δk,n,

and T †Tξn = ζn, for every n ∈ N.

Moreover, {ζn} is a Bessel-like sequence (Proposition 2.16). Indeed, one
has, for every bounded subset M of D[t],

sup
f∈M

∞∑
n=1

|〈ζn |f 〉|2 = sup
f∈M

∞∑
n=1

∣∣〈T †en |f 〉∣∣2 = sup
f∈M

∞∑
n=1

|〈en |Tf 〉|2 = sup
f∈M
‖Tf‖2<∞.

An easy computation shows that

T †g =
∞∑
k=1

dkζk if g =
∞∑
n=1

dnen ∈ H.

Finally, we have

T †(H) =

{
Ψ ∈ D× :

∞∑
k=1

| 〈Ψ |ξk 〉 |2 <∞

}
,

that is, T †(H) = D(V ), where V is the operator defined in (7).
Indeed, if Ψ ∈ T †(H), then Ψ = T †h, for some h ∈ H. Let h =

∑∞
k=1 ckek.

Then, using the continuity of T †,

T †h = T †

(
∞∑
k=1

ckek

)
=
∞∑
k=1

ckT
†ek =

∞∑
k=1

ckζk.

This implies that ck = 〈Ψ |ξk 〉 and
∑∞

k=1 | 〈Ψ |ξk 〉 |2 <∞.
Conversely, let

∑∞
k=1 〈Ψ |ξk 〉 ζk ∈ D× with

∑∞
k=1 | 〈Ψ |ξk 〉 |2 < ∞. Define

h =
∑∞

k=1 〈Ψ |ξk 〉 ek ∈ H. Then

T †h =
∞∑
k=1

〈Ψ |ξk 〉T †ek =
∞∑
k=1

〈Ψ |ξk 〉 ζk.

The operator T can also be regarded as an Hilbertian operator (by assumption
it maps D into H). This operator is closable in H if, and only if, the subspace

D(T ∗) = {g ∈ H : T †g ∈ H}

is dense in H. In this case, the operator T ∗, the adjoint of T , is defined by
T ∗g = T †g, g ∈ D(T ∗).
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Remark 3.2. If {ξn} is a Riesz-like basis for D[t] and {cn} ∈ `2 with∑∞
k=1 ckξk = 0, then cn = 0, for every n ∈ N.

Theorem 3.3. Let D[t] be complete and reflexive and D× quasi-complete. Let
{ξn} be a topological basis of D. The following statements are equivalent.

(i) {ξn} is a Riesz-like basis.

(ii) There exists a unique sequence {ζn} ⊂ D× such that

(ii.a) {ξn} and {ζn} are biorthogonal;

(ii.b) for every f ∈ D,
∑∞

n=1 | 〈ζn |f 〉 |2 <∞;

(ii.c) the seminorm pζ defined by

pζ(f) =

(
∞∑
k=1

| 〈ζn |f 〉 |2
) 1

2

is continuous on D[t].

(iii) There exists S ∈ L(D,D×), S ≥ 0, such that {ξn} and {Sξn} are biorthog-
onal.

Proof. (i) ⇒ (ii): Let {ξn} be a Riesz-like basis for D. Then there exists
T ∈ C(D,H) such that {Tξn} is an orthonormal basis for H. Put en = Tξn
and ζn = T †en. Then,

〈ζn |ξk 〉 =
〈
T †en |ξk

〉
= 〈en |Tξk 〉 = 〈en |ek 〉 = δn,k, n, k ∈ N.

It is easily seen that, if f =
∑∞

n=1 anξn, then an = 〈ζn |f 〉 and

Tf =
∞∑
n=1

〈ζn |f 〉en .

Hence
∑∞

n=1 | 〈ζn |f 〉 |2 < ∞. Moreover, since T ∈ C(D,H), there exists a
continuous seminorm p on D[t] such that ‖Tf‖ ≤ p(f), for every f ∈ D. Hence,

pζ(f) :=

(
∞∑
k=1

| 〈ζn |f 〉 |2
) 1

2

= ‖Tf‖ ≤ p(f), ∀f ∈ D.

