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On Superposition Operators in Spaces of
Regular and of Bounded Variation Functions

Artur Michalak

Abstract. For a function f : [0, 1] × R → R we define the superposition operator
Ψf : R[0,1] → R[0,1] by the formula Ψf (ϕ)(t) = f(t, ϕ(t)). First we provide necessary
and sufficient conditions for f under which the operator Ψf maps the space R(0, 1),
of all real regular functions on [0, 1], into itself. Next we show that if an operator Ψf

maps the space BV (0, 1), of all real functions of bounded variation on [0, 1], into
itself, then

(1) it maps bounded subsets of BV (0, 1) into bounded sets if additionally f is
locally bounded,

(2) f = fcr + fdr where the operator Ψfcr maps the space D(0, 1) ∩ BV (0, 1), of
all right-continuous functions in BV (0, 1), into itself and the operator Ψfdr
maps the space BV (0, 1) into its subset consisting of functions with countable
support,

(3) lim supn→∞ n
1
2 |f(tn, xn)−f(sn, xn)| <∞ for every bounded sequence (xn) ⊂ R

and for every sequence ([sn, tn)) of pairwise disjoint intervals in [0, 1] such that
the sequence (|f(tn, xn)− f(sn, xn)|) is decreasing.

Moreover we show that if an operator Ψf maps the space D(0, 1) ∩ BV (0, 1) into
itself, then f is locally Lipschitz in the second variable uniformly with respect to the
first variable.

Keywords. Nemytskii superposition operators, regular functions, functions of boun-
ded variation
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1. Introduction

For a given function f : [0, 1] × R → R we define the superposition operator
Ψf : R[0,1] → R[0,1] by the formula

Ψf (ϕ)(t) = f(t, ϕ(t)).

This operator is called the Nemytskii (or nonautonomous) superposition op-
erator. It plays an important rule in the theory of differential and integral
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equations. Properties of Nemytskii operators have been studied in various func-
tion spaces by many authors (see [1, 2]). The majority of the investigations
deal with the autonomous Nemytskii operators, i.e. f(t, x) = f(x) for every
(t, x) ∈ [0, 1]×R. About the nonautonomus case is not too much known. This
paper contains studies of properties of nonautonomous Nemytskii operators in
the space R(0, 1) of all real regular functions on [0, 1] (with no discontinuities
of the second kind) and in the space BV (0, 1) of all real functions of bounded
variation on [0, 1]. The relation between these spaces is simple, every function
of bounded variation is regular and BV (0, 1) forms a dense subset of R(0, 1) in
the sup norm.

Bugajewska in [4] showed sufficient conditions for a function f which guar-
antee that the operator Ψf maps the space BV (0, 1) into itself and is bounded,
i.e. it maps bounded subsets of BV (0, 1) into bounded sets. There exist ex-
amples of functions f for which the operator Ψf maps the space BV (0, 1) into
itself but the function f does not satisfy the assumptions of the Bugajewska
theorem. Such examples exist even in the class of functions on [0, 1]×R which
are locally Lipschitz in the second variable uniformly with respect to the first
variable (see Remark 4.9). We should not expect that there exist easy to be
verified necessary and sufficient conditions for Nemytskii operators mapping
the space BV (0, 1) into itself. The main purpose of the paper is to find condi-
tions that possesses each function f for which the operator Ψf maps the space
BV (0, 1) into itself. First observation we made is the fact that if a Nemytskii
operator maps the space BV (0, 1) into itself then it maps also the space R(0, 1)
into itself. We provide necessary and sufficient conditions for a function f under
which the operator Ψf maps the space R(0, 1) into itself. The conditions we find
are easy to verify and they remain necessary conditions for all Nemytskii oper-
ators mapping the space BV (0, 1) into itself. Each function f satisfying these
conditions is the sum of its right-continuous part fcr and of its right-discrete
part fdr, the operator Ψfcr maps the space D(0, 1), of all right-continuous func-
tions in R(0, 1), into itself and the operator Ψfdr maps the space R(0, 1) into its
subset consisting of functions with countable support. One may consider also
the decomposition of f into the left-continuous part and the left-discrete part,
the both decompositions have similar properties but usually do not coincide.
Autonomous Nemytskii operators as well these mapping the space R(0, 1) into
itself (see [3], the main result of [3] is a consequence of Theorem 3.1) as these
mapping the space BV (0, 1) into itself (see [7]) do not possess the discrete part.
All Nemytskii operators mapping the space D(0, 1) into itself have the same
property. The formulation of the main result in [9] shows that the decompo-
sition is useful also for the space BV (0, 1). We show in Theorem 4.7 that an
operator Ψf maps the space BV (0, 1) into itself if and only if the operators Ψfdr

and Ψfcr map also the space BV (0, 1) into itself. This result generalizes the de-
composition theorem in [1]; Theorem 6.10. For continuous functions the both



On Superposition Operators 287

decomposition theorems provide the same decomposition. Our decomposition
theorem do not require the assumption that the operator Ψf is bounded. We
show in Theorem 4.3 that an operator Ψf which maps the space BV (0, 1) into
itself is bounded if f is locally bounded. Moreover we show that every oper-
ator Ψf which maps the space D(0, 1) ∩ BV (0, 1) into itself is bounded. The
proof of the decomposition theorem applies also the fact that if an operator Ψf

maps the space D(0, 1) ∩ BV (0, 1) into itself, then f is locally Lipschitz in the
second variable uniformly with respect to the first variable. This generalizes
the Josephy result (see [7]) onto nonautonomous case but in contrast to the
autonomous case as we see in Example 4.11 the inverse theorem is not true. Fi-
nally we show that if an operator Ψf maps the space BV (0, 1) into itself, then

lim supn→∞ n
1
2 |f(tn, xn)− f(sn, xn)| <∞ for every bounded sequence (xn) ⊂ R

and for every sequence ([sn, tn)) of pairwise disjoint intervals contained in [0, 1]
such that the sequence (|f(tn, xn)− f(sn, xn)|) is decreasing. We show that the
estimation is ”the best” as well for the discrete as for the continuous case.

The paper is divided into four sections. The second section is devoted to
study properties of Nemytskii operators mapping the space D(0, 1) into itself.
These operators play an important rule in the description of all Nemytskii opera-
tors in spaces R(0, 1) and BV (0, 1). Properties of Nemytskii operators mapping
the space R(0, 1) into itself are studied in the third section. The last section
contains investigations of Nemytskii operators in the space BV (0, 1).

2. Nemytskii operators in the space D(0, 1)

The Banach space D(0, 1) consists of all real functions on the interval [0, 1] that
are right continuous at each point of [0, 1) and left continuous at 1 with a left-
hand limit at each point of (0, 1]; it is equipped with the sup norm. The space
D(0, 1) has many interesting properties (see [5,11]) and applications (see [10]).

Theorem 2.1. For a function f : [0, 1] × R → R the following assertions are
equivalent:

(a) the operator Ψf maps the space D(0, 1) into itself,

(b) f has the following properties:

(1) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every (s, x) ∈ (0, 1]×R,

(2) lim[0,1)×R3(u,y)→(1,x) f(u, y) = f(1, x) for every x ∈ R and

(3) lim(t,1]×R3(u,y)→(t,x) f(u, y) = f(t, x) for every (t, x) ∈ [0, 1)× R,

(c) the function f̃ : R→ D(0, 1) given by the formula

f̃(x)(t) = f(t, x) for every (t, x) ∈ [0, 1]× R

is continuous,

(d) the operator Ψf maps the space D(0, 1) into itself and it is continuous on
D(0, 1).



288 A. Michalak

Proof. The implication (d) =⇒ (a) is obvious.

The proof of the implication (a) =⇒ (b) is a straightforward consequence
of the following two claims.

