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Abstract. Asymptotic stability is studied for semilinear parabolic problems in L2(Ω)
and interpolation spaces. Some known results about stability inW

1,2(Ω) are improved
for semilinear parabolic systems with mixed boundary conditions. The approach is
based on Amann’s power extrapolation scales. In the Hilbert space setting, a better
understanding of this approach is provided for operators satisfying Kato’s square root
problem.
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1. Introduction

Consider a semilinear parabolic system, for instance the reaction-diffusion sys-
tem

∂u

∂t
= D∆u+ f̃(u)

in a bounded Lipschitz domain Ω ⊆ R
d, d ≥ 1, subject e.g. to Neumann bound-

ary conditions ∂u
∂n

= 0 on ∂Ω. Although our results will be more general, we
consider for simplicity for the moment only this system, assuming that D is a
positive definite matrix, and f̃ : Cn → C

n is differentiable at 0 with f̃(0) = 0 and
subject to certain growth conditions specified later on. In chemical reaction-
diffusion systems the reaction term f̃ is typically (termwise) a polynomial, the
degree of the polynomial being the maximal number of molecules reacting si-
multeneously. Depending on the substances, some damping of the growth due
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to saturation may occur for large u. Thus, summarizing, the growth of f̃ is
often at most polynomial, and mathematical results apply to a richer class of
systems if the growth condition admits a larger power.

One could expect that if B̃ = f̃ ′(0) ∈ C
n×n is such that all the eigenvalues λ

of the problem

D∆u+ B̃u = λu

with Neumann boundary conditions belong to the left half-plane, then 0 should
be a stable equilibrium of the system in H := L2(Ω) and V := W 1,2(Ω).
However, this is not so obvious because the superposition operator f(u)(x) =

f̃(u(x)) is not differentiable in H unless it is affine (even if f is also dependent
on x), see e.g. [15].

In fact, to the authors’ knowledge no stability result of the above type is
currently known in the space H = L2(Ω). In the space V = W 1,2(Ω) the
stability can be analysed only under the assumption f : V → H, more precisely,
by assuming in space dimension d ≥ 3 a growth condition of type |f̃(u)| ≤
C(1+|u|p) with p ≤ d

d−2
(see e.g. [11] or [23] for a particular example). Note that

this growth condition is more restrictive than the subcritical growth condition
p < d+2

d−2
, which is usually only necessary to obtain results in the space V .

In this paper, by using spaces larger than H as an auxiliary tool, we obtain,
for the first time, stability results in H. Furthermore, we prove stability results
in V under the more natural subcritical growth condition p < d+2

d−2
.

In some applications, the growth condition can be dropped by restricting
admissible perturbations of the initial data toW 1,q(Ω) with q > d (instead of V ).
Then f : W 1,q(Ω) → Lq(Ω) is automatically differentiable and the stability in
W 1,q(Ω) follows from the classical results [11]. However, taking perturbations
from Lq(Ω), even with arbitrarily large q, is not in the classical framework any-
more because of the lack of differentiability of f : Lq(Ω) → Lq(Ω). Furthermore,
these non-Hilbert spaces are not always natural. For example, models with ob-
stacles (unilateral sources or sinks), e.g. described by variational inequalities,
naturally give rise to Hilbert spaces V and H. In order to compare these models
with the corresponding models without obstacles and to see e.g. that a change
of stability is caused solely by obstacles, one needs to work in both models in
the same space. The instability of equilibria in V for certain problems with ob-
stacles was proved in [14,23], and the instability in H is work in progress. The
same equilibria for analogous problems without obstacles were shown to be sta-
ble in V only under the growth condition p ≤ d

d−2
(see [23]), and, as mentioned

above, we are not aware of any stability results in H at all. In Example 3.17 of
the present paper, we obtain these missing stability results in H and relax the
growth condition up to p < d+2

d−2
in case of V .
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2. Abstract results

2.1. Stability in Banach spaces. Throughout this section, let H be a com-
plex Banach space, and A be a densely defined operator in H which is sectorial
in the sense of [11] and satisfies σ(A) ∩ (−∞, 0] = ∅.

In particular, A is of positive type in the sense of [5], and so one can
define Aα for all α ∈ R on its domain D(Aα) in a standard way. We equip
D(Aα) with the norm ‖u‖Hα

:= |Aαu|. In case α ≥ 0, we define Hα := D(Aα),
and in case α < 0, we define Hα as the completion of H with respect to the
norm ‖·‖Hα

.
Let us recall some properties (see [4] or [5, Chapter V]). The spaces Hα are

densely embedded into each other. Either all of these embeddings is compact
or none. The embeddings are compact if and only if A has a compact resolvent.
The operator A induces by restriction (in case α > 0) or graph completion (in
case α < 0) isomorphisms Aα : Hα+1 → Hα

For β > α, Aβ is the Hβ-realization of Aα, that is, Aβ = Aα|D(Aβ) with
D(Aβ) = A−1

α (Hβ) = Hβ+1. All Aα are thus densely defined operators in Hα.

They have the same spectrum as A and are sectorial in Hα (hence of posi-
tive type). In particular, −Aα generates an analytic semigroup in Hα. The
corresponding semigroups correspond to each other by restriction or (unique)
continuous extension, respectively.

We need to apply Amann’s theory in different scales of spaces. The crucial
observation for us is that there is a relation between these different scales. It
follows from the previous remarks that all our hypotheses which we needed for
that theory for (H,A) are also satisfied with the choice (H−γ, A−γ). Starting
with this couple instead, we obtain by the above definitions a corresponding
family of spaces (H−γ)α. For instance, we have (H−γ)0 = H−γ. The following
lemma states that these spaces are related to our original spaces Hα.

Lemma 2.1. If α, γ ∈ R then Hα = (H−γ)α+γ.

Proof. Set β := α + γ. In case β ≥ 0, it follows from the theory in [5] that the
operator Aβ

−γ is a norm-preserving isomorphism from Hα onto H−γ. Hence, by
the definition of (H−γ)β, we obtain

u ∈ Hα ⇐⇒ A
β
−γu ∈ H−γ ⇐⇒ u ∈ (H−γ)β,

and the norm equality

‖u‖Hα
= ‖Aβ

−γu‖H−γ
= ‖u‖(H−γ)β .

In case β ≤ 0, the operator Aβ
α is a norm-preserving isomorphism from Hα

onto H−γ. Hence,

‖u‖Hα
= ‖Aβ

αu‖H−γ
= ‖Aβ

−γu‖H−γ
= ‖u‖(H−γ)β
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for all u ∈ H−γ. Since H−γ is densely embedded into Hα as well as into (H−γ)β,
the assertion follows.

Remark 2.2. For Lemma 2.1, we used only that A is a densely defined operator
of positive type in H.

For the rest of the section, we fix

α ∈ [0, 1), γ ∈ [0, 1− α). (2.1)

Given a subset U ⊆ R×Hα and a function f : U → 2H−γ , we consider the
problem

u′(t) + Au(t) ∈ f(t, u(t)). (2.2)

Definition 2.3. We call u ∈ C([t0, t1), H−γ) a γ-weak/mild solution of (2.2) if
there is some f0 : (t0, t1) → H−γ with f0 ∈ L1((t0, τ), H−γ) for every
τ ∈ (t0, t1) such that the following holds for every t ∈ (t0, t1): (t, u(t)) ∈ U ;
f0(t) ∈ f(t, u(t)), and

(γ-weak solution) u′(t) ∈ H−γ exists in the sense of the norm of H−γ,
u(t) ∈ D(A−γ), and u′(t) + A−γu(t) = f0(t).

(γ-mild solution)

u(t) = e−(t−t0)A−γu(t0) +

∫ t

t0

e−(t−s)A−γf0(s) ds. (2.3)

Remark 2.4. Each γ-mild solution is a γ-weak solution.