This implies that pζ , which is a seminorm on D, is continuous.
(ii) ⇒ (iii): First, let us define Sξk = ζk and extend S by linearity to

D0 := span{ξm;m ∈ N}. Thus S : D0 → D×. If f =
∑n

k=1 〈ζk |f 〉ξk ∈ D0 and

g =
∑∞

h=1 〈ζh |f 〉ξh ∈ D, we get

|〈Sf |g 〉|=

∣∣∣∣∣
∞∑
k=1

〈ζk |f 〉〈ζk |g 〉

∣∣∣∣∣≤
(
∞∑
n=1

|〈ζn |f 〉|2
)1

2
(
∞∑
n=1

|〈ζn |g 〉|2
)1

2

= pζ(f)pζ(g).
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Hence, if M is a bounded subset of D[t], we obtain

sup
g∈M
| 〈Sf |g 〉 | ≤ pζ(f) sup

g∈M
pζ(g).

This proves that S is continuous from D0[t] into D×[t×]. Thus S has an
extension (denoted by the same symbol) to a continuous linear map from the
quasi-completion of D0[t], which is D, to the quasi-completion of D×, which
coincides with D×. Hence, S ∈ L(D,D×). It is easily seen that 〈Sf |f 〉 ≥ 0,
for every f ∈ D.

(iii)⇒ (i): Since {ξn} is a topological basis, every f ∈ D can be represented,
in unique way, as f =

∑∞
k=1 akξk. Let now S ∈ L(D,D×) be such that {ξn}

and {Sξn} are biorthogonal. Then the following equality holds

〈Sf |f 〉 =
∞∑
k=1

|ak|2 if f =
∞∑
k=1

akξk ∈ D. (8)

This implies that S ≥ 0 and {ak} ∈ `2. Then, if {ek} is any orthonormal basis
in H the series

∑∞
k=1 akek converges in H. Let us fix one of these bases {en}.

We define

Tn : f =
∞∑
k=1

akξk ∈ D → Tnf=
n∑
k=1

akek ∈ H

and

T : f =
∞∑
k=1

akξk ∈ D → Tf =
∞∑
k=1

akek ∈ H.

Using (8) it is easily seen that Tn ∈ C(D,H). Clearly, Tnf → Tf in H.
Since D[t] is reflexive, it is barreled and then, by the Banach-Steinhaus theorem
(see e.g. [20, Theorem 11.1.3]), it follows that T ∈ C(D,H). Moreover if f =∑∞

k=1 akξk ∈ D, then ‖Tf‖2 =
∑∞

k=1 |ak|2 whence it follows immediately that
T is injective. By the definition itself, Tξk = ek. Therefore {ξn} is a Riesz-like
basis.

Example 3.4. Suppose that {en} is an orthonormal basis forH whose elements
belong to D. If {en} is also a basis for D[t], then it is automatically a Schauder
basis and since the identity is continuous from D[t] into H[‖ · ‖], it is clear
that {en} is a Riesz-like basis for D[t]. The dual sequence in D× is clearly
{en} itself. This is a familiar situation. Let us consider, in fact, the triplet
S(R) ⊂ L2(R) ⊂ S×(R), where S(R) is the Schwartz space of rapidly decreasing
C∞-functions on the real line and S×(R) the space of (conjugate) tempered
distributions. Then, it is well known that the set {φn} of Hermite functions is
not only an orthonormal basis for L2(R), but also a basis for S(R) in its own
topology (see [26, Theorem V.13]).
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Example 3.5. Let H be a separable Hilbert space and {en} an orthonormal
basis of H. Let N denote the number operator defined on the basis vectors by
Nek = kek, k ∈ N. Then as it is well-known N is self-adjoint on its natural
domain

D(N) =

{
f ∈ H :

∞∑
k=1

k2| 〈f |ek 〉 |2 <∞

}
.