Claim 1. If an operator Ψf maps the space D(0, 1) into itself, then for every
x ∈ R

(i) the limit limu→s− f(u, x) exists for every s ∈ (0, 1] and

(ii) limu→1− f(u, x) = f(1, x) and

(iii) limu→t+ f(u, x) = f(t, x) for every t ∈ [0, 1).

Proof of Claim 1. For a ∈ R, let φa : [0, 1] → R be given by the formula
φa(t) = a. Then the function t→ Ψf (φa)(t) = f(t, a) is a member of the space
D(0, 1) and it verifies conditions (i), (ii) and (iii).

Claim 2. If an operator Ψf maps the space D(0, 1) into itself, then for every
x ∈ R

(i) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every s ∈ (0, 1] and

(ii) lim[0,1)×R3(u,y)→(1,x) f(u, y) = f(1, x) and

(iii) lim(t,1]×R3(u,y)→(t,x) f(u, y) = f(t, x) for every t ∈ [0, 1).

Proof of Claim 2. We show only the last fact, the other facts have similar
proofs. Suppose that the limit does not exist. Then there exist ε > 0 and
sequences (tn) ⊂ [0, 1], (xn) ⊂ R such that tn > tn+1 > t and limn→∞ tn = t and
limn→∞ xn = x and

∑∞
n=1 |xn+1 − xn| < ∞ and |f(tn, xn) − f(tn+1, xn+1)| > ε

for each n. Let ϕ : [0, 1] → R be the function that is affine on each seg-
ment [tn+1, tn] and ϕ(tn) = xn for every n and ϕ(s) = x for s ∈ [0, t] and
ϕ(s) = x1 for s ∈ [t1, 1]. It is easy to see that ϕ is a continuous function
and a member of BV (0, 1) (it is clear that var[tn+1,tn](ϕ) = |xn+1 − xn| and
Var(ϕ) = |x| +

∑∞
n=1 |xn+1 − xn| (see definitions in section 4)). But the limit

limn→∞ f(tn, xn) = limn→∞Ψf (ϕ)(tn) does not exist. This contradicts the fact
that Ψf (ϕ) is a member of R(0, 1). The equality lim(t,1]×R3(u,y)→(t,x) f(u, y) =
f(t, x) holds by Claim 1.

(b) =⇒ (c). It follows from (b) that the function t→ f(t, x) = f̃(x)(t) is a
member of D(0, 1) for each x ∈ R.

Claim 3. If a function f : [0, 1] × R → R fulfills the condition (b), then for
every x ∈ R we have the equality

lim
n→∞

sup
|y−x|< 1

n

sup
t∈[0,1]

|f(t, y)− f(t, x)| = 0.



On Superposition Operators 289

Proof of Claim 3. Suppose that the equality does not hold. Then there exist
sequences (xn) ⊂ R and (tn) ⊂ [0, 1] and ε > 0 such that (tn) is monotonic,
limn→∞ xn = x, and |f(tn, xn) − f(tn, x)| > ε for each n. But this contra-
dicts (b) if (tn) possesses a strictly monotonic subsequence. It remains to con-
sider the case when the sequence (tn) is constant. Suppose that tn = t < 1 for
each n. By the condition (b) for each n there exists t < sn < t+ 1−t

n
such that

|f(sn, xn) − f(t, xn)| < 1
n
. Hence lim supn→∞ |f(sn, xn) − f(t, x)| > ε. This

contradicts the condition (b). If tn = 1 for each n, then by the condition (b)
for each n there exists n−1

n
< sn < 1 such that |f(sn, xn)− f(1, xn)| < 1

n
. Hence

lim supn→∞ |f(sn, xn)− f(1, x)| > ε. This contradicts the condition (b).

Now it is clear that the map f̃ is continuous.

(c) =⇒ (d). Let ϕ ∈ D(0, 1). Suppose that (tn) ⊂ [0, 1] is a strictly
monotonic sequence with a limit t. Let x = limn→∞ ϕ(tn). Since ϕ is a member
of D(0, 1), the limit exists. Since f̃ is a continuous function, we have

lim
n→∞

sup
s∈[0,1]

|f(s, ϕ(tn))− f(s, x)| = 0.

Hence limn→∞ |f(tn, ϕ(tn))−f(tn, x)| = 0. Since the function f̃(x) is a member
of D(0, 1), we have

lim
n→∞

f(tn, x) =


lims→t− f̃(x)(s) if (tn) is increasing

f̃(x)(t) if (tn) is decreasing

f̃(x)(1) if limn→∞ tn = 1.

Thus we have shown that the the function Ψf (ϕ) has a left-hand limit at each
point of (0, 1] and it is right continuous at each point of [0, 1) and it is left
continuous at 1. Therefore Ψf (ϕ) is an element of D(0, 1).

Let (ϕn) be a sequence in D(0, 1) that converges to ϕ uniformly on [0, 1].
Suppose that there exist a sequence (tn) ⊂ [0, 1] and ε > 0 such that

|Ψf (ϕn)(tn)−Ψf (ϕ)(tn)| = |f(tn, ϕn(tn))− f(tn, ϕ(tn))| > 2ε

Since f̃ is a continuous function on R, it is uniformly continuous on the interval
[− supn ‖ϕn‖, supn ‖ϕn‖]. Therefore there exists N such that for every n > N
we have

sup
s∈[0,1]

|f̃(ϕn(tn))(s)− f̃(ϕ(tn))(s)| < ε.

Consequently |f(tn, ϕn(tn)) − f(tn, ϕ(tn))| < ε for every n > N . But this con-
tradicts the inequality above. Thus we have shown that the sequence (Ψf (ϕn))
converges to Ψf (ϕ) uniformly on [0, 1].
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Let (M,ρ) be a metric space. For any function f : M → R the oscillation
function df : M → R ∪ {∞} is defined by

df (t) = inf
δ>0

sup{|f(s)− f(u)| : s, u ∈M,ρ(s, t) 6 δ, ρ(u, t) 6 δ}.

It is clear that f is continuous at t if and only if df (t) = 0.

Corollary 2.2. If for a function f : [0, 1] × R → R the operator Ψf maps the
space D(0, 1) into itself, then

(a) for every a > 0

sup{|f(t, x)| : (t, x) ∈ [0, 1]× [−a, a]} <∞,

(b) the operator Ψf maps bounded subsets of D(0, 1) into bounded sets,

(c) for every ε > 0 and a > 0 the set

{t ∈ [0, 1] : ∃x∈[−a,a]df (t, x) > ε}

is finite,

(d) for every bounded sequence (xn) ⊂ R and every sequence ([sn, tn)) of pair-
wise disjoint intervals contained in [0, 1] we have

lim
n→∞

(
f(tn, xn)− f(sn, xn)

)
= 0.

Proof. (a). Let a > 0. According to Theorem 2.1(c) the function f̃ is continuous
on R. Hence f([−a, a]) is a bounded set in D(0, 1). Moreover the following
equality

sup{|f(t, x)| : (t, x) ∈ [0, 1]× [−a, a]} = sup
x∈[−a,a]

‖f̃(x)‖

holds. Therefore the function f is bounded on [0, 1]× [−a, a].

Part (b) is a straightforward consequence of (a).

(c). Suppose that the set is infinite. Then there exist a strictly monotonic
sequence (tn) ⊂ [0, 1] and a convergent sequence (xn) ⊂ [−a, a] and ε > 0 such
that df (tn, xn) > ε for each n. Without loss of generality we may assume that
the sequence (tn) is increasing. Then for each n there exist sn, un ∈ [0, 1] and
yn, zn ∈ [−a − 1, a + 1] such that sn, un ∈ ( tn−1+tn

2
, tn+tn+1

2
) and |yn − xn| < 1

n
,

|zn − xn| < 1
n

and |f(sn, yn)− f(un, zn)| > ε. This contradicts Theorem 2.1(b).

