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Stabilization of Viscoelastic Wave Equations
with Distributed or Boundary Delay
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Abstract. The wave equation with viscoelastic boundary damping and internal or
boundary delay is considered. The memory kernel is assumed to be integrable and
completely monotonic. Under certain conditions on the damping factor, delay factor
and the memory kernel it is shown that the energy of the solutions decay to zero
either asymptotically or exponentially. In the case of internal delay, the result is
obtained through spectral analysis and the Gearhart-Prüss Theorem, whereas in the
case of boundary delay, it is obtained using the energy method.
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1. Introduction

Let Ω ⊂ Rn be an open and bounded set with C2-boundary. Consider the wave
equation with interior delay and viscoelastic boundary damping

utt(t, x)−∆u(t, x) + a0ut(t, x) + a1ut(t−τ, x) = 0, in (0,∞)×Ω

∂u

∂ν
(t, x) + a ? ut(t, x) = 0, on (0,∞)×∂Ω

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω

ut(t, x) = f(t, x), on (−τ, 0)×Ω,

(1)

where τ > 0 is a constant delay parameter, a0 is the damping factor and a1 is
the delay factor. Here, ν is the unit outward vector normal to the boundary ∂Ω
of Ω, and the convolution a ? v is defined by

a ? v(t, ·) =

∫ t

0

a(t− s)v(s, ·) dµ(s), t > 0.
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The system (1) models the evolution of sound in a compressible fluid within
a viscoelastic surface without accounting for viscoelasticity and the variable u
represents the acoustic pressure, see [18] for example. The energy of a solution
of (1), without viscoelasticity and delay, is defined by

Ew(t) =

∫
Ω

|ut(t, x)|2 + |∇u(t, x)|2 dx.

Our goal is to prove that Ew(t) decays to zero as t tends to infinity.
It is well known that delay can have a destabilizing effect to systems that

are asymptotically stable in the absence of delay [1,3,4,8,15,17]. However, if the
damping factor is larger than the delay factor then one can show exponential
stability for the wave equation. In particular, consider the wave equation with
homogeneous Dirichlet boundary condition on a part of the boundary

utt(t, x)−∆u(t, x) + a0ut(t, x) + a1ut(t− τ, x) = 0, in (0,∞)× Ω

∂u

∂ν
(t, x) = 0, on (0,∞)× ΓD

∂u

∂ν
(t, x) + kut(t, x) = 0, in (0,∞)× ΓN ,

(2)

where ΓD 6= ∅, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅ and the domain Ω satisfies some
geometric conditions. If k = 0 and a0 > a1 ≥ 0 then the exponential decay of
the energy of the solutions has been shown by Nicaise and Pignotti [15] using
observability estimates for the wave equation with mixed Dirichlet-Neumann
boundary conditions. For k > 0, a0 = 0 and sufficiently small a1 > 0, it has
been shown in [1] that (2) is uniformly exponentially stable. This is achieved by
rewriting the initial-boundary value problem into a pure initial value problem
in an extended state space and using multipliers to derive the necessary decay
property. However, in the case k = 0 and a0 = a, there are solutions with
constant energies. In other words, the delay component a1ut(· − τ) cancels the
dissipative effect of the damping term a0ut in (2).

In this paper, we consider completely monotonic and integrable kernels
for (1) as in [5]. A function a ∈ C∞((0,∞);R) is called completely monotonic
if (−1)ja(j)(t) ≥ 0, for all t > 0, j = 0, 1, . . . . According to Bernstein Theorem
[9, Theorem 2.5], a is completely monotonic if and if only there exists a locally
finite positive measure µ ∈Mloc((0,∞);R) such that

a(t) =

∫ ∞
0

e−st dµ(s), t > 0.

Furthermore, for a completely monotonic function a, we have a ∈ L1((0,∞);R)
if and only if

µ({0}) = 0 and â(0) =

∫ ∞
0

1

s
dµ(s) <∞.
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Let a ∈ L1((0,∞);R) be completely monotonic with corresponding measure
µ 6= 0. Then the Laplace transform of a is given by

â(λ) =

∫ ∞
0

1

λ+ s
dµ(s), <λ > 0, (3)

and admits a holomorphic extension to C \ (−∞, 0].
In the absence of delay and damping, that is, a0 = a1 = 0, the asymp-

totic stability of (1) has been shown in [5] using the well-known Arendt-Batty-
Lyubic-Vu Theorem. This is the best we can obtain since it is possible to have
eigenvalues arbitrarily close to the imaginary axis, see for instance [6]. We
will show that if 0 < a1 = a0, that is, the damping factor and the delay fac-
tor are equal, then the dissipative effect of the viscoelastic damping is strong
enough to preserve the asymptotic stability of the wave equation (1). In the
case 0 ≤ a1 < a0 we further have exponential stability. Because the bound-
ary condition in (1) do not have a Dirichlet part, we cannot apply directly the
energy method employed in the references mentioned above. Instead, we use
the frequency-domain approach. Our proof relies on a generalized Lax-Milgram
Lemma and the Gearhart-Prüss Theorem.