Let D := D∞(N) =
⋂∞
k=1D(Nk) be endowed with the topology tN defined by

the seminorms pk(·) = ‖Nk · ‖, k = 0, 1, 2, . . .. Then D is a Fréchet and reflexive
space. Define ξk = 1

k
ek, k ∈ N. Clearly, Nξk = ek, for every k ∈ N and N

maps continuously D[tN ] into H. Moreover, {ξk} is a basis for D[tN ]. Indeed,
for every p ∈ N we have∥∥∥∥∥Np

(
f−

n∑
k=1

k 〈f |ek〉 ξk

)∥∥∥∥∥=

∥∥∥∥∥Npf−
n∑
k=1

k 〈f |ek〉Npξk

∥∥∥∥∥=

∥∥∥∥∥Npf−
n∑
k=1

kp〈f |ek〉 ek

∥∥∥∥∥
and the latter tends obviously to zero as n → ∞. Since {ξk} is a Schauder
basis, it is a Riesz-like basis for D[tN ].

Example 3.6. Let {ξn} be a Schauder basis for D[t]. Assume that there exists
a continuous seminorm p on D[t] such that

(
∞∑
k=1

|ck|2
) 1

2

≤ p

(
∞∑
k=1

ckξk

)
,

whenever
∑∞

k=1 ckξk converges in D[t].

Let {ek} be any orthonormal basis in H. Then the operator

T : f =
∞∑
k=1

ckξk → Tf =
∞∑
k=1

ckek

is one-to-one and continuous from D[t] into H[‖ · ‖]. Clearly Tξk = ek, for every
k ∈ N. Hence, {ξn} is a Riesz-like basis for D[t].

Example 3.7. Let {ξn} be a Schauder basis for D[t] and {ζn} the corresponding
sequence in D× such that 〈ξn |ζm 〉 = δnm. Define Sξn = ζn, n ∈ N, and assume
that S extends to a positive operator (denoted by the same symbol) of L(D,D×).
If S = T †T , with T ∈ C(D,H) and T † ∈ C(H,D×), then, as it is easily seen,
the sequence {en} with en = Tξn is orthonormal and, if T is surjective, it is an
orthonormal basis for H. Thus {ξn} is a Riesz-like basis for D[t].
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Remark 3.8. It is worth considering the case where, so to say, the rigged
Hilbert space collapses into one Hilbert space only, as it happens if the topology t
of D is equivalent to the Hilbert norm. Then {ξn} is Riesz-like if there exists an
invertible bounded operator T mapping {ξn} into an orthonormal basis of H.
However, the inverse T−1 need not be bounded. Nevertheless the discussion
made so far shows that the essential features of (usual) Riesz bases in Hilbert
space are preserved also in this more general set-up.

In the usual definition of Riesz basis in Hilbert space H one requires that
{ξn} is mapped into an orthonormal basis of H by a bounded operator with
bounded inverse. In Definition 3.1, we only required the continuity of the op-
erator T ; i.e T ∈ C(D,H). In fact, there is no room for the continuity of T−1

from H into D[t], unless D[t] (and, then also D×[t×]) is equivalent (in topolog-
ical sense) to a Hilbert space. We maintain the basic assumption that D[t] is
complete and reflexive.

Theorem 3.9. Let {ξn} be a sequence of elements of D. The following state-
ments are equivalent.

(i) {ξn} is a Riesz-like basis and the one-to-one operator T ∈ C(D,H) for
which {Tξn} is an orthonormal basis of H, has a continuous inverse; i.e.,
T−1 ∈ C(H,D).

(ii) The space D can be endowed with an inner product 〈· |·〉+1 such that the
topology induced by the corresponding norm ‖ · ‖+1 is equivalent to t, D[‖ ·
‖+1] is a Hilbert space and the sequence {ξn} is an orthonormal basis for
D[‖ · ‖+1].