(d). Suppose that the above sequence does not converge to zero. Then
there exists a strictly increasing sequence (nk) ⊂ N such that the sequence
(snk

) is strictly monotonic, the sequence (xnk
) is convergent and |f(tnk

, xnk
)−

f(snk
, xnk

)| > ε for each k. This contradicts Theorem 2.1(b).
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3. Nemytskii operators in the space R(0, 1)

The Banach space R(0, 1) consists of all bounded real functions on the interval
[0, 1] that have a left-hand limit at each point of (0, 1] and right-hand limit at
each point of [0, 1); it is equipped with the sup norm.

Theorem 3.1. For a function f : [0, 1] × R → R the following assertions are
equivalent:

(a) the operator Ψf maps the space R(0, 1) into itself,

(b) f has the following properties:

(1) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every (s, x) ∈ (0, 1]×R
and

(2) the limit lim(t,1]×R3(u,y)→(t,x) f(u, y) exists for every (t, x) ∈ [0, 1)×R,

(c) functions fcr, fdr : [0, 1]× R→ R given by the formulas

fcr(t, x) =

{
lim(t,1]×R3(u,y)→(t,x) f(u, y) if (t, x) ∈ [0, 1)× R
lim[0,t)×R3(u,y)→(t,x) f(u, y) if (t, x) ∈ {1} × R

and fdr = f − fcr are well defined and they have the following properties:

(1) for every a > 0 and ε > 0 the set

{t ∈ [0, 1] : sup
|x|6a
|fdr(t, x)| > ε} is finite,

(2) the operator Ψfcr maps the space D(0, 1) into itself.

Moreover, the decomposition described in (c) is unique in the following sense:
if functions g, h : [0, 1]× R→ R have the following properties:

(i) f = g + h,

(ii) for every a > 0 and ε > 0 the set

{t ∈ [0, 1] : sup
|x|6a
|h(t, x)| > ε} is finite,

(iii) the operator Ψg maps the space D(0, 1) into itself,

then g = fcr and h = fdr.

Proof. The implication (a) =⇒ (b) follows immediately from the following
claim, whose proof is essentially the same as the proof of Claim 2 in Theo-
rem 2.1.

Claim 1. If an operator Ψf maps the space R(0, 1) into itself, then for every
x ∈ R

(i) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every s ∈ (0, 1] and

(ii) the limit lim(t,1]×R3(u,y)→(t,x) f(u, y) exists for every t ∈ [0, 1).
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(b) =⇒ (c). It is clear that the function fcr is well defined and it fulfills the
condition (3) of Theorem 2.1(b). Suppose that the function fcr does not satisfy
the condition (1) of Theorem 2.1(b). Then there exist a strictly increasing
sequence (tn) ⊂ [0, 1] and a convergent sequence (xn) ⊂ R and ε > 0 such that

|fcr(tn, xn)− fcr(tn+1, xn+1)| > 3ε.

By the definition of fcr for each n there exists tn < sn < tn+1 such that

|fcr(tn, xn)− f(sn, xn)| < ε.

Hence |f(sn, xn) − f(sn+1, xn+1)| > ε. But this contradicts the condition (1)
of (b).

The same consideration shows that

lim
[0,1)×R3(u,y)→(1,x)

fcr(u, y) = lim
[0,1)×R3(u,y)→(1,x)

f(u, y).

Thus we have shown that the operator Ψfcr maps the space D(0, 1) into itself.
It follows from the definitions of the functions fdr and fcr that for every

t ∈ [0, 1) and x ∈ R we have the following equalities:

lim
(t,1]×R3(u,y)→(t,x)

fdr(u, y) = 0 and lim
[0,1)×R3(u,y)→(1,x)

fdr(u, y) = 0.

Claim 2. The set {t ∈ [0, 1] : supx∈R |fdr(t, x)| > 0} is countable.

Proof of Claim 2. Suppose that for some a > 0 the set above is uncountable.
Then there exists ε > 0 such that the set

{t ∈ [0, 1] : sup
|x|6a
|fdr(t, x)| > ε}

is uncountable. Let t1 = 1. We find 0 < t2 < t1 such that sup|x|6a |fdr(t2, x)| > ε
and the set {t ∈ [0, t2] : sup|x|6a |fdr(t, x)| > ε} is uncountable. Otherwise the
set

∞⋃
n=1

{t ∈ [0, n
n+1

] : sup
|x|6a
|fdr(t, x)| > ε} = {t ∈ [0, 1) : sup

|x|6a
|fdr(t, x)| > ε}

is countable. Continuing the procedure we are able to find a strictly decreasing
sequence (tn) ⊂ [0, 1] such that sup|x|6a |fdr(tn, x)| > ε for each n > 1. Let
t = limn→∞ tn. It is clear that for every n, we find xn ∈ [−a, a] such that
|f(tn, xn)| > ε. Let x be an accumulation point of the sequence (xn). Then

lim
(t,1]×R3(u,y)→(t,x)

fdr(u, y) 6= 0.

This contradicts the equality above.
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Claim 3. For every a > 0 and for every ε > 0 the set

{t ∈ [0, 1] : sup
|x|6a
|fdr(t, x)| > ε} is finite,

Proof of Claim 3. Suppose that for some a > 0 and some ε > 0 the set above is
infinite. Then we are able to find a strictly monotonic sequence (tn) ⊂ [0, 1] such
that sup|x|6a |fdr(tn, x)| > ε for each n. Since the set [−a, a] is compact, we are
able to find a convergent sequence (xn) ⊂ [−a, a] and a subsequence (sn) of (tn)
such that |fdr(sn, xn)| > ε for each n. Let t = limn→∞ tn and x = limn→∞ xn. If
the sequence (tn) is decreasing, then lim(t,1]×R3(u,y)→(t,x) fdr(u, y) 6= 0. This con-
tradicts the equality above. If the sequence (tn) is increasing, then by Claim 2
for each n we find sn < un < sn+1 such that fdr(un, xn) = 0. It means that
lim[0,t)×R3(u,y)→(t,x) fdr(u, y) does not exist. Gathering together the property (1)
of the function f and the property (1) of Theorem 2.1(b) of the function fcr we
obtain that lim[0,t)×R3(u,y)→(t,x)

(
f(u, y)− fcr(u, y)

)
exists. We have arrived at a

contradiction.

(c) =⇒ (a).

Claim 4. The operator Ψfcr maps the space R(0, 1) into itself.

Proof of Claim 4. Let ϕ ∈ R(0, 1). Then there exists ψ ∈ D(0, 1) such that ϕ
and ψ have the same right-hand limit at each point of [0, 1) and they have the
same left-hand limit at each point of (0, 1]. Suppose that there exist a strictly
monotonic sequence (tn) ⊂ [0, 1] and ε > 0 such that

|fcr(tn, ϕ(tn))− fcr(tn, ψ(tn))| > ε.

But we have the equality limn→∞ ϕ(tn) = limn→∞ ψ(tn). This contradicts The-
orem 2.1(b). Thus we have shown that the functions Ψfcr(ϕ) and Ψfcr(ψ) have
the same left-hand as well as the right-hand limit at every point of [0, 1] where
they exist. Since Ψfcr(ψ) is a regular function, so it is Ψfcr(ϕ).

For every bounded function ϕ : [0, 1] → R and ε > 0 the set {t ∈ [0, 1] :
|Ψfdr(ϕ)(t)| > ε} is finite. Consequently Ψfdr(ϕ) is a member of R(0, 1).

The uniqueness of the pair fcr and fdr is obvious.

Corollary 3.2. If for a function f : [0, 1] × R → R the operator Ψf maps the
space R(0, 1) into itself, then for every bounded sequence (xn) ⊂ R and every
sequence ([sn, tn)) of pairwise disjoint intervals contained in [0, 1] we have

lim
n→∞

(
f(tn, xn)− f(sn, xn)

)
= 0.