We also consider the case where the delay occurs at the boundary

utt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω

u(t, x) = 0, on (0,∞)× ΓD
∂u

∂ν
(t, x) + a ? ut(t− τ, x) + cut(t, x) = 0, on (0,∞)× ΓN

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

ut(t, x) = f(t, x), on (−τ, 0)× ΓN ,

(4)

and show that if â(0) < c and Ω satisfies a suitable geometric condition, then the
energy of the solution decays to zero exponentially. This assumption is natural,
since if â(λ) = k for some constant k then formally the convolution becomes
a ? ut = L −1(L (a)L (ut)) = kut where L denotes the Laplace transform.
Then the condition â(0) < c coincides with the one given in [15].

The difficult task is to modify the energy functional Ew suitable to prove
the decay property. For the delay variable this is standard. In fact, the energy
associated with it is given by

Ed(t) =
c

2

∫ 0

−τ

∫
ΓN

|ut(t+ θ, x)|2 dx dθ.

Aside from this, we also need to add the contribution of viscoelasticity to the
energy. For this, we define the following energy corresponding to the memory
term

Em(t) =
1

2

∫ ∞
0

∫
ΓN

∣∣∣∣∫ t

0

e−s(t−r)ut(r − τ, x) dr

∣∣∣∣2dx dµ(s).
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The total energy for (4) is then defined as

E(t) = Ew(t) + Ed(t) + Em(t), t ≥ 0.

We would like to point out that our stability result for (1) is only possible
for a factor space of the state space whereas the stability result for (4) is valid
for the whole state space. Other works related to wave equations with memory
and delay can be found in [2, 11,16] to name a few.

2. Semigroup well-posedness

In this section, we will reformulate (1) and (4) as first order Cauchy problems
on suitable state spaces and prove their well-posedness using semigroup theory.
First let us consider the problem (1) with internal delay. Let v(t, x) = ut(t, x),
w(t, x) = ∇u(t, x) and z(t, θ, x) = ut(t+ θ, x) = v(t+ θ, x) for t > 0, x ∈ Ω and
θ ∈ (−τ, 0). In order to keep track of the memory, we introduce another state
variable ψ : (0,∞)× (0,∞)× ∂Ω→ Cn defined by

ψ(t, s, x) =

∫ t

0

e−s(t−r)v(r, x) dr, t, s > 0, x ∈ ∂Ω.

The convolution in (1) can be written in terms of ψ as

a ? v(t, x) =

∫ ∞
0

ψ(t, s, x) dµ(s).

Then (1) is equivalent to the linear system

vt(t, x)− divw(t, x) + a0v(t, x) + a1z(t,−τ, x) = 0, in (0,∞)× Ω

wt(t, x)−∇v(t, x) = 0, in (0,∞)× Ω

zt(t, θ, x)− zθ(t, θ, x) = 0, in (0,∞)× (−τ, 0)× Ω

ψt(t, s, x) + sψ(t, s, x)− v(t, x) = 0, on (0,∞)× (0,∞)× ∂Ω

(w · ν)(t, x) +

∫ ∞
0

ψ(t, s, x) dµ(s) = 0, on (0,∞)× ∂Ω

v(0, x) = u1(x), w(0, x)−∇u0(x) = 0, in Ω

z(0, θ, x)− f(θ, x) = 0, in (−τ, 0)× Ω

ψ(0, s, x) = 0, on (0,∞)× ∂Ω.

We consider the state space to be complex-valued because we will use some
information about the spectrum of the generator.
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We introduce the abbreviations Lpµ := Lp((0,∞);L2(∂Ω;Cn), dµ) for p ≥ 1
and L2

τ := L2((−τ, 0);L2(Ω;Cn)). These are the state spaces for the memory
and delay variables, respectively. Let X = L2(Ω;Cn)× L2(Ω;Cn×n)× L2