We say that f satisfies a right local Hölder-Lipschitz condition if f is
single-valued and for each (t0, u0) ∈ U there is a (relative) neighborhood
U0 ⊆ [t0,∞)×Hα of (t0, u0) with U0 ⊆ U such that there are constants L < ∞
and σ > 0 with

‖f(t, u)− f(s, v)‖H−γ
≤ L · (|t− s|σ + ‖u− v‖Hα

) for all (t, u) ∈ U0. (2.4)

Similarly, we call f left-locally bounded into H−γ if for each t1 > t0 and each
bounded M ⊆ Hα there is some ε > 0 such that f (U ∩ ([t1 − ε, t1)×M)) is
bounded in H−γ.

Definition 2.5. An element u0 ∈ H1−γ is called a γ-weak equilibrium of (2.2)
if A−γu0 ∈ f(t, u0) for every t > 0.

Since the operators are extensions of each other, we have:

Remark 2.6. If 0 ≤ γ̃ ≤ γ, then each γ̃-weak equilibrium is a γ-weak equi-
librium. Conversely, if u0 is a γ-weak equilibrium with A−γu0 ∈ H−γ̃, that
is, if u0 ∈ H1−γ̃, then u0 is a γ̃-weak equilibrium. Moreover, “0-weak equilib-
rium” means the same as “equilibrium”. In particular, each equilibrium u0 is
a γ-weak equilibrium, and the converse holds if A−γu0 ∈ H−0 = H, that is, if
u0 ∈ H1 = D(A).
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We make the following hypothesis.

(Bγ) Let u0 be a γ-weak equilibrium, U1 ⊆ Hα an open neighborhood of u0, and
[0,∞)×U1⊆U. Assume that there is a bounded linear map B :Hα→H−γ

such that the function g(t, u) := f(t, u0 + u)− A−γu0 −Bu satisfies

lim
‖u‖Hα→0

sup
{
‖v‖H−γ

: v ∈ g ((0,∞)× {u})
}

‖u‖Hα

= 0.

If f is single-valued, condition (Bγ) means B = ∂f
∂u
(t, u0) (in the Fréchet sense)

uniformly for t ∈ (0,∞). In particular, if f is single-valued and independent
of t, it is equivalent to B = f ′(u0).

Theorem 2.7 (Asymptotic stability). Assume (2.1). Let hypothesis (Bγ) be
satisfied. Suppose that

0 < ω < min{Reλ : λ ∈ σ(A−γ −B)}. (2.5)

Then there exist M1,M2 > 0 such that if t1 > t0 ≥ 0 and u ∈ C([t0, t1), Hα)
is a γ-mild solution of (2.2) with ‖u(t0) − u0‖Hα

≤ M1, then u satisfies the
asymptotic stability estimate

‖u(t)− u0‖Hα
≤ M2e

−ω(t−t0)‖u(t0)− u0‖Hα
for all t ∈ [t0, t1). (2.6)

If f : U → H−γ satisfies a right local Hölder-Lipschitz condition in the
sense (2.4), then additionally for every t0 ≥ 0 and every u1 ∈ Hα with
‖u1 − u0‖Hα

≤ M1 there is a unique γ-weak solution u ∈ C([t0,∞), Hα) with
u(t0) = u1. This solution satisfies (2.6) with t1 = ∞.

Remark 2.8. Since B : Hα → H−γ is bounded, and A−γ is sectorial, it follows
that A−γ −B is sectorial, see e.g. [7, Remark 3.2]. Hence, the minimum in (2.5)
indeed exists.

Remark 2.9. In the case γ = 0, that is, if (Aγ, Hγ) is replaced by (A,H), the
assertion of Theorem 2.7 is classical and almost mathematical folklore. A special
case of this is proved in [11], and the general case is obtained by straightforward
extensions of that proof.

Proof of Theorem 2.7. It is sufficient to apply the special case of Remark 2.9
with (A,H, α) replaced by (A−γ, H−γ, β) with β := α + γ. Note that the semi-
group generated by A−γ is indeed an extension of the semigroup generated by A.

Moreover, by Lemma 2.1, the space (H−γ)β in the corresponding assertion ob-
tained by Remark 2.9 is indeed the same as the space Hα in the assertion of
Theorem 2.7.
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In the same way as in the above proof of Theorem 2.7, one can also obtain
generalizations of most other classical assertions about (2.2) like instability,
existence, uniqueness, or regularity results as in [11] or [19]: Most results carry
over to the case when (A,H) is replaced by (H−γ, A−γ).

Theorem 2.7 is not yet very convenient for applications, because the spec-
trum σ(A−γ−B) corresponds to a very abstract operator. One way to deal with
this problem is the following result which enables us to replace this spectrum
by σ(A−B) under an additional hypothesis.

Theorem 2.10. Assume (2.1). Let hypothesis (Bγ) be satisfied. Suppose that
at least one of

B(H1−γ) ⊆ H (2.7)

or B(H1) ⊆ H, (2.8)

A−γu−Bu ∈ H =⇒ u ∈ H1 (2.9)

holds. Then σ(A−γ − B) = σ(A − B) 6= C. In particular, the conclusion of
Theorem 2.7 holds if

0 < ω < min{Reλ : λ ∈ σ(A−B)}.

Proof. We first note that (2.7) implies (2.8) and (2.9), because A : H1 → H is
the H-realization of A−γ : H1−γ → H−γ. Moreover, (2.8) and (2.9) are equiv-
alent to the assertion that CH := A − B : H1 → H is the H-realization of
C := A−γ −B : H1−γ → H−γ.

Putting β := α + γ ∈ [0, 1), we have by Lemma 2.1 that D(Aβ
−γ) =

(H−γ)β = Hα. From Remark 2.8, we obtain trivially σ(A−γ −B) 6= C.
Considering C as an operator in H−γ with domain D(C) = H1−γ, we find

in particular that there is µ > 0 such that µI + C has a bounded inverse R,
and R(H) ⊆ R(H−γ) = D(C) ⊆ H. Hence [5, Lemma V.1.1.1] implies that the
spectra of C and of its H-realization CH coincide.

Another way to solve the calculation of the spectrum is to reduce it to the
calculation of eigenvalues under some compactness assumptions.

We call λ ∈ C a γ-weak eigenvalue of A−B if it is an eigenvalue of A−γ−B.
Analogously to Remark 2.6, we obtain:

Remark 2.11. If 0 ≤ γ̃ ≤ γ and λ is a γ̃-weak eigenvalue of A− B, then λ is
a γ-weak eigenvalue of A− B.

Conversely, if λ is a γ-weak eigenvalue of A−B with eigenvector u∈H1−γ⊆H

(recall that γ ≤ 1) satisfying Bu ∈ H−γ̃ or u ∈ H1−γ̃, then λ is a γ̃-weak
eigenvalue of A−B with eigenvector u ∈ H1−γ̃.

Moreover, “0-weak eigenvalue” means the same as “eigenvalue”. In partic-
ular, each eigenvalue λ of A−B is a γ-weak eigenvalue of A−B; conversely, if λ
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is a γ-weak eigenvalue of A− B with eigenvector u ∈ H1−γ satisfying Bu ∈ H

or u ∈ H1, then λ is an eigenvalue of A−B with eigenvector u ∈ H1.

Remark 2.11 implies in particular:

Proposition 2.12. If at least one of (2.7) or (2.9) holds, then λ is a γ-weak
eigenvalue of A−B with eigenspace E if and only if λ is an eigenvalue of A−B

with the same eigenspace E, and automatically E ⊆ D(A) = H1.