Proof. By Corollary 2.2(d) we have limn→∞
(
fcr(tn, xn) − fcr(sn, xn)

)
= 0. It

follows from Theorem 3.1(c) that limn→∞
(
fdr(tn, xn)− fdr(sn, xn)

)
= 0.
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For a given set Ω and A ⊂ Ω by χA : Ω → R is denoted the characteristic
function of the subset A, i.e. χA|A = 1 and χA|Ω\A = 0. In constructions of
functions we will apply the following convention: if A ⊂ B are subsets of [0, 1]
and f : B → R is a function, then fχA denotes the function from [0, 1] to R
such that fχA|A = f |A and fχA|[0,1]\A = 0.

A function f satisfying Theorem 3.1 need not be locally bounded. According
to Corollary 2.2 only the discrete part of f may not be locally bounded.

Example 3.3. Let f : [0, 1]× R→ R be given by the formula

f =
∞∑
n=1

nχ{(0, 1
n

)}.

Then for every ϕ : [0, 1]→ R we have

Ψf (ϕ) =
( ∞∑
n=1

nχ{ 1
n
}(ϕ(0))

)
χ{0},

where at most one of the summands is not zero. Therefore the operator Ψf

maps the space R[0,1] into BV (0, 1). It is easy to see that it maps the unit ball
of R(0, 1) into an unbounded set in R(0, 1).

Our next purpose is the answer to the question when the operator
Ψf : R(0, 1)→ R(0, 1) is continuous.

Corollary 3.4. If for a function f : [0, 1] × R → R the operator Ψf maps the
space D(0, 1) into itself, then the operator Ψf : R(0, 1)→ R(0, 1) is continuous.

Proof. Claim 4 of Theorem 3.1 shows that the operator Ψf maps the space
R(0, 1) into itself. Let (ϕn) be a sequence in R(0, 1) that converges to ϕ uni-
formly on [0, 1]. Suppose that there exist a monotonic sequence (tn) ⊂ [0, 1]
and ε > 0 such that

|f̃(ϕn(tn))(tn)− f̃(ϕ(tn))(tn)| = |f(tn, ϕn(tn))− f(tn, ϕ(tn))| > ε

for each n where f̃ : R → D(0, 1) is the function defined in Theorem 2.1(c).
Since the function ϕ is regular, we have the equality

lim
n→∞

ϕn(tn) = lim
n→∞

ϕ(tn).

This shows that the function f̃ is not uniformly continuous on the interval
[− supn ‖ϕn‖, supn ‖ϕn‖]. But this contradicts Theorem 2.1(c). Thus we have
shown that the sequence of functions (Ψf (ϕn)) converges uniformly to the func-
tion Ψf (ϕ).
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Corollary 3.5. For a function f : [0, 1] × R → R the following assertions are
equivalent:

(a) the operator Ψf maps the space R(0, 1) into itself and it is continuous,

(b) there exists a pair of functions fcr, fdr : [0, 1] × R → R that fulfills the
condition (c) of Theorem 3.1 and additionally it has the following property:

(3) for every t ∈ [0, 1] the function x→ fdr(t, x) is continuous.

Proof. Suppose first that Ψf is continuous. By Corollary 3.4 the operator Ψfdr

is also continuous. Let (xn) ⊂ R be a sequence that converges to x. Let ϕn = xn
and ϕ = x. Then Ψfdr(ϕn) converges uniformly to Ψfdr(ϕ). Consequently the
function fdr has the property (3).

Suppose now that the function fdr verifies the condition (3). Let (ϕn) be a
sequence in R(0, 1) that converges to ϕ uniformly on [0, 1]. Then there exists
a > 0 such that |ϕn| 6 a for every n. Let ε > 0. By Theorem 3.1 (c) the set
E = {t ∈ [0, 1] : sup|x|6a |fdr(t, x)| > ε} is finite. It is clear that

|Ψfdr(ϕn)(t)−Ψfdr(ϕ)(t)| 6 2ε

for every t /∈ E. It is clear that there exists N such that for every n > N and
t ∈ E

|fdr(t, ϕn(t))− fdr(t, ϕ(t))| < ε.

Consequently for every n > N we have

sup
t∈[0,1]

|Ψfdr(ϕn)(t)−Ψfdr(ϕ)(t)| 6 2ε.

Thus we have shown that the operator Ψfdr is continuous. Gathering together
this fact, Corollary 3.4 and Theorem 3.1(c) we obtain that the operator Ψf is
continuous.

We finish this section with an application of Theorem 3.1 to autonomous
Niemytskii operators in the space R(0, 1) (see [3]).

Corollary 3.6. For a function f : [0, 1] × R → R such that f(t, x) = f(0, x)
for every (t, x) ∈ [0, 1]× R the following assertions are equivalent:

(a) the operator Ψf maps the space R(0, 1) into itself,

(b) f is a continuous function.

Proof. (a) =⇒ (b). It follows from Theorem 3.1(b) that for every x ∈ R the
limit limy→x f(0, y) exists and is equal to f(0, x).

The implication (b) =⇒ (a) follows from the fact that every continuous
function g : [0, 1]× R→ R verifies the condition (b) of Theorem 3.1.
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4. Nemytskii operators in the space BV (0, 1)

For a function f : [0, 1] → R we define its variation var[a,b](f) on an interval
[a, b] ⊂ [0, 1] in the usual way, i.e.

var[a,b](f) = sup
{n−1∑
k=0

|f(tk+1)− f(tk)| : a 6 t0 < t1 < · · · < tn 6 b, n ∈ N
}
.

Moreover for a function f : [0, 1] → R and an interval [a, b] ⊂ [0, 1] we define
var[a,b)(f) and var(a,b](f) in the following way:

var[a,b)(f) = lim
t→b−

var[a,t](f) and var(a,b](f) = lim
t→a+

var[t,b](f).

We put Var(f) = |f(0)|+ var[0,1](f). The Banach space BV (0, 1) consists of all
real functions f on [0, 1] such that var[0,1](f) <∞; it is equipped with the norm
Var(f). The set D(0, 1) ∩BV (0, 1) is a closed subspace of BV (0, 1).

The inspection of arguments used in the proofs of Theorem 2.1 and Theo-
rem 3.1 give us the following result.

Proposition 4.1. (a) If for a function f : [0, 1] × R → R the operator Ψf

maps the space D(0, 1)∩BV (0, 1) into D(0, 1), then it maps D(0, 1) into
itself.

(b) If for a function f : [0, 1] × R → R the operator Ψf maps the space
BV (0, 1) into R(0, 1), then it maps the space R(0, 1) into itself.

Proof. (a). It is clear that Claims 1 and 2 in the proof of Theorem 2.1 re-
main valid in our case. Therefore the function f fulfills the condition (b) of
Theorem 2.1.

(b). It is clear that Claim 1 in the proof of Theorem 3.1 remains valid in
our case. Therefore the function f fulfills the condition (b) of Theorem 3.1.

The part (a) of the following corollary is a straightforward consequence
of the localized version of the Bugajewska result (see [1, Theorem 6.11]) and
Theorem 2.1. The part (b) is obvious.

Corollary 4.2. (a) If a function f: [0, 1]×R→ R has the following properties:

(1) f fulfills the condition (b) of Theorem 2.1, and additionally

(2) for every a > 0 we have

sup

{
|f(t, y)− f(t, x)|

|y − x|
: t ∈ [0, 1], x, y ∈ [−a, a], x 6= y

}
<∞,

(3) for every a > 0 we have

sup

{
n−1∑
k=0

|f(tk+1,xk)−f(tk,xk)|
∣∣∣∣ 0 6 t0 < · · · < tn 6 1,

x0, . . . , xn−1∈ [−a,a], n∈N

}
<∞,
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then the operator Ψf maps the space D(0, 1) ∩BV (0, 1) into itself.

(b) If f : [0, 1]× R→ R is a function such that for every a > 0 we have

sup
{∑
t∈A

sup
|x|6a
|f(t, x)| : A ⊂ [0, 1], A finite

}
<∞,

then the operator Ψf maps the space BV (0, 1) into itself.