τ × L2
µ

be the Hilbert space equipped with the inner product

〈(v1, w1, z1, ψ1), (v2, w2, z2, ψ2)〉X

=

∫
Ω

(v1(x) · v2(x) + w1(x) · w2(x)) dx

+ κ

∫ 0

−τ

∫
Ω

z1(θ, x) · z2(θ, x) dx dθ +

∫ ∞
0

∫
∂Ω

ψ1(s, x) · ψ2(s, x) dx dµ(s)

where κ = a0 if a0 > 0 and κ = 1 if a0 = 0. The dot represents either the inner
product in Cn or Cn×n where it is applicable. Let L2

div(Ω) = {w ∈ L2(Ω;Cn×n) :
divw ∈ L2(Ω;Cn)}, where div is the distributional divergence. Recall that there

exists a generalized normal trace operator w 7→ w·ν ∈ L(L2
div(Ω), H−

1
2 (∂Ω;Cn))

such that the following generalized Green’s identity∫
Ω

divw(x) · u(x) dx = 〈w · ν,Γu〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

−
∫

Ω

w(x) · ∇u(x) dx

holds for all w ∈ L2
div(Ω) and u ∈ H1(Ω;Cn), see [19] for example. Here

Γ : H1(Ω;Cn)→ H
1
2 (∂Ω;Cn) is the usual trace operator.

Define the operator A : D(A) ⊂ X → X by

A


v
w
z
ψ

 =


divw − a0v − a1z(−τ)

∇v
zθ

−sψ + Γv


where its domain is given by

D(A) =

(v, w, z, ψ) ∈ X

∣∣∣∣∣∣∣∣∣
v ∈ H1(Ω;Cn), z ∈ H1((−τ, 0);L2(Ω;Cn)),

w ∈ L2
div(Ω), −sψ(s) + Γv ∈ L2

µ, z(0) = v,

w · ν +

∫ ∞
0

ψ(s) dµ(s) = 0


Note that −sψ(s) + Γv ∈ L2

µ implies ψ ∈ L1
µ. Indeed, this follows from the

equality ψ(s) = 1
1+s

ψ(s)+ 1
1+s

Γv− Γv−sψ(s)
1+s

and the fact that s 7→ 1
1+s
∈ L1

µ∩L2
µ.

The problem (1) can now be written as a first order evolution equation in X{
U̇(t) = AU(t), t > 0

U(0) = U0,
(5)

where U0 = (u1,∇u0, f, 0).
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Theorem 2.1. The operator A generates a C0-semigroup (T (t))t≥0 on X. If
0 ≤ a1 ≤ a0 then the semigroup consists of contractions. In particular, for
every U0 ∈ X (resp. U0 ∈ D(A)) the Cauchy problem (5) has a unique solution
U ∈ C([0,∞);X) (resp. U ∈ C1([0,∞);X) ∩ C([0,∞);D(A))).

Proof. Let (v, w, z, ψ) ∈ D(A). Applying the generalized Green’s identity and
the boundary conditions z(0) = v and w · ν = −

∫∞
0
ψ(s) dµ(s) we have

〈A(v, w, z, ψ), (v, w, z, ψ)〉X

=

∫
Ω

divw · v dx− a0

∫
Ω

|v|2 dx− a1

∫
Ω

z(−τ) · v dx+

∫
Ω

∇v · w dx

+ κ

∫ 0

−τ

∫
Ω

zθ(θ) · z(θ) dx dθ −
∫ ∞

0

∫
∂Ω

s|ψ(s)|2 dx dµ(s)

+

∫ ∞
0

∫
∂Ω

Γv(x) · ψ(s) dx dµ(s)

= −
(
a0 −

κ

2

)∫
Ω

|v|2 dx− a1

∫
Ω

z(−τ) · v dx− κ

2

∫
Ω

|z(−τ)|2 dx

−
∫ ∞

0

∫
∂Ω

s|ψ(s)|2 dx dµ(s) + iκ=
∫ 0

−τ

∫
Ω

zθ(θ) · z(θ) dx dθ

+ 2i=
(∫

Ω

∇v · w dx+

∫ ∞
0

∫
∂Ω

Γv · ψ(s) dx dµ(s)

)
.

Taking the real part and using the Cauchy-Schwarz inequality we obtain

<(A(v, w, z, ψ), (v, w, z, ψ))X ≤ −
∫ ∞

0

s‖ψ(s)‖2
L2 dµ(s) + k

∫
Ω

|v|2 dx (6)

where k = 1
2
(a2

1 + 1) if a0 = 0 and k = 1
2

(a21
a0
− a0

)
if a0 > 0. The first integral

is finite since s|ψ(s)|2 = Γv · ψ(s)− (−sψ(s) + Γv) · ψ(s) ∈ L1
µ. In particular, if

a0 ≥ a1 > 0 then k ≤ 0 and therefore A is dissipative. In the case a1 > 0 = a0,
we have k > 0, and thus the inequality (6) also implies that A−kI is dissipative.
The case where a0 = a1 = 0 was already established in [5].