Theorem 2.13 (Asymptotic stability with eigenvalues). Assume that one of the
embeddings Hβ → Hδ is compact for β > δ, that is, A has a compact resolvent.
Then the spectrum σ(A−γ −B) of Theorem 2.7 consists only of isolated γ-weak
eigenvalues. In particular, if there is ω > 0 such that every γ-weak eigenvalue λ

of A−B satisfies Reλ > ω, then the conclusion of Theorem 2.7 holds.

Proof. Recall that the first hypothesis implies that all of the embeddings
Hβ → Hδ are compact if β > δ. In particular, the embedding H1−γ → Hα

is compact.
Putting C := B + λI : Hα → H−γ, we are to show now that A−γ − C is

a Fredholm operator of index 0 (in the space H−γ). Since A−γ : H1−γ → H−γ

is such a Fredholm operator, it suffices to show by [13, Theorem IV.5.26] that
C := B + λI : Hα → H−γ is relatively compact with respect to A−γ. Thus, let
un and A−γun be bounded in H−γ. Then un is bounded in H1−γ , and thus un

contains a subsequence convergent in Hα. Hence, Cun contains a subsequence
convergent in H−γ, as required.

Since I is bounded in H−γ and A−γ − B − λI is Fredholm for all λ, [13,
Theorem IV.5.31] implies that the dimension of the null space of A−γ −B− λI

is constant for all λ except for a set of isolated points. Since A−γ−B is sectorial
and thus has a nonempty resolvent set, it follows that this constant is zero.

A further difficulty in the application of Theorem 2.7 is that the opera-
tor A−γ as well as the space H−γ and semigroups e−tA−γ are rather abstract
objects so that e.g. the meaning of γ-weak and γ-mild solutions or of γ-weak
eigenvalues is somewhat obscure. We can understand these objects much better
when we restrict ourselves to the Hilbert space setting.

2.2. Hilbert spaces. For the rest of the paper, we assume that (H, (·, ·), |·|)
is a complex Hilbert space. We assume that (V, ‖·‖) is a complex Banach
space (actually isomorphic to a Hilbert space if a form a as required below
exists) which is densely embedded into H. Identifying H with a subspace of the
antidual V ′ by means of the scalar product (·, ·), we have a customary Gel’fand
triple V ⊆ H ⊆ V ′ of densely embedded spaces. Let a : V × V → C be a
sesquilinear form on V which is continuous, that is, there is C ∈ [0,∞) with

|a(u, v)| ≤ C‖u‖‖v‖,
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and which is strongly accretive in the sense that there is c > 0 with

Re a(u, u) ≥ c‖u‖2 for all u ∈ V . (2.10)

The operator A : D(A) → H with its natural domain D(A) ⊆ H is defined in
the obvious way by means of the duality

(Au, v) = a(u, v) for all v ∈ H.

Similarly, A : V → V ′ is defined by means of the duality

(A u, v) = a(u, v) for all v ∈ V ,

where now the brace on the left denotes the antidual pairing of V ′ and V .
It is well-known that A is an isomorphism and that A is a densely defined

sectorial operator of positive type, so that all previous results apply for A.

Definition 2.14. We call A a Kato operator if H 1

2

∼= V .

Examples of Kato operators are when a is symmetric (see also Corollary 2.19
and the remarks thereafter) or when we are in the context of differential equa-
tions: In the latter case, one usually obtains Kato operators under very mild
hypotheses. This is the famous Kato square root problem, and we will use such
results later on.

It turns out that each of the operators Aα (α ∈ R) is a Kato operator if
and only if A is. The latter is also equivalent to the equality A = A− 1

2

. For the
completeness of exposition, we will prove these assertions. We first discuss the
spaces H−γ in more detail. To this end, we first define H∗

α analogously to Hα

with respect to the norm ‖u‖H∗

α
:= |(Aα)∗u|, where A∗ denotes the Hilbert space

adjoint of A, noting that (A∗)α = (Aα)∗.
We denote by [·, ·]θ the complex interpolation functor of order θ ∈ (0, 1), see

e.g. [20]. For convenience, we include θ = 0 and θ = 1 in the obvious manner
by putting [X, Y ]0 := X and [X, Y ]1 := Y . We start by collecting some results
from [5] and [12]:

Proposition 2.15. We have the reiteration formulas

H(1−θ)α+θβ
∼= [Hα, Hβ]θ if α, β ∈ R, 0 ≤ θ ≤ 1, (2.11)

and the duality representation

H−γ
∼= (H∗

γ)
′ if −1 ≤ γ ≤ 1. (2.12)

Additionally,

H∗
γ
∼= Hγ if γ ∈

[
0,

1

2

)
, (2.13)

and (2.13) holds with γ = 1
2
if and only if A is a Kato operator.
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Using Proposition 2.15, we obtain now several equivalent characterizations
of the space H−γ. For the case that A is a Kato operator, we have more such
characterizations.

Corollary 2.16. There hold the formulas

H−γ
∼= (H∗

γ)
′ ∼= [H,D(A∗)′]γ ∼= [H,D(A∗)]′γ for all γ ∈ (0, 1). (2.14)

If A is a Kato operator, then also

H−γ
∼= (H∗

γ)
′ ∼= H ′

γ
∼= [H, V ]′2γ

∼= [V ′, V ]′1
2
+γ

∼= [V ′, V ] 1
2
−γ

∼= [V ′, H]1−2γ (2.15)

for all γ ∈ [0, 1
2
] and

H−γ
∼= (H∗

γ)
′ ∼= [D(A∗)′, V ′]2−2γ

∼= [V,D(A∗)]′2γ−1 for all γ ∈

[
1

2
, 1

]
. (2.16)

Proof. The formula (2.14) is shown in a straightforward manner with (2.11)
and (2.12) by inserting D(A∗) = H∗

1 and H = H0 = H ′
0 = H∗

0 = (H∗
0 )

′.
The formulas (2.15) and (2.16) are shown similarly, by using also (2.13) with
γ ∈ [0, 1

2
] and V ∼= H 1

2

∼= H∗
1

2

.

Remark 2.17. The last three equalities in (2.15) are independent of A and
consequently also valid if A fails to be a Kato operator. (Here we use that there
exists a Kato operator, e.g. associated to the symmetrization of a.)

Note that the existence of the form a implies that V is actually a Hilbert
space with an equivalent norm; for instance, the symmetrization of a defines
a corresponding scalar product. Recall that A : V → V ′ is an isomorphism.
Hence, any scalar product b on V induces a scalar product ba on V ′ and vice
versa by means of the formula

ba(u, v) := b(A −1u,A −1v) for all u, v ∈ V ′, (2.17)

where the corresponding norms are equivalent to the original norms each. We
call a scalar product b on V an A-Kato scalar product if the corresponding norm
is equivalent to the original norm on V , and if there are c1, c2 > 0 satisfying

Re b(u,A−1u) ≥ c1|u|
2 and |b(u,A−1v)| ≤ c2|u||v| for all u, v ∈ H. (2.18)

By density of D(A) and since the Hilbert space is complex, the estimates (2.18)
follow if one can show that there are c1, c3 > 0 such that

Re b(u,A−1u) ≥ c1|u|
2 and |b(u,A−1u)| ≤ c3|u|

2 for all u ∈ D(A).

By this approach of working with scalar product on V , one can now obtain an
elementary proof of the following result.
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Theorem 2.18. The following assertions are equivalent:

(1) A is a Kato operator.

(2) There is an A-Kato scalar product on V .

(3) There is a scalar product on V ′ generating an equivalent norm and a
sesquilinear form a : H ×H → C satisfying

Re a(u, u) ≥ c1|u|
2, |a(u, v)| ≤ c2|u||v|

with c1, c2 > 0 such that A is associated to a.