(iii) The sequence {ξn} is complete in D[t] and there exists a continuous semi-
norm p such that for every n ∈ N and complex numbers {c1, . . . , cn}

n∑
i=1

|ci|2 ≤ p

(
n∑
i=1

ciξi

)2

and for every continuous seminorm q there exists Cq > 0 such that

q

(
n∑
i=1

ciξi

)2

≤ Cq

n∑
i=1

|ci|2,

for every n ∈ N and complex numbers {c1, . . . , cn}.

Proof. (i) ⇒ (ii): Let T be the continuous operator with continuous inverse
such that {Tξn} is an orthonormal basis of H and define

〈ξ |η 〉+1 := 〈Tξ |Tη 〉 , ∀ξ, η ∈ D.
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Then, 〈· |·〉+1 is an inner product on D. Let ‖ · ‖+1 be the corresponding norm.
Clearly, ‖ξ‖+1 = ‖Tξ‖, for every ξ ∈ D. Since T is continuous from D[t] to H,
there exists a continuous seminorm p such that

‖ξ‖+1 = ‖Tξ‖ ≤ p(ξ), ∀ξ ∈ D. (9)

On the other hand, T−1 is continuous from H onto D[t], then for every semi-
norm q on D there exists γq > 0 such that

q(T−1ζ) ≤ γq‖ζ‖, ∀ζ ∈ H.

If ξ ∈ D, then ξ = T−1ζ for some ζ ∈ H, hence

q(ξ) ≤ q(T−1ζ) ≤ γq‖Tξ‖ = γq‖ξ‖+1. (10)

The equivalence of the topology defined by ‖ · ‖+1 and t implies that D[‖ · ‖+1]
is a Hilbert space.

Finally, the sequence {ξn} is a basis consisting of orthonormal vectors in
D[‖ · ‖+1]; indeed,

〈ξi |ξj 〉+1 = 〈Tξi |Tξj 〉 = 〈ei |ej 〉 = δij, i, j ∈ N.

(ii)⇒ (iii): Since ‖ ·‖+1 defines a topology equivalent to t, then there exists
a continuous seminorm p on D[t] such that (9) holds and for every continuous
seminorm q there exists γq > 0 such that (10) holds.

Now, consider any fixed n ∈ N and complex numbers {c1, . . . , cn} and con-
sider the orthonormal basis {ξn} for D[‖ · ‖+1]. If ξ =

∑n
i=1 ciξi ∈ D, then

‖ξ‖2+1 =
∑n

i=1 |ci|2 and the statement follows by applying (9) and (10) to ξ. Of
course the linear span of {ξn} is dense in D[‖·‖+1], since {ξn} is an orthonormal
basis for D[‖ · ‖+1]; hence the sequence {ξn} is complete in D[‖ · ‖+1] and then,
by the equivalence of t and of the topology generated by ‖·‖+1, {ξn} is complete
in D[t].

(iii) ⇒ (i): Let {en} be any orthonormal basis for H and define two linear
operators T : D → H and S : H → D as follows: for any fixed n ∈ N
T (
∑n

i=1 ciξi) :=
∑n

i=1 ciei and S (
∑n

i=1 ciei) :=
∑n

i=1 ciξi with ci ∈ C; T and S
are continuous; moreover, Tξn = en and Sen = ξn, for every n ∈ N. Certainly
TS = I and, since {ξn} is complete in D[‖ · ‖+1], ST = I�D. Hence, T is
a continuous invertible linear operator with continuous inverse and {ξn} is a
strict Riesz-like basis for D[t].

The condition given in (iii) is clearly the natural substitute for the inequal-
ities in (1) in this setting.

Let us call, for short, strict Riesz-like basis a basis for which (i) of Theo-
rem 3.9 holds.
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Proposition 3.10. If the rigged Hilbert space D[t] ⊂ H ⊂ D×[t×], with D[t]
complete and reflexive, has a strict Riesz-like basis {ξn} then it is (equivalent to)
a triplet of Hilbert spaces H+1 ⊂ H ⊂ H−1. Moreover, {ξn} is an orthonormal
basis for H+1 and the dual sequence {ζn} is an orthonormal basis for H−1.