The next step is to show the range condition R(λI−A)=X for all λ>0. Let
(f, g, h, φ) ∈X. The equation (λI−A)(v, w, z, ψ) = (f, g, h, φ) for (v, w, z, ψ) ∈
D(A) is equivalent to the system

λv − divw + a0v + a1z(−τ) = f (7)

λw −∇v = g (8)

λz(θ)− zθ(θ) = h(θ) (9)

z(0) = v (10)

(λ+ s)ψ(s)− Γv = φ(s) (11)

w · ν +

∫ ∞
0

ψ(s) dµ(s) = 0. (12)
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The variation of parameters formula applied to (9) and (10) gives

z(θ) = eλθv +

∫ 0

θ

eλ(θ−ϑ)h(ϑ) dϑ, θ ∈ (−τ, 0). (13)

Solving for w and ψ in (8) and (11), respectively, we get

w =
1

λ
(g +∇v), (14)

ψ(s) =
1

λ+ s
(φ(s) + Γv), s > 0. (15)

Taking the inner product in L2(Ω;Cn) of (7) with λu for u ∈ H1(Ω;Cn) and
using (13) yield

λ(λ+ a0 + a1e
−λτ )

∫
Ω

v · u dx−
∫

Ω

div(λw) · u dx = λ

∫
Ω

fλ · u dx (16)

where

fλ := f − a1

∫ 0

−τ
e−λ(τ+ϑ)h(ϑ) dϑ.

Green’s identity together with (12), (14) and (15) yields∫
Ω

div(λw) · u dx = − λ

∫
∂Ω

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
· Γu dx

− λâ(λ)

∫
∂Ω

Γv · Γu dx−
∫

Ω

(∇v + g) · ∇u dx.

Plugging the latter equality in (16) and rearranging the terms, we obtain
the variational equation

a(v, u) = F (u), for all u ∈ H1(Ω;Cn) (17)

where a : H1(Ω;Cn)×H1(Ω;Cn)→ C and F : H1(Ω;Cn)→ C are the sesquilin-
ear and antilinear forms defined by

a(v, u) = λ(λ+ a0 + a1e
−λτ )

∫
Ω

v · u dx+

∫
Ω

∇v · ∇u dx+ λâ(λ)

∫
∂Ω

Γv · Γu dx

and

F (u) = λ

∫
Ω

fλ · u dx−
∫

Ω

g · ∇u dx− λ
∫
∂Ω

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
· Γu dx.

Since a is H1-coercive and a and F are both continuous, it follows from Lax-
Milgram Lemma that there exists a unique v ∈ H1(Ω;Cn) such that (17) is
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satisfied. Defining z, w and ψ by (13), (14) and (15), respectively, and integrat-
ing by parts we can see that (v, w, z, ψ) ∈ D(A) where v is the solution of (17).
Thus R(λI − A) = X for all λ > 0.

Suppose that a0 =0<a1. In this case, we have k>0 and so R(λI−(A−kI))
= R((λ + k)I − A) = X for all λ > 0. Thus by the Lumer-Phillips Theorem,
the operator A− kI generates a strongly continuous semigroup of contractions
(S(t))t≥0 and therefore A = (A − kI) + kI generates the strongly continuous
semigroup (ektS(t))t≥0 on X by the perturbation theorem. If a0 ≥ a1 ≥ 0
then A is dissipative and hence A generates a strongly continuous semigroup of
contractions on X.

Now let us turn to the problem (4) with boundary delay. In this case we
assume that the states are real-valued. Suppose that ΓD 6= ∅, ΓD ∪ ΓN = ∂Ω,
ΓD∩ΓN = ∅ and there exists a strictly convex m ∈ C2(Ω), that is, there is α > 0
such that ∇2m(x)ξ · ξ ≥ α|ξ|2 for all x ∈ Ω and ξ ∈ Rn, and ∇m(x) · ν(x) ≤ 0
for all x ∈ ΓD. Here, ∇2m denotes the Hessian of m. The existence of m allows
us to apply a classical observability estimate for the wave equation.