Theorem 4.3. (a) If a function f: [0, 1]×R→ R has the following properties:

(1) sup{|f(t, x)| : (t, x) ∈ [0, 1]× [−a, a]} <∞ for every a > 0 and

(2) the operator Ψf maps the space BV (0, 1) into itself,

then the operator Ψf maps bounded subsets of BV (0, 1) into bounded sets
in BV (0, 1).

(b) If for a function f : [0, 1] × R → R the operator Ψf maps the space
D(0, 1)∩BV (0, 1) into itself, then the operator Ψf maps bounded subsets
of D(0, 1) ∩BV (0, 1) into bounded sets in D(0, 1) ∩BV (0, 1).

Proof. (a). Suppose that for some a > 0 there exists a sequence (ϕk) ⊂ BV (0, 1)
such that Var(ϕk) 6 a for every k and supk Var(Ψf (ϕk)) = ∞. Since f
is bounded on [0, 1] × [−a, a], we have supk var[0,1](Ψf (ϕk)) = ∞. We put
s1 = 0 and t1 = 1. If for every interval [c, d] of length less then 2−1 we
have supk var[c,d](Ψf (ϕk)) < ∞, then also supk var[0,1](Ψf (ϕk)) < ∞. Conse-
quently there exists s1 6 s2 < t2 6 t1 such that supk var[s2,t2](Ψf (ϕk)) = ∞
and t2 − s2 < 2−1. Continuing the procedure we obtain an increasing se-
quence (sn) and a decreasing sequence (tn) such that supk var[sn,tn](Ψf (ϕk)) =∞
and 0 < tn − sn < 2−n for each n. Let u = limn sn = limn tn.

It is clear that for each n

sup
k

var[sn,u](Ψf (ϕk)) =∞ or sup
k

var[u,tn](Ψf (ϕk)) =∞.

Since the function f is bounded on {u} × [−a, a], without loss of general-
ity (∗) we may assume that supk var[sn,u)(Ψf (ϕk)) = ∞ for each n. Since
limn→∞ var[sn,u)(ϕ) = 0 for every ϕ ∈ BV (0, 1), we are able to select increasing
sequences (nk), (mk) ⊂ N such that

(1) var[snk
,u)

(
Ψf (ϕmk

)
)
> 2k + 1 and

(2) var[snk+1
,u)

(
Ψf (ϕmk

)
)
< 1.

It is clear that for every k there exist jk and snk
= uk,0 < · · · < uk,jk < snk+1

such that

jk−1∑
j=0

|f(uk,j+1, ϕmk
(uk,j+1))− f(uk,j, ϕmk

(uk,j))| > 2k.

Let ψk : [snk
, snk+1

) → R be an affine function on each segment [uk,j, uk,j+1]
and ψk(uk,j) = ϕmk

(uk,j) for every 0 6 j 6 jk − 1 and ψk(t) = ϕmk
(uk,jk) for
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every t ∈ [uk,jk , snk+1
). It is clear that var[snk

,snk+1
)(ψk) 6 a. Since the function

t→ var[snk
,t](ψk) is continuous and increasing we find snk

= vk,0 < vk,1 < · · · <
vk,2k = uk,jk such that

var[vk,j ,vk,j+1](ψk) 6
a

2k

for every 0 6 j 6 2k − 1. Let Ak,l = {j : vk,l 6 uk,j 6 vk,l+1} for 0 6 l 6 2k − 1.
By the Pigeonhole principle for each k there exists 0 6 lk 6 2k − 1 such that

bk = |f(uk,minAk,lk
, ψk(uk,minAk,lk

))− f(vk,lk , ψk(vk,lk))|
+ |f(vk,lk+1, ψk(vk,lk+1))− f(uk,maxAk,lk

, ψk(uk,maxAk,lk
)|

+
∑

j∈Alk
\{maxAlk

}

|f(uk,j+1, ψk(uk,j+1))− f(uk,j, ψk(uk,j))|

> 1

if Ak,lk 6= ∅ (in the case Alk = {maxAlk} the last sum is 0) and

bk = |f(vk,lk+1, ψk(vk,lk+1))− f(vk,lk , ψk(vk,lk))| > 1

if Ak,lk = ∅. It is clear that we are able to select an increasing sequence (kp) ⊂ N
such that

∞∑
p=1

|ψkp+1(vkp+1,lkp+1
)− ψkp(vkp,lkp )| 6 a.

Let η1 : [0, vk1,lk1 ] → R be given by the formula η1 = ψk1(vk1,lk1 ). For ev-
ery p > 2, let ηp : [vkp−1,lkp−1+1

, vkp,lkp ] → R be the affine function such that

ηp(vkp−1,lkp−1
+1) = ψkp−1(vkp−1,lkp−1

+1) and ηp(vkp,lkp ) = ψkp(vkp,lkp ). Let

ψ = lim
p→∞

ψkp(vkp,lkp )χ[u,1] +
∞∑
p=1

(
ηpχ[vkp−1,lkp−1+1

,vkp,lkp
) + ψkpχ[vkp,lkp

,vkp,lkp+1)

)
where vk0,lk0+1

= 0. It is clear that ψ is a continuous function on the interval
[snkp

, snkp+1
] for each p ∈ N. Then

Var(ψ)

= |ψk1(vk1,lk1 )|+
∞∑
p=1

(
var[vkp,lkp

,vkp,lkp+1]
(ψkp)+|ψkp+1(vkp+1,lkp+1

)−ψkp(vkp,lkp+1)|
)

6 a+ a+ a+
∞∑
p=1

|ψkp(vkp,lkp+1)−ψkp(vkp,lkp )|

6 3a+ a

= 4a
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and Var(Ψf (ψ)) >
∑∞

p=1 bkp =∞. This contradicts our assumptions.

(b). Suppose that Ψf maps the space D(0, 1) ∩ BV (0, 1) into itself. By
Proposition 4.1 and Corollary 2.2 the function f satisfies the condition (1)
of part (a). Suppose that for some a > 0 there exists a sequence (ϕk) ⊂
D(0, 1)∩BV (0, 1) such that Var(ϕk) 6 a for every k and supk Var(Ψf (ϕk)) =∞.
It is clear that we may repeat the consideration above for the operator Ψf and
the sequence (ϕk) to construct a function ψ that possesses all properties above.
It remains to show that ψ is a continuous function (if we considered in (∗) two
cases, then it would be enough to show that ψ is a member of D(0, 1)). It is clear
that ψ is continuous at each point of the set [0, 1]\{u} and it is right continuous
at u if u 6= 1. Moreover ψ is a member of BV (0, 1) and ψ(u) = limp→∞ ψ(vkp,lkp ).
Since every function in BV (0, 1) has a left-hand limit at each point (0, 1], we
have the equality ψ(u) = limt→u− ψ(t).

Corollary 4.4. If for a function f : [0, 1] × R → R the operator Ψf maps the
space D(0, 1) ∩BV (0, 1) into itself, then for every a > 0

sup
|x|6a

Var(f(·, x)) <∞.

Theorem 4.5. If for a function f : [0, 1] × R → R the operator Ψf maps the
space D(0, 1) ∩BV (0, 1) into itself, then for every a > 0

sup
{ |f(t, y)− f(t, x)|

|y − x|
: t ∈ [0, 1], x, y ∈ [−a, a], x 6= y

}
<∞.