(4) D(A
1

2 ) ∼= H.

(5) A = A− 1

2

(under a canonical identification).

(6) For some α ∈ R the space Hα can be equipped with a scalar product gen-
erating an equivalent norm such that the operator Aα is a Kato operator
with a form defined on Hα+ 1

2

.

(7) For every α ∈ R the space Hα can be equipped with a scalar product
generating an equivalent norm such that the operator Aα is a Kato operator
with a form defined on Hα+ 1

2

.

In each case,
b(u, v) := (A

1

2u,A
1

2v) (2.19)

defines an A-Kato scalar product on V .

We sketch the proof of Theorem 2.18; full details can be found in [9]. For
the implication (1) =⇒ (2), one calculates that the scalar product (2.19) (which
was also used e.g. in [3]) is indeed A-Kato under hypothesis (1). The proof of
the implication (2) =⇒ (3) is a straightfoward calculation by using the scalar
product (2.17) of V ′ and the form a(u, v) = ba(A u, v); the only technical step
here consists in the verification that the domain of the operator associated
to a is indeed D(A ) = V . For the proof of the implication (3) =⇒ (4), we

apply (2.11) to (A , a, V, V ′) in place of (A, a,H1, H0) and obtain D(A
1

2 ) ∼=
[V ′, V ] 1

2

; according to Remark 2.17 and (2.15) with γ = 0, the latter space is

[V ′, V ] 1
2

∼= [V ′, H]1 = H, and so (4) holds. To see (4) =⇒ (1), note that if (4)

holds then A
1

2 : H → V ′ and A
1

2A
1

2 = A : V → V ′ are isomorphisms, and so

the H-realization of A
1

2 must be an isomorphism V →H. This H-realization is

A
1

2 : V →H, and soD(A
1

2 )∼=V which implies (1). For the implication (1)=⇒(5),

we use Corollary 2.16 and obtain that the operators A− 1

2

: V ∼= H 1

2

→ H− 1

2

∼= V ′

and A : V → V ′ are both continuous extensions of A : D(A) → H ⊆ V ′.
Since D(A) = H1 is dense in H 1

2

∼= V , it follows that these extensions must

coincide, and so (5) holds. The implications (5)=⇒ (1)=⇒ (6) and (7)=⇒ (1)
are trivial. From the already established equivalence (1) ⇐⇒ (2), one finally
obtains easily the remaining implication (6) =⇒ (7) by “transporting” the
scalar product and Aα-Kato scalar product between Hα1

and Hα2
with ap-

propriate isomorphisms A
β2

β1
(essentially by replacing A in (2.17) with such
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isomorphisms); it is only a technical matter to calculate that one obtains indeed
Aβ-Kato scalar products.

We note that some of the equivalences of Theorem 2.18 are mathematical
folklore, see e.g. [6, Section 5.5.2], and some can be obtained easily by using
deep results [10, Section 7.3.3], but our elementary approach by observing the
equivalence (1) ⇐⇒ (2) (and actually our introduction of an A-Kato scalar
product) appears to be new. This equivalence can also be used to establish
e.g. the following side result.

Corollary 2.19. A is Kato if there are α > −1 and β,M ≥ 0 with

Re((A∗)−1(Au+Mu), u) ≥ α|u|2 and |(A∗)−1Au| ≤ β|u| (2.20)

for all u ∈ D(A).

Indeed, a straightforward calculation shows that condition (2.20) is equiv-
alent to the assertion that

b(u, v) :=
1

2

(
a(u, v) + a(v, u) +M · (u, v)

)

defines an A-Kato scalar product. Note that (2.20) is trivially satisfied for
selfadjoint operators, so that we can conclude from Corollary 2.19 and thus
indirectly from Theorem 2.18 also Kato’s famous result [12] that for symmetric
a the operator A is a Kato opertor.

Assertion (5) of Theorem 2.18 not only helps us to understand A− 1

2

but

actually A−γ in case γ ≤ 1
2
, because that operator is just a restriction of A− 1

2

.
Since also the corresponding semigroups are restrictions of each other, we obtain
for instance a characterization of γ-mild and γ-weak solutions which is easier
to understand from an analytic point of view:

Corollary 2.20. If A is a Kato operator and γ ≤ 1
2
, one can replace (2.3) in

Definition 2.3 equivalently by

u(t) = e−(t−t0)A u(t0) +

∫ t

t0

e−(t−s)A f0(s) ds,

and u′(t) + A−γu(t) = f0(t) equivalently by

u′(t) + a(u(t), v) = (f0(t), v) for all v ∈ V .

If A is a Kato operator, then Theorem 2.18(5) implies that A is sectorial
so that the above semigroup e−tA in V ′ is indeed well defined and analytic.
The latter can be calculated even if A fails to be a Kato operator, see e.g.
[18, Theorem 1.55], but then the space V ′ may differ from H− 1

2

.
In a similar way, one obtains a more analytic characterization of γ-weak

eigenvalues.
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Corollary 2.21. Let γ ∈ [0, 1
2
] and A be a Kato operator. Then λ is a γ-weak

eigenvalue of A−B with corresponding eigenvector u 6= 0 if and only if u ∈ H1−γ

and
a(u, ϕ)− (Bu, ϕ) = λ(u, ϕ) for all ϕ ∈ V .

Moreover, the hypothesis (2.7) of Proposition 2.12 is satisfied if B(V ) ⊆ H.

3. Superposition operators in L2 and Sobolev spaces

Let Ω ⊆ R
d be open and H := L2(Ω,C

n). In the following, we use the scalar
product (and respective dual pairing)

(u, v) :=

∫

Ω

u(x) · v(x) dx.

In case d ≥ 3, we put p∗ :=
2d
d−2

; in case d ≤ 2, we fix an arbitrary p∗ ∈ (2,∞).
Let V ⊆ W 1,2(Ω,Cn) be a closed subspace which is dense in H. We assume
that Ω is such that Sobolev’s embedding theorem is valid in the sense that there
is a continuous embedding V ⊆ Lp∗(Ω,C

n).

Remark 3.1. For the case that Ω is such that the dense embedding
V ⊆ Lp∗(Ω,C

n) holds only with some smaller power p∗ ∈ (2,∞), all subse-
quent considerations hold as well with this choice of p∗.

Lemma 3.2. Let A be a Kato operator.

(1) Let γ ∈ [0, 1
2
].

(a) We have a continuous embedding Lqγ (Ω,C
n) ⊆ H ′

γ
∼= (H∗

γ)
′ ∼= H−γ

with

qγ :=

(
1

2
+γ−

2γ

p∗

)−1 (
=

2d

d+4γ
∈

[
2d

d+2
, 2

]
if d ≥ 3

)
. (3.1)

(b) If we have a continuous embedding D(A) ⊆ Lp(Ω,C
n) (1 ≤ p < ∞),

then we also have a continuous embedding H1−γ ⊆ Lpγ (Ω,C) with

pγ :=

(
2γ

p∗
+

1− 2γ

p

)−1

. (3.2)

(2) Let γ ∈ [1
2
, 1].

(a) We have a continuous embedding H1−γ ⊆ Lpγ (Ω,C) with

pγ :=

(
γ −

1

2
+

2− 2γ

p∗

)−1

(
=

2d

4γ + d− 2
∈

[
2d

d+ 2
, 2

]
if d ≥ 3

)
.

(3.3)



Stability in L2 and W
1,2 345

(b) If we have a continuous embedding D(A∗) ⊆ Lp(Ω,C
n) (1 ≤ p < ∞),

then we also have a continuous embedding Lqγ (Ω,C
n) ⊆ (H∗

γ)
′ ∼= H−γ

with

qγ :=

(
1−

2γ − 1

p
−

2− 2γ

p∗

)−1

. (3.4)

Proof. By hypothesis, we have a continuous dense embedding V ⊆ Lp∗(Ω,C
n).