Let v(t, x) = ut(t, x) for (t, x) ∈ (0,∞) × Ω, z(t, θ, x) = ut(t + θ, x) =
v(t+ θ, x) for (t, θ, x) ∈ (0,∞)× (−τ, 0)× ΓN and

ψ(t, s, x) =

∫ t

0

e−s(t−r)ut(r − τ, x) dr =

∫ t

0

e−s(t−r)z(r,−τ, x) dr (18)

for (t, s, x) ∈ (0,∞)× (0,∞)× ΓN . Then (4) is equivalent to the system

ut(t, x)− v(t, x) = 0, in (0,∞)× Ω

vt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω

zt(t, θ, x)− zθ(t, θ, x) = 0, on (0,∞)× ΓN

ψt(t, s, x) + sψ(t, s, x)− z(t,−τ, x) = 0, on (0,∞)× (0,∞)× ΓN

u(t, x) = 0, on (0,∞)× ΓD

∂u

∂ν
(t, x) +

∫ ∞
0

ψ(t, s, x) dµ(s) + cv(t, x) = 0, on (0,∞)× ΓN

u(0, x)− u0(x) = 0, v(0, x)− u1(x) = 0, in Ω

z(0, θ, x)− f(θ, x) = 0, on (−τ, 0)× ΓN

ψ(0, s, x) = 0, on (0,∞)× ΓN .

Due to the homogeneous Dirichlet boundary condition on ΓD, we will
pose this problem in terms of u and ut instead of the formulation in terms
of ∇u and ut used in (1). For this reason, we consider the state space
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X̃ = H1
ΓD

(Ω)×L2(Ω)×L2((−τ, 0);L2(ΓN))×L̃2
µ where H1

ΓD
(Ω) = {u ∈ H1(Ω) :

Γu = 0 on ΓD} and L̃2
µ = L2

µ((0,∞);L2(ΓN), dµ). Equipped with the inner
product

〈(u1, v1, z1, ψ1), (u2, v2, z2, ψ2)〉X̃

=

∫
Ω

(∇u1(x) · ∇u2(x) + v1(x)v2(x)) dx

+ â(0)

∫ 0

−τ

∫
ΓN

z1(θ, x)z2(θ, x) dx dθ +

∫ ∞
0

∫
ΓN

ψ1(s, x)ψ2(s, x) dµ(s) dx,

X̃ is a Hilbert space. Let E(∆) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} be equipped

with the graph norm ‖u‖E(∆) = (‖u‖2
H1(Ω) + ‖∆u‖2

L2(Ω))
1
2 where ∆ denotes the

distributional Laplacian. Recall that there exists a generalized first order trace
operator u 7→ ∂u

∂ν
∈ L(E(∆);H−

1
2 (ΓN)) such that the following generalized

Green’s identity holds∫
Ω

(∆u)w dx =

〈
∂u

∂ν
,Γw

〉
H−

1
2 (ΓN )×H

1
2 (ΓN )

−
∫

Ω

∇u · ∇w dx (19)

for every u ∈ E(∆) and w ∈ H1
ΓD

(Ω), see [10] for example.

Define the operator Ã : D(Ã) ⊂ X̃ → X̃ by

Ã


u
v
z
ψ

 =


v

∆u
zθ

−sψ + z(−τ)


with domain

D(Ã) =

(u, v, z, ψ) ∈ X̃

∣∣∣∣∣∣∣∣∣
u ∈ E(∆), z ∈ H1((−τ, 0);L2(ΓN)),

v ∈ H1
ΓD

(Ω), − sψ(s) + z(−τ) ∈ L̃2
µ,

z(0) = Γv,
∂u

∂ν
+

∫ ∞
0

ψ(s) dµ(s) + cΓv = 0.


Then (4) can be also written as a first order evolution equation in X̃. Using
similar methods as in the proof of the previous theorem, the following well-
posedness theorem can be proved.

Theorem 2.2. If â(0) ≤ c then Ã generates a C0-semigroup of contractions
in X̃.

Proof. First, let us prove that Ã is dissipative. Let (u, v, z, ψ) ∈ D(Ã). Then

〈Ã(u, v, z, ψ), (u, v, z, ψ)〉X̃ =

∫
Ω

∇v ·∇u+(∆u)v dx+ â(0)

∫ 0

−τ

∫
ΓN

zθz dx dθ

+

∫ ∞
0

∫
ΓN

(−sψ(s)+z(−τ))ψ(s) dx dµ(s).

(20)



368 G. Peralta

Using the generalized Green’s identity (19) and the boundary conditions
∂u
∂ν

+
∫∞

0
ψ(s) dµ(s) + cΓv = 0 on ΓN and Γu = 0 on ΓD we have∫

Ω

∇v · ∇u+ (∆u)v dx

= −
∫ ∞

0

∫
ΓN

ψ(s)Γv dx dµ(s)− c
∫

ΓN

|Γv|2 dx

≤
(
â(0)

2
− c
)∫

ΓN

|Γv|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(s)|2 dx dµ(s)

(21)

where we used the Cauchy-Schwarz inequality in the last inequality. Similarly,∫ ∞
0

∫
ΓN

(−sψ(s) + z(−τ))ψ(s) dx dµ(s)

≤ −1

2

∫ ∞
0

∫
ΓN

s|ψ(s)|2 dx dµ(s) +
â(0)

2

∫
ΓN

|z(−τ)|2 dx.