Proof. Suppose that for some a > 0 the supremum is infinite. Then there exist
sequences (tn) ⊂ [0, 1] and (xn), (yn) ⊂ [−a, a] such that

|f(tn, yn)− f(tn, xn)| > n|yn − xn|

By Proposition 4.1 and Corollary 2.2 the function f is bounded on [0, 1] ×
[−a, a]. Therefore limn→∞ |xn − yn| = 0. It is clear that we are able to select
a sequence (nk) ⊂ N such that the sequence (tnk

) is monotonic and the series∑∞
k=1 |ynk

− xnk
| and

∑∞
k=1 |ynk+1

− ynk
| are convergent and

|f(tnk
, ynk

)− f(tnk
, xnk

)| > 2k+1|ynk
− xnk

|

for each k. It is clear that there exists a sequence (jn) ⊂ N such that the series∑∞
k=1 jk|ynk

−xnk
| is convergent but the series

∑∞
k=1 jk2

k|ynk
−xnk

| is divergent.
It is enough to consider the following two cases:

(1) the sequence (tnk
) is strictly monotonic,

(2) the sequence (tnk
) is constant.
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Consider first the case (1). Without loss of generality we may assume that
the sequence (tnk

) is increasing. By Proposition 4.1 and Theorem 2.1(b) for
every k ∈ N there exist sk,1, . . . , sk,jk , uk,0, . . . , uk,jk ∈ [tnk

, tnk+1
) such that

tnk
= uk,0 < sk,1 < uk,1 < · · · < sk,jk < uk,jk < tnk+1

and

|f(uk,m, ynk
)− f(sk,m, xnk

)| > 2k|ynk
− xnk

|

for every m = 1, . . . , jk. Let ψk : [tnk
, tnk+1

)→ R be an affine function on each
segment [sk,j, uk,j] and on each segment [uk,j−1, sk,j] such that ψk(sk,j) = xnk

for
every 1 6 j 6 jk and ψk(uk,j) = ynk

for every 0 6 j 6 jk and ψk(t) = ynk
for

every t ∈ [uk,jk , tnk+1
). Let

ϕ = yn1χ[0,tn1 ) + lim
k→∞

ynk
χ[limk→∞ tnk

,1] +
∞∑
k=1

ψkχ[tnk
,tnk+1

).

Then Var(ϕ) = |yn1|+
∑∞

k=1

(
|ynk+1

− ynk
|+ 2jk|ynk

− xnk
|
)
<∞ and

Var(Ψf (ϕ)) >
∞∑
k=1

jk∑
m=1

|f(uk,m, ynk
)− f(sk,m, xnk

)| >
∞∑
k=1

jk2
k|ynk

− xnk
| =∞.

This contradicts our assumptions.
Suppose now that the sequence (tnk

) is constant. If tn1 < 1, then by The-
orem 2.1(b) there exists a strictly decreasing sequence (sk) converging to tn1

such that |f(sk, ynk
) − f(sk, xnk

)| > 2k+1|ynk
− xnk

|. If tn1 = 1, then by The-
orem 2.1(b) there exists a strictly increasing sequence (sk) converging to tn1

such that |f(sk, ynk
) − f(sk, xnk

)| > 2k+1|ynk
− xnk

|. It is clear that the above
consideration remains valid also in these cases.

Theorem 4.6. If for a function f : [0, 1] × R → R the operator Ψf maps
the space D(0, 1) ∩ BV (0, 1) into itself, then the operator Ψf maps the space
BV (0, 1) into itself.

Proof. Suppose that ϕ ∈ BV (0, 1). Then there exists ψ ∈ D(0, 1) ∩ BV (0, 1)
such that ϕ and ψ have the same right-hand limit at each point of [0, 1) and
they have the same left-hand limit at each point of (0, 1]. It is clear that
var[0,1](ψ) 6 var[0,1](ϕ) and the set A = {t ∈ [0, 1] : |(ϕ − ψ)(t)| > 0} is
countable. Moreover the following inequalities

var[0,1](ϕ− ψ) 6 2
∑
t∈A

|(ϕ− ψ)(t)| 6 2var[0,1](ϕ− ψ) 6 4var[0,1](ϕ)

hold. The last inequality follows from the fact that

sup
{
|η(1)− lim

s→1−
η(s)|+

∑
t∈B

|η(t)− lim
s→t+

η(s)| : B ⊂ [0, 1), B finite
}
6 var[0,1](η)
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for every η ∈ BV (0, 1). According to Theorem 4.5 there exists L > 0 such that
|f(t, x) − f(t, y)| 6 L|y − x| for every t ∈ [0, 1] and x, y ∈ [−Var(ϕ),Var(ϕ)].
For every 0 6 t0 < t1 < · · · < tn 6 1 we have

n−1∑
j=0

∣∣Ψf (ϕ)(tj+1)−Ψf (ϕ)(tj)
∣∣

=
n−1∑
j=0

∣∣f(tj+1, ϕ(tj+1))−f(tj, ϕ(tj))
∣∣

6
n−1∑
j=0

(∣∣f(tj+1, ψ(tj+1))−f(tj, ψ(tj))
∣∣+L|ψ(tj+1)−ϕ(tj+1)|+L|ψ(tj)−ϕ(tj)|

)
6 var[0,1](Ψf (ψ)) + 4L var[0,1](ϕ).

This shows that Ψf (ϕ) is a member of BV (0, 1).

Now we are ready to show the decomposition theorem.

Theorem 4.7. For a function f : [0, 1] × R → R the following assertions are
equivalent:

(a) the operator Ψf maps the space BV (0, 1) into itself,

(b) there exists a unique pair of functions fcr, fdr : [0, 1]× R→ R such that

(1) f = fcr + fdr,

(2) the operator Ψfdr maps the space BV (0, 1) into itself and for every
a > 0 and every ε > 0 the set

{t ∈ [0, 1] : sup
|x|6a
|fdr(t, x)| > ε} is finite,

(3) the operator Ψfcr maps the space D(0, 1) ∩BV (0, 1) into itself.

Proof. (a) =⇒ (b). By Proposition 4.1 and Theorem 3.1 the pair of functions fcr
and fdr satisfies the condition (1) and the second part of the condition (2). More-
over the operator Ψfcr maps the space D(0, 1) into itself and the operator Ψfdr

maps the space R(0, 1) into its subset consisting of functions with countable
support.

Suppose that ϕ ∈ D(0, 1)∩BV (0, 1). Then Ψf (ϕ) is a member of BV (0, 1)
and Ψfcr(ϕ) is a member of D(0, 1). By the second part of the property
(2) the functions Ψf (ϕ) and Ψfcr(ϕ) have the same right-hand limit at each
point of [0, 1) and they have the same left-hand limit at each point of (0, 1].
Since the function Ψfcr(ϕ) is right continuous on [0, 1], we have the inequality
var[0,1]Ψf (ϕ) > var[0,1]Ψfcr(ϕ). Therefore Ψfcr(ϕ) is a members of D(0, 1) ∩
BV (0, 1). Thus we have shown that Ψfcr maps the space D(0, 1) ∩ BV (0, 1)
into itself. In view of Theorem 4.6 the operator Ψfcr maps the space BV (0, 1)
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into itself. Consequently also the operator Ψfdr maps the space BV (0, 1) into
itself.

The implication (b) =⇒ (a) immediately follows from Theorem 4.6.

Theorem 4.8. If for a function f : [0, 1] × R → R the operator Ψf maps the
space BV (0, 1) into itself, then

(a) for every bounded sequence (xn) ⊂ R and every sequence ([sn, tn)) of pair-
wise disjoint intervals contained in the interval [0, 1] such that the sequence
(|f(tn, xn)− f(sn, xn)|) is decreasing we have

lim sup
n→∞

n
1
2 |f(tn, xn)− f(sn, xn)| <∞,

(b) for every bounded sequence (xn) ⊂ R and every sequence (tn) of distinct
points of [0, 1] such that the sequence (|fdr(tn, xn)|) is decreasing we have

lim sup
n→∞

n
1
2 |fdr(tn, xn)| <∞,

(c) For every α < −1
2

there exists a function f : [0, 1]×R→ R and a sequence
(sn) ⊂ [0, 1] such that

(1) the operator Ψf maps the space BV (0, 1) into itself,

(2) sup{|f(sn, x)| : x ∈ R} = nα and f(t, x) = 0 for every (t, x) /∈
{sk : k ∈ N} × R.