Hence, with 1
p′
∗

+ 1
p∗
=1 also the (Banach space) adjoint embedding Lp′

∗
(Ω,Cn)⊆V ′

is continous and dense. In case γ = 1
2
we have qγ = pγ = p′∗, and thus the

assertion (2) follows. In case γ = 0 we have qγ = 2 and pγ = p, and the
assertion (1) is trivial. In case γ ∈ (0, 1

2
), we use [20, Theorem 1.18.4], the fact

that [·, ·]θ is an interpolation functor of order θ (see e.g. [20, Theorem 1.9.3(a)]),
and (2.15). Then we have a continuous embedding

Lqγ (Ω,C
n) ∼= [Lp′

∗
(Ω,Cn), L2(Ω,C

n)]1−2γ ⊆ [V ′, H]1−2γ
∼= H ′

γ,

which proves (1a).
Defining p′ by 1

p′
+ 1

p
= 1, we find in view of H∗

1 = D(A∗) ⊆ Lp(Ω,C
n) that

L′
p(Ω,C

n) = Lp(Ω,C
n)′ ⊆ (H∗

1 )
′. This shows (2) for γ = 1, since qγ = p′ and

pγ = 2. Moreover, for γ ∈ (1
2
, 1), we find similarly as above with (2.16) the

continuous embedding

Lqγ (Ω,C
n) = [Lp′(Ω), Lp′

∗
(Ω,Cn)]2−2γ ⊆ [D(A∗)′, V ′]2−2γ

∼= (H∗
γ)

′,

which implies (2b). A similar argument shows with Proposition 2.15 that in
case γ ∈ (0, 1

2
)

H1−γ
∼= [H 1

2

, H1]1−2γ ⊆ [Lp∗(Ω,C
n), Lp(Ω,C

n)]1−2γ
∼= Lpγ (Ω,C

n),

proving (1b), while in case γ ∈ (1
2
, 1)

H1−γ
∼= [H0, H 1

2

]2−2γ ⊆ [L2(Ω,C
n), Lp∗(Ω,C

n)]2−2γ
∼= Lpγ (Ω,C

n),

proving (2a) (all embeddings being countinuous).

We assume also that the nonlinearity f(t, ·) is given by a superposition

operator induced by a function f̃ : [0,∞) × Ω × C
n → 2C

n

, that is, for each
t ∈ [0,∞)

f(t, u) :=

{
v : Ω → C

n

∣∣∣∣∣
v measurable and

v(x) ∈ f̃(t, x, u(x)) for almost all x ∈ Ω

}
(3.5)

For the stability result, without loss of generality, we will consider only the case
u0 = 0 and assume that f̃ is uniformly linearizable at u = 0 in the following
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sense. There are r ∈ (1,∞], a measurable B̃ : Ω → C
n×n, and a function

g̃ : (0,∞)× Ω× C
n → 2C

n

with

f̃(t, x, u) = B̃(x)u+ g̃(t, x, u) for all (t, x, u) ∈ (0,∞)× Ω× C
n

such that

lim
|u|→0

sup {|v| : v ∈ g̃ ((0,∞)× {x} × {u})}

|u|
= 0 (3.6)

for almost all x ∈ Ω. Moreover, we assume that there is C0 ∈ (0,∞) such that

sup {|v| : v ∈ g̃ ((0,∞)× {x} × {u})} ≤ C0 · (|u|+ |u|σ) for all u ∈ C
n (3.7)

for almost all x ∈ Ω and some σ ∈ (1,∞). We define a corresponding multipli-
cation operator B by

Bu(x) := B̃(x)u(x) for all x ∈ Ω. (3.8)

With this notation, the following holds.

Proposition 3.3. Let A be a Kato operator and u0 = 0. Suppose that

Ω has finite (Lebesgue) measure (3.9)

and that r ∈ [1,∞] and σ ∈ (0,∞) are such that B̃ ∈ Lr(Ω,C
n×n) and (3.6)

and (3.7) hold.

(1) Let α = 0. Assume





r = 2 if d = 1

r > 2 if d = 2

r =
2p∗

p∗ − 2
(= d) if d ≥ 3,

(3.10)

and 



σ = 2 if d = 1

σ < 2 if d = 2

σ = 2−
2

p∗

(
= 1 +

2

d

)
if d ≥ 3.

(3.11)

Then for every γ ∈ [1
2
, 1) there holds f : [0,∞)×Hα → 2(H

∗

γ )
′

, and the hy-
pothesis (Bγ) of Theorems 2.7 and 2.13 is satisfied with Hα = L2(Ω,C

n).

(2) Let α = 0. Assume that the embedding D(A∗) ⊆ Lp(Ω,C
n) is continuous

for some p ∈ (p∗,∞), and

r >
2p

p− 2
and σ < 2−

2

p
. (3.12)
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Then

γ0 :=
(σ−2)p∗p−2p∗+4p

4(p−p∗)
<1, γ1 :=

2pp∗−r(pp∗+2p∗−4p)

4(p−p∗)r
<1, (3.13)

and for every γ ∈ [max{γ0, γ1,
1
2
}, 1) the same conclusion as in (1) is

valid.

(3) Let α = 1
2
. Suppose that B̃ ∈ Lr(Ω,C

n×n) with some

r >
p∗

p∗ − 2

(
=

d

2
if d ≥ 3

)
, (3.14)

and that (3.6) and (3.7) hold with some

σ < p∗ − 1

(
=

d+ 2

d− 2
if d ≥ 3

)
. (3.15)

Then

γ0 :=
2σ − p∗

2p∗ − 4
<

1

2
and γ1 :=

p∗

r(p∗ − 2)
−

1

2
<

1

2
, (3.16)

and for every γ ∈ [max{0, γ0, γ1},
1
2
) we have f : [0,∞)×Hα → 2H

′

γ , and
the hypothesis (Bγ) of Theorems 2.7 and 2.13 is satisfied with Hα = V .

Proof. In case (1), it is no loss of generality to assume γ = 1
2
, and we assume

first d ≥ 3. In cases (1) and (2), we put p̃ = 2 and define qγ by (3.4), while in
case (3), we put p̃ = p∗ and define qγ by (3.1). Then we put U := Lp̃(Ω,C

n)
and Vγ := Lqγ (Ω,C

n). Letting r satisfy (3.10), (3.12), or (3.14), and requiring
γ ≥ γ1 with γ1 as in (3.13) or (3.16) in the respective cases, we find

1

qγ
≥

1

p̃
+

1

r
,

and so we obtain from the (generalized) Hölder inequality that B : U → Vγ

is bounded. Since we have a bounded embedding Hα ⊆ U , we obtain from
Lemma 3.2 that B : Hα → (H∗

γ)
′ is bounded.

Moreover, letting σ satisfy (3.11), (3.12), or (3.15), and requiring γ ≥ γ0
with γ0 as in (3.13) or (3.16) in the respective cases, we find σ ≤ p̃

qγ
. Hence,

the superposition operator g generated by g̃ satisfies g : [0,∞)× U → 2Vγ and

lim
‖u‖U→0

sup
{
‖v‖Vγ

: v ∈ g ((0,∞)× {u})
}

‖u‖U
= 0,

see [22, Theorem 4.14]. Since we have continuous embeddings Hα ⊆ U and
Vγ ⊆ (H∗

γ)
′ (Lemma 3.2), the condition (Bγ) is proved.