In fact, from the previous discussion, it follows also that H+1 = D with
norm ‖ξ‖+1 = ‖Tξ‖, ξ ∈ D, where T ∈ C(D,H) is an operator such that {Tξn}
is an orthonormal basis for H. This operator T , regarded as an operator in H
is, in general, an unbounded operator with domain D(T ) = D and bounded
inverse.

Strict Riesz-like bases have an interest in their own since Riesz bases in
triplets of Hilbert spaces are useful for some applications [21]. A more detailed
analysis will be given in [12].

Example 3.11. Let A be a closed operator in a separable Hilbert space H,
with domain D(A). Then D(A) can be made into a Banach space, denoted
by BA, if a new norm is defined by ‖ϕ‖A := ‖ϕ‖+ ‖Aϕ‖.

Let B×A be the conjugate dual of BA w.r.t. ‖ · ‖A. The operator (I +A∗A)
1
2

is continuous from BA into H and its continuous extension to H, denoted by
the same symbol, is continuous from H into B×A and has continuous inverse.
If {en} is an orthonormal basis for H, then the sequence {ξn} defined by

ξn := (I + A∗A)−
1
2 en is a strict Riesz-like basis for BA.

A concrete example can be constructed as follows. Consider the triplet of
Sobolev spaces W 1,2(R) ⊂ L2(R) ⊂ W−1,2(R). As it is well-known, W 1,2(R) is
a Banach space under the norm ‖f‖1,2 = ‖f‖2 + ‖Df‖2, D denoting the weak
derivative.

Let {ξn} be the family of functions of W 1,2(R) defined by

ξn(x) =
(−i)n√

2π

∫
R

φn(y)eixy

(1 + y2)
1
2

dy,

where φn(x) = Hn(x)e−
x2

2 denotes the n-th Hermite function. The family {ξn}
is a strict Riesz-like basis of W 1,2(R)[‖·‖1,2]. In fact it is not difficult to show by

standard techniques of Fourier transform that (I −D2)
1
2 ξn = φn. Moreover the

operator (I − D2)
1
2 is continuous from W 1,2(R) into L2(R) and has continuous

inverse. The result of (ii) of Theorem 3.9 is not surprising at all. Indeed, as it
is well know, the space W 1,2(R) can be made into a Hilbert space with inner
product

〈ϕ |ψ 〉′1,2 =
〈

(I − D2)
1
2ϕ
∣∣∣(I − D2)

1
2ψ
〉
, ϕ, ψ ∈ W 1,2(R)

which endows W 1,2(R) with a topology equivalent to that defined by ‖f‖1,2.



262 G. Bellomonte and C. Trapani

3.2. An application. As mentioned in the Introduction, an important prob-
lem of Pseudo-Hermitian Quantum Mechanics is the following: given a nonself-
adjoint Hamiltonian H, with real spectrum, one tries to find a well-behaved
(bounded and with bounded inverse) intertwining operator T which trans-
forms H is a self-adjoint operator Hsa. When this happens one can get of
course a large amount of information on H making use of the spectral theory
of self-adjoint operators. The situation becomes more involved in cases (like
the cubic oscillator) where a so regular operator does not exist and one has to
deal with unbounded intertwining operators. Even the notion of similarity must
be relaxed, with a certain loss in the preservation of spectra (see e.g. [4, 6, 7]).
In this section, we will show how the approach in rigged Hilbert space can be
helpful in these cases.