(d) For every α < −1
2

there exists a function f : [0, 1]× R→ R such that

(1) the operator Ψf maps the space D(0, 1) ∩BV (0, 1) into itself,

(2) there exist a sequence (xn) ⊂ [0, 1] and a sequence ([sn, tn)) of pair-
wise disjoint intervals contained in [0, 1] such that

|f(tn, xn)− f(sn, xn)| = nα .

Proof. (a). Let (xn) be a bounded sequence in R. Let ([sn, tn)) be a se-
quence of pairwise disjoint intervals contained in [0, 1] such that the sequence
(|f(tn, xn) − f(sn, xn)|) is decreasing. Let a > 0 be such that (xn) ⊂ [−a, a].
Let h : [0, 1]× R→ R be given by the formula

h =
∞∑
n=1

fdrχ{t∈[0,1]:sup|x|6n |fdr(t,x)|>n}×{x∈R:n−16|x|<n}.

It is clear that for every bounded function ϕ : [0, 1] → R the support of
the function Ψh(ϕ) is a finite set. Consequently the operator Ψh maps the
space BV (0, 1) into itself. By Theorem 4.7 the operator Ψfdr−h maps the space
BV (0, 1) into itself. The function fdr−h is bounded on the product [0, 1]×[−b, b]
for each b > 0. By Theorem 4.3 the operator Ψfdr−h maps bounded subsets of
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BV (0, 1) into bounded sets. According to Theorem 4.7(b) and the definition of
the function h the sequence (h(tn, xn)− h(sn, xn)) contains only finite nonzero
elements. Let C =

∑∞
n=1 |h(tn, xn)− h(sn, xn)|.

By the Erdös-Szekeres theorem (see [6]) any sequence of (n − 1)2 + 1 el-
ements of the interval [−a, a] contains a monotonic subsequence of length n.
Consequently any sequence of (n − 1)2 + k elements of the interval [−a, a],
where 1 6 k 6 2n− 1, may be covered by 2n monotonic subsequences. There-
fore the set of (n − 1)2 + k points, where 1 6 k 6 2n − 1, of the product
[0, 1] × [−a, a] may be covered by graphs of 2n monotonic functions. By the
Pigeonhole principle for every n and 1 6 k 6 2n − 1 there exist monotonic
functions ϕ1,n,k, ϕ2,n,k : [0, 1]→ [−a, a] such that

var[0,1](Ψfdr−h(ϕ1,n,k)) >

∑(n−1)2+k
j=1 |(fdr − h)(tj, xj)|

2n

and

var[0,1](Ψfdr−h(ϕ2,n,k)) >

∑(n−1)2+k
j=1 |(fdr − h)(sj, xj)|

2n
.

Hence

var[0,1](Ψfdr−h(ϕ1,n,k)) + var[0,1](Ψfdr−h(ϕ2,n,k))

>

∑(n−1)2+k
j=1 |(fdr − h)(tj, xj)− (fdr − h)(sj, xj)|

2n
.

By the Pigeonhole principle for every n and 1 6 k 6 2n − 1 there exists a
monotonic function ϕ3,n,k : [0, 1] → [−a, a] which is constant on each interval
(sj, tj] for 1 6 j 6 (n− 1)2 + k such that

var[0,1](Ψfcr(ϕ3,n,k)) >

∑(n−1)2+k
j=1 |fcr(tj, xj)− lims→sj+ fcr(s, xj)|

2n

=

∑(n−1)2+k
j=1 |fcr(tj, xj)− fcr(sj, xj)|

2n
.

Therefore

var[0,1](Ψfdr−h(ϕ1,n,k)) + var[0,1](Ψfdr−h(ϕ2,n,k)) + var[0,1](Ψfcr(ϕ3,n,k))

>

∑(n−1)2+k
j=1 |(f − h)(tj, xj)− (f − h)(sj, xj)|

2n

>
((n− 1)2 + k)|f(t(n−1)2+k, x(n−1)2+k)− f(s(n−1)2+k, x(n−1)2+k)|

2n
− C

2n
.

It is clear that the following inequalities Var(ϕ1,n,k) 6 3a, Var(ϕ2,n,k) 6 3a and
Var(ϕ3,n,k) 6 3a hold. According to Theorem 4.3 the sum above is bounded by
a constant independent from n and k.
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(b). The consideration above shows also part (b).
(c). For every n, let 1− 1

n
6 tn,1 < · · · < tn,4n < 1− 1

n+1
. We put

f =
∞∑
n=1

4n∑
k=1

(k +
n−1∑
j=1

4j)αχ
{(tn,k,

k−[ k
2n

]2n

2n
)}

where [x] denotes the integer part of x and for n = 1 the sum
∑n−1

j=1 4j is 0.
For every ϕ ∈ BV (0, 1) and every t ∈ [0, 1] \

⋃∞
n=1{tn,k : 1 6 k 6 4n} we have

Ψf (ϕ)(t) = 0. Hence

var[1− 1
n
,1− 1

n+1
)(Ψf (ϕ)) 6 2(4n−1)α

2n−1∑
j=0

2n∑
k=1

χ{ k
2n
−[ k

2n
]}(ϕ(tn,j2n+k))

6 2n+1(4n−1)α
2n−1∑
j=0

var[tn,j2n+1,tn,(j+1)2n ](ϕ)

6 21+n(1+2α)−2αvar[1− 1
n
,1− 1

n+1
)(ϕ).

Therefore var[0,1](Ψf (ϕ)) 6 var[0,1](ϕ)
∑∞

n=1 21+n(1+2α)−2α < ∞. For every n we
put

sn = tk,n−
∑k−1

j=1 4j

where k is such that
∑k−1

j=1 4j < n 6
∑k

j=1 4j. Then

sup{|f(sn, x)| : x ∈ R} =

∣∣∣∣∣∣f
sn, n−∑k−1

j=1 4j −
[n−∑k−1

j=1 4j

2n

]
2n

2n

∣∣∣∣∣∣ = nα.

(d). For every n and 1 6 k 6 4n, let

An,k = [
k−[ k

2n
]2n

2n
− 1

2n+2 ,
k−[ k

2n
]2n

2n
+ 1

2n+2 ], Bn,k = [ 1
n+1

+ 2k−1
4n6n2 ,

1
n+1

+ 2k+1
4n6n2 ],

An,k− = [
k−[ k

2n
]2n

2n
− 1

2n+2 ,
k−[ k

2n
]2n

2n
], Bn,k− = [ 1

n+1
+ 2k−1

4n6n2 ,
1

n+1
+ k

4n3n2 ],

An,k+ = [
k−[ k

2n
]2n

2n
,
k−[ k

2n
]2n

2n
+ 1

2n+2 ], Bn,k+ = [ 1
n+1

+ k
4n3n2 ,

1
n+1

+ 2k+1
4n6n2 ],

and

gn,k(x) =


2n+2

(
x− k−[ k

2n
]2n

2n
+ 1

2n+2

)
if x ∈ An,k−

−2n+2
(
x− k−[ k

2n
]2n

2n
− 1

2n+2

)
if x ∈ An,k+

0 if x /∈ An,k,

hn,k(t) =


4n6n2

(
t−
(

1
n+1

+ 2k−1
4n6n2

))
if t ∈ Bn,k−

−4n6n2
(
t−
(

1
n+1

+ 2k+1
4n6n2

))
if t ∈ Bn,k+

0 if t /∈ Bn,k.
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For any subsets A,B of R, let ξA(B) =

{
1 if A ∩B 6= ∅
0 if A ∩B = ∅.