Case (1) with d = 2 is treated in a similar way (with a sufficiently large p∗),
and for d = 1 we can put qγ = 1 in the above calculation, since in this case
we have still a continuous embedding Vγ ⊆ (H∗

γ)
′ by the continuity of the

embedding (H∗
γ)

′ ⊆ H 1

2

⊆ L∞(Ω,Cn).
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Remark 3.4. The last observation in the proof extends to a more general sit-
uation: If γ ∈ [0, 1

2
] is such that the embedding Hγ ⊆ L∞(Ω,Cn) is continuous,

then the conclusion of Proposition 3.3(1) is valid with r = σ = 2 (we put qγ = 1
in the proof).

Remark 3.5. For d ≥ 3 assertion (2) of Proposition 3.3 requires strictly less
about r and σ than assertion (1), because in view of p > p∗ there holds

2p

p− 2
<

2p∗
p∗ − 2

and 2−
2

p
> 2−

2

p∗
.

Remark 3.6. In case d ≥ 3 the quantities γ0 and γ1 in (3.16) have the form

γ0 =
(d− 2)σ − d

4
and γ1 =

1

2

(
d

r
− 1

)
. (3.17)

Remark 3.7. Proposition 3.3(3) holds also with γ = 1
2
. Moreover, for γ = 1

2

one does not have to require that the inequalities in (3.14) or (3.15) are strict.
However, the choice γ = 1

2
violates the hypothesis (2.1) of Theorems 2.7 and 2.13

if α = 1
2
.

Remark 3.8. Hypothesis (3.9) is obviously needed for the assertion (3) of
Proposition 3.3. However, we used this hypothesis also for the assertion (1)
when we applied [22, Theorem 4.14]. If hypothesis (3.9) fails, one can ap-
ply other criteria for the differentiability of superposition operators like e.g.
[22, Theorem 4.9], but we do not formulate corresponding results here.

While Proposition 3.3 gives a sufficient condition for the hypothesis (Bγ),
this is not sufficient to apply Theorem 2.13. For the latter, one also has to
estimate all γ-weak eigenvalues of A − B, and the latter in turn is usually
simpler if one knows that all γ-weak eigenvalues of A − B are eigenvalues of
A−B. For the operator B from (3.8), this is the content of the following result.

Proposition 3.9. Suppose (3.9). Let B have the form (3.8) with some

B̃ ∈ Lr(Ω,C
n), r ∈ [1,∞].

(1) If r satisfies (3.10), then B|V : V → H is bounded.

(2) If A is a Kato operator, γ ∈ [1
2
, 1), and

γ ≤ γ̃0 :=




1−

p∗

(p∗ − 2)r
if r < ∞

1 if r = ∞,
(3.18)

then B|H1−γ
: H1−γ → H.
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(3) If A is a Kato operator,

2 < r <
2p∗

p∗ − 2
(= d if d ≥ 3), (3.19)

and if there is p ≥ 2r
r−2

(> p∗) with D(A) ⊆ Lp(Ω,C
n), then

γ̃p :=
1

2

(
1

2
−

1

r
−

1

p

)
·

(
1

p∗
−

1

p

)−1

∈

[
0,

1

2

)
, (3.20)

and for all γ ≤ γ̃p the operator B|H1−γ
: H1−γ → H is bounded.

If A is a Kato operator, the hypotheses of (1), (2), or (3) are satisfied and
γ ≤ 1

2
, γ ≤ γ̃0, or γ ≤ γ̃p, respectively, then λ is a γ-weak eigenvalue of A− B

if and only if λ is an eigenvalue of A−B.

Proof. In case (1) with d ≥ 3, we apply in view of 1
2
= 1

p∗
+ 1

r
the (generalized)

Hölder inequality to obtain that B : Lp∗(Ω,C
n) → L2(Ω,C

n) is bounded and
thus B : V → H is bounded. Case (1) with d ≥ 2 is similar (with sufficiently
large p∗), and for d = 1 one can formally put p∗ = ∞ by the continuity of the
embedding H 1

2

⊂ C(Ω,Cn).

In case (2) and (3), we define pγ by (3.3) or (3.2), respectively, and observe
that, due to (3.18) or (3.20), respectively, we have the estimate 1

2
≥ 1

pγ
+ 1

r
.

Hence, by the (generalized) Hölder inequality, B : Lpγ (Ω,C
n) → L2(Ω,C

n) is
bounded, and thus also B : H1−γ → H is bounded by Lemma 3.2. The last
assertion follows from Proposition 2.12 and Corollary 2.21.

If one is interested in stability in H (the case α = 0), one should con-
sider Proposition 3.3 part (1) or (2). In the former case, Proposition 3.9(1) is
automatically satisfied, and in the latter case one would like to apply Proposi-
tion 3.9(2). In the latter case, γ ∈ [1

2
, 1) has to satisfy γi ≤ γ ≤ γ̃0 for i = 0, 1

with γi from (3.13). Obviously, γ1 and γ̃0 depend monotonically on r, and
γ1 < γ̃0 if r is sufficiently large, and then γ0 < γ̃0 if σ is sufficiently small, so
that Proposition 3.3(2) and Proposition 3.9(2) apply simultaneously for all γ
from some proper interval (if r is sufficiently large).

If one is interested in stability in V (the case α = 1
2
), one should consider

Proposition 3.3(3). In this case, the hypothesis of Proposition 3.9(1) means
an additional requirement for r. The purpose of Proposition 3.9(3) is to relax
this requirement. However, it is not immediately clear whether this relaxed
requirement applies in the situation of Proposition 3.3(3), since then γ ∈ [0, 1

2
]

needs to satisfy γi ≤ γ ≤ γ̃p for i = 0, 1 with γi from (3.16). Although γ1
and γ̃p depend monotonically on r and satisfy γ1 < γ̃p if r is sufficiently large,
one cannot choose r arbitrarily large in view of (3.19): Otherwise already the
additional requirement of Proposition 3.9(1) is satisfied. In fact, the following
observation may be somewhat discouraging at a first glance.
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Remark 3.10. If (3.19) holds, then the term γ̃p in (3.20) is strictly increasing
with respect to p ≥ 2r

r−2
. In particular,

γ̃∞ := sup
p∈[ 2r

r−2
,∞)

γ̃p = lim
p→∞

γ̃p =
r − 2

4r
p∗.

Thus, even if we know that D(A) ⊆ Lp(Ω,C
n) for every p ∈ (1,∞), we still

have γ < γ̃∞, and the latter can be arbitrarily small if r is sufficiently close to 2.

Nevertheless we will show in the following remark that Proposition 3.3(3)
and Proposition 3.9(3) apply simultaneously with the same γ provided that r
is not “too” small and σ is not “too” large.

Remark 3.11. Suppose that Sobolev’s embedding theorem holds in the sense
described earlier and, moreover, that we have a continuous embedding D(A) ⊆
Lp(Ω,C

n) with p = 2d
d−4

in case d ≥ 5 and any p ∈ (p∗,∞) in case d ≤ 4. For
instance, by standard Sobolev embedding theorems (see [16, Theorem 1.4.5]),
this is the case if D(A) ⊆ W 2,2(Ω,Cn). Proposition 3.9(3) applies with

{
r ∈ [d

2
, d] and γ ≤ γ̃2d/(d−4) = 1− d

2r
if d ≥ 5

r ∈ (2, d) and γ < γ̃∞ = r−2
4r

p∗ if d = 3, 4.

In view of (3.17) it follows that if

{
r ∈ [2

3
d, d) and σ ≤ (d+4)r−2d

(d−2)r
if d ≥ 5

r ∈ ( d2

2d−2
, d) and σ < d2r−4d

(d−2)2r
if d = 3, 4,

then Proposition 3.3(3) applies with

{
max{γ0, γ1} ≤ γ̃ 2d

d−4

if d ≥ 5

max{γ0, γ1} < γ̃∞ if d = 3, 4.