(22)

On the other hand, from the condition z(0) = Γv on ΓN we have

â(0)

∫ 0

−τ

∫
ΓN

zθz dx dθ =
â(0)

2

∫
ΓN

|Γv|2 − |z(−τ)|2 dx. (23)

Using the estimates (21)–(23) in (20) we obtain

〈Ã(u, v, z, ψ), (u, v, z, ψ)〉X̃ ≤ −(c− â(0))

∫
ΓN

|Γv|2 dx

and this implies that Ã is dissipative since â(0) ≤ c.
Let us prove the range condition R(λI − Ã) = X̃ for every λ > 0. Let

λ > 0 and (f, g, h, φ) ∈ X̃. We need to find (u, v, z, ψ) ∈ D(Ã) such that
(λI − Ã)(u, v, z, ψ) = (f, g, h, φ), which is equivalent to the system

λu− v = f, (24)

λv −∆u = g, (25)

λz − zθ = h, (26)

(λ+ s)ψ(s)− z(−τ) = φ(s), (27)

together with the boundary conditions stated in the definition of D(Ã). The
variation of parameters formula applied to (26) yields

z(θ) = eλθΓv +

∫ 0

θ

eλ(θ−ϑ)h(ϑ) dϑ, θ ∈ (−τ, 0). (28)

Notice that z ∈ H1((−τ, 0);L2(ΓN)). Define v = λu− f and ψ(s) = 1
λ+s

(φ(s) +
z(−τ)), so that (27) holds. Taking the L2-inner product of both sides of (25)
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with ϕ ∈ H1
ΓD

(Ω), using equations (24) and (28) and after rearranging the
terms, we obtain the variational equation∫

Ω

∇u · ∇ϕ+ λ2uϕ dx+ λ(c+ e−λτ â(λ))

∫
ΓN

ΓuΓϕ dx

=

∫
Ω

(λf + g)ϕ dx+ (c+ e−λτ â(λ))

∫
ΓN

Γf Γϕ dx (29)

+ e−λτ â(λ)

∫ 0

−τ

∫
ΓN

e−λθh(θ)Γϕ dx dθ −
∫

ΓN

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
Γϕ dx.

The left hand side defines a continuous, bilinear and coercive form on H1
ΓD

(Ω)
while the right hand side defines a continuous linear form on H1

ΓD
(Ω). According

to the Lax-Milgram Lemma, (29) has a unique solution u ∈ H1
ΓD

(Ω). Choosing
ϕ ∈ C∞0 (Ω) in (29) shows that (25) is satisfied in the sense of distributions
and ∆u ∈ L2(Ω). Thus u ∈ E(∆), and integrating by parts one can see
that ∂u

∂ν
+
∫∞

0
ψ(s) dµ(s) + cΓv = 0 on ΓN . Therefore (u, v, z, ψ) ∈ D(Ã) and

consequently R(λI − Ã) = X̃ for every λ > 0. The conclusion of the theorem
follows by applying the Lumer-Phillips Theorem.

3. Internal delay: spectral analysis and stability

The first step is to prove that the spectrum of A not lying on the negative real
axis consists only of eigenvalues.

Lemma 3.1. It holds that σ(A)∩ (C\ (−∞, 0]) = σp(A) where σ(A) and σp(A)
denote the spectrum and point spectrum of A.

To prove this, we need the following generalization of the Lax-Milgram
Lemma. The proof of this lemma is contained in the proof of [5, Theorem 3].

Lemma 3.2 (Lax-Milgram-Fredholm). Let V and H be Hilbert spaces such that
the embedding V ⊂ H is compact and dense. Suppose that aV : V ×V → C and
aH : H×H → C are two bounded sesquilinear forms such that aV is V -coercive
and F : V → C is a continuous conjugate linear form. The equation

aH(v, u) + aV (v, u) = F (u), ∀u ∈ V (30)

has either a unique solution v ∈ V for all F ∈ V ′ or has a nontrivial solution
for F = 0.