Let H be a closed operator in Hilbert space. As already mentioned in
Example 2.1, its domain D(H) can be made into a Hilbert space HH with the
graph norm ‖ · ‖H. Let H×H be its conjugate dual and consider the triplet of
Hilbert spaces HH ⊂ H ⊂ H×H . Assume that Hsa is a self-adjoint operator in H
with discrete spectrum and, for simplicity, that every eigenvalue λk ∈ R has
multiplicity 1. Let ψk be an eigenvector corresponding to λk. Then {ψk} is an
orthonormal basis for H. Assume that there exists T ∈ C(HH,H), invertible
and with continuous inverse T−1 : H → HH such that〈

Hξ
∣∣T †η〉 = 〈Tξ |Hsaη 〉 , ∀ξ ∈ HH, η ∈ D(Hsa) s.t. T †η ∈ H. (11)

Let us define ξk = T−1ψk, k ∈ N. Then, the set {ξk} is complete and it is
a Schauder basis of HH[‖ · ‖H](Remark 2.3(d)). Hence it is a strict Riesz-like
basis. From (11), for every η ∈ D(Hsa), we get

〈
Hξn

∣∣T †η〉 = 〈Tξn |Hsaη 〉 =
〈ψn |Hsaη 〉 = 〈Hsaψn |η 〉 = λn 〈ψn |η 〉 = λn 〈Tξn |η 〉 = λn

〈
ξn
∣∣T †η〉 . Thus, if

T †D(Hsa) ∩H is dense in H, we get Hξn = λnξn, for every n ∈ N.
Conversely, assume that a sequence {ξn} is a strict Riesz-like basis for HH

and that Hξn = λnξn, λn ∈ R, for every n ∈ N. Since there exists an operator
T ∈ C(HH,H), invertible and with continuous inverse T−1 : H → HH, such that
the vectors ψn = Tξn constitute an orthonormal basis for H, we can construct
a self-adjoint operator Hsa, in standard way; i.e.,

D(Hsa) =

{
ξ ∈ H :

∞∑
k=1

λ2k| 〈ξ |ψk 〉 |2 <∞

}

Hsaξ =
∞∑
k=1

λk 〈ξ |ψk 〉ψk, ξ ∈ D(Hsa).

If ξ ∈ HH, then ξ =
∑∞

k=1 〈ξ |ζk 〉 ξk w.r.t. ‖ · ‖H. This, in particular, implies
that Hξ =

∑∞
k=1 λk 〈ξ |ζk 〉 ξk, in the norm of H. Then, taking into account

that ξk ∈ HH, for every k ∈ N and that T † ∈ C(H,H×H), we have, for every
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η ∈ D(Hsa) s.t. T †η ∈ H,

〈
Hξ
∣∣T †η〉 =

〈
lim
N→∞

N∑
k=1

λk 〈ξ |ζk 〉 ξk

∣∣∣∣∣T †
∞∑
r=1

〈η |ψr 〉ψr

〉

= lim
N→∞

〈
N∑
k=1

λk 〈ξ |ζk 〉 ξk

∣∣∣∣∣T †
∞∑
r=1

〈η |ψr 〉ψr

〉

= lim
N→∞

〈
N∑
k=1

λk 〈ξ |ζk 〉Tξk

∣∣∣∣∣
∞∑
r=1

〈η |ψr 〉ψr

〉

=

〈
∞∑
k=1

λk 〈ξ |ζk 〉ψk

∣∣∣∣∣
∞∑
r=1

〈η |ψr 〉ψr

〉

=
∞∑
k=1

λk 〈ξ |ζk 〉 〈η |ψk 〉.

On the other hand,

〈Tξ |Hsaη 〉 =

〈
∞∑
k=1

〈ξ |ζk 〉ψk

∣∣∣∣∣
∞∑
r=1

λr 〈η |ψr 〉ψr

〉
=
∞∑
k=1

λk 〈ξ |ζk 〉 〈η |ψk 〉.

Hence the weak similarity condition (11) is fulfilled. It is clear that in what
we have done a crucial role is played by the continuity of both H and T as
linear maps from HH into H, even though they are in general unbounded op-
erators when regarded in H. It is worth pointing out that the assumption
T ∈C(HH,H) does not imply that T is a closable operator in H. But, requiring
that {η ∈ D(Hsa) s.t. T †η ∈ H} is dense in H, implies that T has a densely
defined hilbertian adjoint T ∗ and so it is automatically closable.
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