Hence, in these cases there exists γ ∈ [0, 1
2
) for which Proposition 3.3(3) and

Proposition 3.9(3) apply simultaneously.

A result similar to Proposition 3.3 holds for a Lipschitz condition. We
assume that f̃ : [0,∞) × Ω × C

n → C
n is single-valued. Let p̃ ≥ 1, σ > 0, and

γ ∈ [0, 1
2
]. We define qγ by (3.1). We assume that for each t0 ∈ [0,∞) there are

Lt0 ≥ 0, σt0 > 0, and a neighborhood I ⊆ [0,∞) of t0 such that for each t ∈ I

there are measurable at, bt : Ω → [0,∞) with

∫

Ω

at(x)
p̃ dx ≤ 1 and

∫

Ω

bt(x)
qγ dx ≤ 1
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such that for almost all x ∈ Ω the uniform (for all u, v ∈ C
n) estimate

|f̃(t, x, u)− f̃(t, x, v)| ≤ Lt0 · (at(x) + |u|+ |v|)σ−1 |u− v| (3.21)

holds and such that for each t, s ∈ I we have for almost all x ∈ Ω the uniform
(for all u ∈ C

n) estimate

|f̃(t, x, u)− f̃(s, x, u)| ≤ Lt0 (bt(x) + bs(x) + |u|σ) |t− s|σt0 . (3.22)

Finally, we assume that

f̃(t, ·, u) is measurable for all (t, u)∈ [0,∞)×C
n, f̃(0, ·, 0)∈Lqγ (Ω,C

n). (3.23)

Proposition 3.12. Let A be a Kato operator, and assume (3.9). Assume one
of the following:

(1) Let α = 0 and γ ∈ [1
2
, 1). Suppose that conditions (3.21)–(3.23) hold with

p̃ = 2 and with σ from (3.11).

(2) Let α = 0, and assume that the embedding D(A∗) ⊆ Lp(Ω,C
n) is contin-

uous for some p ∈ (p∗,∞), Let σ satisfy (3.12), and thus γ0 from (3.13)
satisfies γ0 < 1. Let γ ∈ [max{γ0, 0}, 1), and suppose that (3.21)–(3.23)
hold with p̃ = 2.

(3) Let α = 1
2
. Let σ satisfy (3.15), and thus γ0 from (3.16) satisfies γ0 <

1
2
.

Let γ ∈ [max{γ0, 0},
1
2
), and suppose that conditions (3.21)–(3.23) hold

with p̃ = p∗.

Then f maps [0,∞)×Hα into H−γ and satisfies a right local Hölder-Lipschitz
condition (2.4) and is left-locally bounded into H−γ.

Proof. We use the notation of the proof of Proposition 3.3. Note that (3.23)
implies in view of (3.22) by a straightforward estimate that f(t, 0) ∈ Vγ for
every t > 0. From [14, Appendix] we obtain together with (3.21) that for each
t ∈ I the function f(t, ·) maps U into Vγ and satisfies a Lipschitz condition on
every bounded set M ⊆ U with Lipschitz constant being independent of t ∈ I.
Using (3.22), we find by a straighforward estimate that

‖f(t, u)− f(s, u)‖Vγ
≤ CM,t0|t− s|σt0 for all t, s ∈ I, u ∈ M ,

where CM,t0 is independent of t, s ∈ I and u ∈ M . Combining both assertions
and the triangle inequality, we obtain that f : [0,∞)× U → Vγ satisfies a right
Hölder-Lipschitz condition and is left-locally bounded into Vγ. Since we have
bounded embeddings Hα ⊆ U and Vγ ⊆ (H∗

γ)
′ ∼= H−γ by (2.12), the assertion

follows.

Remark 3.13. If α = 0 and γ ∈ [0, 1) is such that the embedding
Hγ ⊆ L∞(Ω,Cn) is continuous, then the conclusion of Proposition 3.12 is also
valid (with the same proof and qγ = 1, cf. Remark 3.4).
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3.1. Semilinear parabolic PDEs. Let Ω ⊆ R
d be a bounded domain with

Lipschitz boundary ∂Ω. Let ΓD,ΓN ⊆ ∂Ω be disjoint and measurable (with
respect to the (d− 1)-dimensional Hausdorff measure) and such that

(∂Ω) \ (ΓD ∪ ΓN) is a null set. (3.24)

It is explicitly admissible that ΓD = ∅ or ΓN = ∅. Given aj,k, bj ∈ L∞(Ω,Cn×n)

(j, k = 1, . . . , d) and f̃ : [0,∞)×Ω×C
n → 2C

n

, we consider the semilinear PDE

∂u

∂t
+ Pu = f̃0(t, x, u) on Ω, (3.25)

where

Pw := −
d∑

j,k=1

∂

∂xj

(
aj,k(x)

∂w(x)

∂xk

)
+

d∑

j=1

bj(x)
∂w(x)

∂xj

.

We impose the mixed boundary condition





u = 0 on ΓD

d∑

j,k=1

νjaj,k
∂u

∂xk

= 0 on ΓN ,
(3.26)

where ν(x) = (ν1(x), . . . , νn(x)) denotes the outer normal at x ∈ ∂Ω.
We put H := L2(Ω,C

n) and

V := {u ∈ W 1,2(Ω,Cn) : u|ΓD
= 0 in the sense of traces},

equipping V with the norm of W 1,2(Ω,Cn).
Our main assumption is as follows.

(C) G̊arding’s inequality holds, that is, there are c, c̃ > 0 with

Re
d∑

j,k=1

∫

Ω

(
aj,k(x)

∂u(x)

∂xk

)
·
∂u(x)

∂xj

dx ≥ c‖∇u‖2L2(Ω,Cdn)−c̃‖u‖2L2(Ω,Cn) (3.27)

for all u ∈ V . Moreover, at least one of the following holds:

(1) aj,k(x) = (ak,j(x))
∗ for almost all x ∈ Ω and all j, k = 1, . . . , d.

(2) G̊arding’s inequality (3.27) holds even with c̃ = 0. Moreover, ΓD

satisfies the geometric hypotheses described in [8, Assumption 9.1].

(3) The matrices Re
(∑d

j,k=1 aj,k(x)ξjξk
)
are positive definite, uniformly

with respect to all x ∈ Ω and ξ ∈ R
d with |ξ| = 1, aj,k ∈ C1(Ω,Cn×n),

bj ∈ Lip(Ω,Cn×n) for all j, k = 1, . . . , d, ΓD and ΓN are open in ∂Ω

domains, and the set (3.24) is a Lipschitz manifold of dimension d−2.
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For a discussion of various algebraic conditions sufficient for G̊arding’s in-
equality (3.27), we refer the reader to e.g. [2, 17].

By a standard estimate, we obtain from G̊arding’s inequality (3.27) that
the form

a(u, v) :=

∫

Ω

(
d∑

j,k=1

(
aj,k(x)

∂u(x)

∂xk

)
·
∂v(x)

∂xj

+
d∑

j=1

(
bj(x)

∂u(x)

∂xj

+Mu(x)

)
·v(x)

)
dx

satisfies (2.10) if M ≥ 0 is sufficiently large. Keeping such an M fixed, we now
introduce the function

f̃(t, x, u) := f̃0(t, x, u) +Mu

and define strong (weak, mild) solutions of (3.25), (3.26) as strong (weak, mild)
solutions of (2.2) with the superposition operator (3.5). A connection between
the solutions of (3.25), (3.26) and (2.2) is described in e.g. [21, Theorem 4.4.4].

Theorem 3.14. Assume that hypothesis (C) holds. Then the operator A asso-
ciated with a is a Kato operator.