Proof of Lemma 3.1. Using (3) it can be seen that λâ(λ) ∈ C \ (−∞, 0] and
infq≥0 |1 + qλâ(λ)| > 0 whenever λ ∈ C \ (−∞, 0], see [5] for details. We split
the sesquilinear form a as a = aH + aV where aV : H1(Ω;Cn)×H1(Ω;Cn)→ C
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and aH : L2(Ω;Cn) × L2(Ω;Cn) → C are the two bounded sesquilinear forms
defined by

aV (v, u) =

∫
Ω

(v · u+∇v · ∇u) dx+ λâ(λ)

∫
∂Ω

Γv · Γu dx

and

aH(v, u) = (λ(λ+ a0 + a1e
−λτ )− 1)

∫
Ω

v · u dx

respectively. According to the Lax-Milgram-Fredholm Lemma, the variational
equality

aH(v, u) + aV (v, u) = G(u) for all u ∈ H1(Ω;Cn) (31)

has either a unique solution v ∈ H1(Ω;Cn) for all G ∈ [H1(Ω;Cn)]′ or has
a nontrivial solution for G = 0. As in the proof of the range condition in
Theorem 2.1, it can be shown that the equation (λI−A)(v, w, z, ψ) = (f, g, h, φ),
for (v, w, z, ψ) ∈ D(A) and for a given (f, g, h, φ) ∈ X and λ ∈ C \ (−∞, 0], is
equivalent to (31). Therefore λ ∈ C \ (−∞, 0] is either in the resolvent set of A
or in the point spectrum of A.

The next step is to prove that under the condition 0 ≤ a1 ≤ a0, the gener-
ator A has no purely imaginary eigenvalues except for the origin.

Lemma 3.3. The kernel of A is given by kerA = {0} × Y × {0} × {0} where

Y = {w ∈ L2
div(Ω) : divw = 0, w · ν = 0}. (32)

If 0 ≤ a1 ≤ a0 then the operator A has no purely imaginary eigenvalues, in
other words, σp(A) ∩ iR = {0}.

Proof. Suppose that A(v, w, z, ψ) = 0. Then it follows that z(θ) = v in
H1(Ω;Cn) for all θ ∈ (−τ, 0), ∇v = 0 and ψ(s) = Γv

s
. Thus, v is constant.

Applying the generalized Green’s identity and the boundary conditions

(a0 + a1)

∫
Ω

|v|2 dx =

∫
Ω

divw · v dx

= −
〈∫ ∞

0

ψ(s) dµ(s),Γv

〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

−
∫

Ω

w · ∇v dx

= − â(0)

∫
∂Ω

|Γv|2 dx.

Since the measure µ is positive this implies that Γv = 0 and therefore v = 0.
Consequently, z= 0, ψ=0 and w∈Y. This proves that kerA⊂{0}×Y×{0}×{0}.
The other inclusion is trivial.

Now let us show the second statement. We prove it by contradiction. Sup-
pose that ir ∈ σp(A) for some r ∈ R \ {0}. Hence there exists a nonzero



Viscoelastic Wave Equations with Distributed or Boundary Delay 371

(v, w, z, ψ) ∈ D(A) such that

irv − divw + a0v + a1z(−τ) = 0 (33)

irw −∇v = 0 (34)

irz(θ)− zθ(θ) = 0 (35)

(ir + s)ψ(s)− Γv = 0. (36)

From (35) and the initial condition z(0) = v we have z(θ) = eirθv and plugging
this in (33) and using (34) we obtain

∆v = ir(ir + a0 + a1e
−irτ )v. (37)

The boundary conditions and (34) imply

∂v

∂ν
= irw · ν = −ir

∫ ∞
0

ψ(s) dµ(s) = −irâ(ir)Γv. (38)

Thus, v ∈ H2(Ω;Cn) from the regularity theory of elliptic equations [10]. Using
Green’s formula and (37)

ir(ir + a0 + a1e
−irτ )

∫
Ω

|v|2 dx = −irâ(ir)

∫
∂Ω

|Γv|2 dx−
∫

Ω

|∇v|2 dx. (39)

Note that =(irâ(ir)) 6= 0. Indeed, irâ(ir) = r2
∫∞

0
1

r2+s2
dµ(s)+ir

∫∞
0

s
r2+s2

dµ(s).
Taking the imaginary part of (39) we have

r(a0 + a1 cos(rτ))

=(irâ(ir))

∫
Ω

|v|2 +

∫
∂Ω

|Γv|2 = 0. (40)

Since a0 ≥ a1 ≥ 0 it holds that

r(a0 + a1 cos(rτ))

=(irâ(ir))
= (a0 + a1 cos(rτ))

(∫ ∞
0

s

r2 + s2
dµ(s)

)−1

≥ 0.

Hence (40) implies that Γv = 0 and consequently ∂v
∂ν

= 0 from (38). Thus
v ∈ H2

0 (Ω;Cn) and therefore v ∈ H2(Rn;Cn) by extending v by zero outside Ω.
Hence v ∈ H2(Rn;Cn) satisfies (37) which is a contradiction to the fact that
the Laplacian ∆ in Rn has an empty point spectrum. Therefore, we must have
ir /∈ σp(A) for any nonzero real number r. This completes the proof of the
lemma.