We put

f(t, x) =
∞∑
n=1

4n∑
k=1

(k +
n−1∑
j=1

4j)αhn,k(t)gn,k(x)

for every (t, x) ∈ [0, 1] × R. The family {Bn,k : 1 6 k 6 4n, n ∈ N} consists of
pairwise disjoint intervals. For every ϕ ∈ BV (0, 1) and for every

1
n+1

+ 2k−1
4n6n2 6 t0 < · · · < tm 6 1

n+1
+ 2k+1

4n6n2

we have

m−1∑
j=0

|f(tj+1, ϕ(tj+1))−f(tj, ϕ(tj))|

6

(
k +

n−1∑
j=1

4j

)α
ξAn,k

(ϕ(Bn,k))
m−1∑
j=0

(
|hn,k(tj+1)−hn,k(tj)|gn,k(ϕ(tj+1))

+hn,k(tj)|gn,k(ϕ(tj+1))−gn,k(ϕ(tj))|
)

6 4(n−1)αξAn,k
(ϕ(Bn,k))

m−1∑
j=0

(
|hn,k(tj+1)−hn,k(tj)|+|gn,k(ϕ(tj+1))−gn,k(ϕ(tj))|

)
6 4(n−1)αξAn,k

(ϕ(Bn,k))
(
2 + 2n+2varBn,k

(ϕ)
)

where the last inequality follows from the fact that the Lipschitz constant of
gn,k is equal to 2n+2. Thus we have shown that

varBn,k
(Ψf (ϕ)) 6 4(n−1)αξAn,k

(ϕ(Bn,k))
(
2 + 2n+2varBn,k

(ϕ)
)

for each n and 1 6 k 6 4n. Since f( 1
n+1

+ 2k−1
4n6n2 , x) = f( 1

n+1
+ 2k+1

4n6n2 , x) = 0 for
every 1 6 k 6 4n, we have

var[ 1
n+1

, 1
n

)(Ψf (ϕ))

6
2n−1∑
k=0

2n∑
j=1

varBn,j+2nk
(Ψf (ϕ))

6
2n−1∑
k=0

4(n−1)α
( 2n∑
j=1

2ξAn,j+2nk
(ϕ(Bn,j+2nk)) +

2n∑
j=1

2n+2varBn,j+2nk
(ϕ)
)

6
2n−1∑
k=0

4(n−1)α
(
var

[ 1
n+1

+ 1+2nk

4n3n2 −
1

4n6n2 ,
1

n+1
+

2n(k+1)

4n3n2 + 1
4n6n2 ]

(ϕ)(2n+2 + 2n+2
)

6 23+n(1+2α)−2αvar[ 1
n+1

, 1
n

)(ϕ).
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Therefore

var[0,1](Ψf (ϕ)) 6 var[0,1](ϕ)
∞∑
n=1

23+n(1+2α)−2α <∞.

This shows that the operator Ψf maps the space BV (0, 1) into itself. It is easy
to see that f is a continuous function. By Theorem 2.1 the operator Ψf maps
the space D(0, 1) into itself. For every n we put

sn =
1

k + 1
+
n−

∑k−1
j=1 4j

4k3k2
, tn =

1

k + 1
+

2n+ 1− 2
∑k−1

j=1 4j

4k6k2
,

xn =

(
n−

∑k−1
j=1 4j

)
−
[n−∑k−1

j=1 4j

2n

]
2n

2n

where k is such that
∑k−1

j=1 4j<n6
∑k

j=1 4j. It is easy to check that f(tn, xn) = 0
and f(sn, xn) = nα and the sequence ([sn, tn)) consists of pairwise disjoint
intervals.

Remark 4.9. For every −1 6 α < −1
2

the function f constructed in the proof
of Theorem 4.8(d) does not satisfy the assumptions of the Bugajewska theorem;

sup

{
n−1∑
k=0

|f(uk+1, xk)− f(uk, xk)|
∣∣∣∣ 0 6 u0 < · · · < un 6 1,

x0, . . . , xn−1 ∈ [0, 1], n ∈ N

}

> sup
{ n∑
k=1

|f(tk, xk)− f(sk, xk)| : n ∈ N
}

=∞

where sequences (sn) and (tn) are defined in the proof above. In view of Theo-
rem 4.5 the function f is locally Lipschitz in the second variable uniformly with
respect to the first variable.

The above result raise the following question: it is true that if for a function
f : [0, 1]×R→ R the operator Ψf maps the space BV (0, 1) into itself, then for
every bounded sequence (xn) ⊂ R and for every sequence ([sn, tn)) of pairwise
disjoint intervals contained in [0, 1] we have

∞∑
n=1

∣∣f(tn, xn)− f(sn, xn)
∣∣2 <∞.

Corollary 4.10. If for a function f : [0, 1] × R → R the operator Ψf maps
the space D(0, 1) ∩ BV (0, 1) into itself, then for every a > 0 and for every
sequence (tn) of distinct points of [0, 1] such that the sequence (sup{df (tn, x) :
x ∈ [−a, a]}) is decreasing we have

lim
n→∞

n
1
2 sup{df (tn, x) : x ∈ [−a, a]} <∞.
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Proof. Let j(x) = 1 − x and g(t, x) = f(1 − t, x). It is clear that the map
ϕ → ϕ ◦ j is an isomorphism of BV (0, 1). Since Ψg(ϕ ◦ j)(t) = Ψf (ϕ)(j(t)) the
operator Ψg maps BV (0, 1) into itself. By Theorem 4.7 the operator Ψgdr maps
the space BV (0, 1) into itself. Moreover by Theorem 3.1 and Theorem 2.1 we
have

gdr(t, x) = g(t, x)− lim
s→t+

g(s, x) = f(1− t, x)− lim
s→1−t−

f(s, x) = df (1− t, x).

An appeal to Theorem 4.8(b) completes the proof.

Our next example shows that the inverse theorem to Theorem 4.5 does not
hold. This example shows also that the Ljamin theorem is false. The Ljamin
theorem was regarded as a correct theorem for a long time (see [2]). Bugajewska
noted in [4] that there is no correct proof of the theorem and suggested that it
is false. Maćkowiak in [8] gave the first example that confirmed the suggestion.
The Maćkowiak example is not good for us, the function f in this example is
discrete (i.e. f = fdr).

Example 4.11. For every n, let

gn(x) =


x if x ∈ [0, 1

n
]

2
n
− x if x ∈ [ 1

n
, 2
n
]

0 if x /∈ [0, 2
n
],

hn(t) =


3n2(t− (1− 1

n
− 1

3n2 )) if t ∈ [1− 1
n
− 1

3n2 , 1− 1
n
]

−3n2(t− (1− 1
n

+ 1
3n2 )) if t ∈ [1− 1

n
, 1− 1

n
+ 1

3n2 ]

0 if t /∈ [1− 1
n
− 1

3n2 , 1− 1
n

+ 1
3n2 ].

We put

f(t, x) =
∞∑
n=2

hn(t)gn(x).

for every (t, x) ∈ [0, 1]×R. It is clear that f is a continuous function. In view of
Theorem 2.1 the operator Ψf maps the space D(0, 1) into itself. Let ϕ(t) = 1−t
for every t ∈ [0, 1]. It is clear that Var(ϕ) 6 2 and

f
(
1− 1

n
, ϕ(1− 1

n
)
)

= 1
n

and f
(
1− 1

n
− 1

3n2 , ϕ(1− 1
n
− 1

3n2 )
)

= 0.

Consequently Ψf (ϕ) is not a member of BV (0, 1). For every 2
n+1

< x 6 2
n

we
have f(t, x) =

∑n
j=2 hj(t)gj(x) and

Var(f(·, x)) 6
n∑
j=2

Var(hj)gj(x) 6
n∑
j=2

Var(hj)x = 2nx 6 4.
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It is clear that for every x, y ∈ R and t ∈ [0, 1] we have

|f(t, y)− f(t, x)| 6
∞∑
n=2

|hn(t)||gn(y)− gn(x)| 6
∞∑
n=2

|hn(t)||y − x| 6 |y − x|.

The last inequality follows from the fact that supports of functions hn are pair-
wise disjoint.
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bringing the problems of Nemytskii operators in spaces of regular functions to
my attention.

References
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