Moreover, let (f̃ , α, γ) satisfy the hypotheses of Proposition 3.3 part (1)
or (2) (or (3)), and suppose that there is some ω > 0 such that every γ-weak
eigenvalue λ of A−B satisfies Reλ ≥ ω. Then u0 = 0 is asymptotically stable
in Hα = L2(Ω,C

n) (or Hα = W 1,2(Ω,Cn)) in the sense that for every ε > 0
there is δ > 0 such that any γ-mild solution u ∈ C([0,∞), Hα) of (3.25), (3.26)
with ‖u(0, ·)‖Hα

≤ δ satisfies ‖u(t, ·)‖Hα
≤ ε for all t ≥ 0, and ‖u(t, ·)‖Hα

→ 0
exponentially fast as t → ∞.

If in addition f̃ satisfies the hypothesis of Proposition 3.12 part (1) (or (3)),
then for every u0 ∈ Hα there is a unique γ-mild solution u ∈ C([0,∞), Hα)
of (3.25), (3.26) with u(0, ·) = u0.

Remark 3.15. We emphasize that under the additional assumptions mentioned
in Proposition 3.9, it suffices to consider eigenvalues of A−B instead of γ-weak
eigenvalues. Note that A−B is actually independent of M (because the terms
with M cancel).

Proof of Theorem 3.14. Assume first that b1 = · · · = bd = 0. Then A is a Kato
operator. Indeed, in case (C)(1), this follows from Proposition 2.15, because a

is symmetric. In case (C)(2), this follows from the main result of [8], and in
case (C)(3) this follows from the main result of [3] in view of [1].

Since neither the space H1 nor its topology depends on M or bj, we obtain
from Proposition 2.15 that also the space H 1

2

∼= [H,H1] 1
2

does not depend on
M or bj, and so we obtain from the special case b1 = · · · = bd = 0 also in the
general case that A is a Kato operator.

Note that if the hypothesis of Proposition 3.3(1) is satisfied, then also the
hypothesis of Proposition 3.9(1) is satisfied. Hence, the assertion follows from
Theorem 2.13.
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Remark 3.16. In Theorem 3.14, the hypotheses of Proposition 3.3 part (1)
or (2) can also be replaced by the hypothesis of Remark 3.4.

Example 3.17. Let Ω⊆R
d be bounded with a Lipschitz boundary, ΓD,ΓN ⊆∂Ω

be measurable with (3.24). Let f1, f2 : C
2 → C be continuous with fi(0) = 0,

and suppose that there are L ≥ 0 and ρ > 0 with

|fi(u)− fi(v)| ≤ L (1 + |u|+ |v|)ρ |u− v| (3.28)

for all u ∈ C
2. Assume that (bi1, bi2) = f ′

i(0) exist for i = 1, 2, are real, and
satisfy the sign conditions

b11 > 0, b11 + b22 < 0, b11b22 − b12b21 > 0.

For d1, d2 > 0, we consider the reaction-diffusion system

∂uj

∂t
= dj∆uj + fj(u1, u2) on Ω, for j = 1, 2, (3.29)

with mixed boundary conditions (for u = (u1, u2))

u = 0 on ΓD,
∂u

∂ν
= 0 on ΓN . (3.30)

Let κk > 0 (k = 1, 2, . . . ) denote the nonzero eigenvalues of ∆ with boundary
conditions (3.30); if ΓD is a null set, do not include the trivial eigenvalue κ0 = 0
into this sequence. Suppose (d1, d2) lies to the right/under the envelope of the
hyperbolas

Ck = {(d1, d2) : d1, d2 > 0 and (κkd1 − b11)(κkd2 − b22) = b12b21},

that is, (d1, d2) belongs to

∞⋂

k=1

{
(d1, d2) : d1 ≥ κ−1

k b11 or d2 <
κ−2
k b12b21

d1 − κ−1
k b11

+
b22

κk

}
, (3.31)

see Figure 3.1.
Consider the following two cases.

(1) Hα = L2(Ω,C
2) and one of the following holds:

(a) γ ∈ [1
2
, 1) and either d = 1, ρ ≤ 1, or d = 2, ρ < 1, or d ≥ 3, ρ ≤ 2

d
;

(b) D(A) is continuously embedded into Lp(Ω,C), ρ < 1 − 2
p
, and

γ ∈ (0, 1) is sufficiently large;

(c) ρ ≤ 1, γ ∈ (1
2
, 1), and Hγ is continuously embedded into L∞(Ω,C);

(d) D(A) is continuously embedded into W 2,2(Ω,C), and either d ≤ 3,
ρ ≤ 1, γ ∈ (d

4
, 1), or d ≥ 4, ρ < 4

d
, and γ ∈ (0, 1) is sufficiently large.
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d1

d2

C4 C3 C2 C1

Domain of stability

Figure 3.1: The hyperbolas Ck

(2) Hα = W 1,2(Ω,C2) and one of the following holds:

(a) d ≤ 2, ρ > 0, γ ∈ [0, 1
2
);

(b) d ≥ 3, ρ < 4
d−2

, γ ∈ [max{0, γ0},
1
2
), where γ0 is defined in (3.16)

with σ = ρ+ 1.

In cases (1) and (2) the following holds. For each ε > 0 there is δ > 0 such
that for each u0 ∈ Hα with ‖u0‖Hα

≤ δ there is a unique γ-mild solution
u ∈ C([0,∞), Hα) of (3.29), (3.30) with u(0, ·) = u0, ‖u(t, ·)‖Hα

≤ ε for all
t > 0 and ‖u(t, ·)‖Hα

→ 0 exponentially as t → ∞.

We first note that (1d) is actually a special case of (1b) and (1c) by the
Sobolev embedding theorems and [11, Theorem 1.6.1], respectively. Since fi is
independent of x and t, hypothesis (3.7) follows with σ = ρ+1 from (3.28) and
from the definition of f ′

i . Note also that the symmetry of A implies D(A) =
D(A∗) and Hγ = H∗

γ . The existence and uniqueness assertion follows from
Proposition 3.12 or from Remark 3.13 in case (1c). For the stability assertion,
we apply Theorem 3.14 or Remark 3.16 in case (1c) with r = ∞ and σ = 1+ r.
In view of Proposition 3.9, it thus suffices to verify that there is ω > 0 such
that every eigenvalue λ of A − B satisfies Reλ ≥ ω. Under condition (3.31)
the latter was verified in [23]. It can be shown by a similar calculation that
if di > 0 violate (3.31) then there is an eigenvalue λ of A − B with Reλ ≤ 0
(λ = 0 if (d1, d2) ∈

⋃∞
k=1Ck). In this sense, the domain of stability sketched in

Figure 3.1 is maximal.

Note that (1d) involves a strictly weaker requirement concerning ρ than (1a)
for every d ≥ 2. The embedding required for (1d) holds in case ΓD = ∅ or
ΓN = ∅ if ∂Ω is sufficiently smooth.

In the space Hα = W 1,2(Ω,C2) and d ≥ 3, the result in [23] essentially
needed the more restrictive hypothesis ρ ≤ 2

d−2
which is (almost) by the factor 2

worse than our above requirement for that case. For instance, in case ΓD = ∅ or
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ΓN = ∅ and smooth ∂Ω, we can now treat nonlinearities like fi(u, v) = (|u|+|v|)p

or fi(u, v) = |v|p−1v under the subcritical growth condition p < d+2
d−2

while

previously this was possible only if p ≤ d
d−2

. In particular, in space dimension
d = 3, we can now treat polynomial nonlinearities of degree 4 (even “almost”
of degree 5) while previously only degree 3 could be handled for that space.

Moreover, for the space Hα = L2(Ω,C
2), we are not aware of any similar

previous results of such a type while now we can treat at least polynomials of
degree 2 in space dimension d ≤ 3.
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