The following lemma states that (kerA)⊥ = L2(Ω;Cn) × Y ⊥ × L2
τ × L2

µ is
invariant under the resolvent (λI − A)−1 for all positive λ.

Lemma 3.4. For every λ > 0 we have (λI−A)−1((kerA)⊥) ⊂ (kerA)⊥∩D(A).
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Proof. According to the Helmholtz orthogonal decomposition [19] we know
that L2(Ω;Cn×n) = Y ⊕ Y ⊥ where Y is defined by (32) and its orthogonal
complement is given by Y ⊥ = {∇p ∈ L2(Ω;Cn×n) : p ∈ L2(Ω;Cn)}. Let
us show that if λ > 0, (f, g, h, φ) ∈ (kerA)⊥ and (v, w, z, ψ) ∈ D(A) sat-
isfy (λI − A)(v, w, z, ψ) = (f, g, h, φ) then w ∈ Y ⊥. Indeed, since g ∈ Y ⊥

we have g = ∇p for some p ∈ L2(Ω;Cn). Thus, according to (14) we have
w = ∇(λ−1(p+ v)) ∈ Y ⊥ since λ−1(p+ v) ∈ L2(Ω;Cn).

Our stabilization results are based on the following theorems. For their
proofs, we refer to [7, Corollary V.2.22] and [7, Theorem V.1.11], respectively.

Theorem 3.5 (Arendt-Batty-Lyubich-Vu). Let A be the generator of a bounded
strongly continuous semigroup on a reflexive Banach space X. If

1. σp(A) ∩ iR = ∅ and

2. σ(A) ∩ iR is countable

then (eAt)t≥0 is strongly stable, that is, eAtU → 0 in X for all U ∈ X.

Theorem 3.6 (Gearhart-Prüss). Let A be the generator of a bounded strongly
continuous semigroup T (t), t ≥ 0, on a Hilbert space X. Then T (t) is uniformly
exponentially stable if and only if {λ ∈ C : <λ > 0} ⊂ ρ(A) and

sup
<λ>0
‖(λI − A)−1‖L(X) <∞

where L(X) denotes the space of bounded linear operators in X into itself.

From Lemma 3.4 and [20, Proposition 2.4.3], the closed subspace (kerA)⊥

of X is invariant under the semigroup generated by A. Furthermore, the re-
stricted semigroup (Tp(t))t>0 defined by Tp(t) = T (t)|(kerA)⊥ is a strongly con-
tinuous semigroup on (kerA)⊥ whose generator is given by the part of A in
(kerA)⊥, that is, the operator Ap : D(Ap) → (kerA)⊥ defined by ApU = AU
for all U ∈ D(Ap), where D(Ap) = {U ∈ D(A) ∩ (kerA)⊥ : AU ∈ (kerA)⊥}.

In the following theorem, we denote by Z the space consisting of functions
u ∈ L2(Ω;Cn) such that ∇u ∈ Y ⊥ ∩ L2

div(Ω).

Theorem 3.7. Let Π : X → kerA be the orthogonal projection of X onto
kerA. If 0 ≤ a1 = a0 then for every U ∈ X we have

lim
t→∞
‖T (t)U −ΠU‖X = 0,

and in particular, E(t)→ 0 as t→∞ for every solution of (1) with initial data

(u0, u1, f) ∈ Z ×H1(Ω;Cn)×H1((−τ, 0);L2(Ω;Cn)). (41)

If 0 ≤ a1 < a0 then there exist constants M ≥ 1 and α > 0 such that

‖T (t)−Π‖L(X) ≤Me−αt for all t ≥ 0,

in particular, E(t) ≤ Me−αtE(0), for every solution of (1) with initial data
satisfying (41).
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Proof. Since T (t) = T (t)Π + T (t)(I −Π) = Π + Tp(t)(I −Π), it is enough to
prove that

lim
t→∞
‖Tp(t)U‖X = 0, for all U ∈ (kerA)⊥, (42)

if 0 ≤ a1 ≤ a0 and

‖Tp(t)U‖X ≤Me−αt‖U‖X , for all U ∈ (kerA)⊥, t > 0, (43)

in the case 0 ≤ a1 < a0. In both cases we have σ(Ap) ⊂ {λ ∈ C : <λ ≤ 0}
since Ap is dissipative. Using Lemma 3.1 and Lemma 3.3 it can be seen that
{λ ∈ C : <λ ≥ 0} ⊂ ρ(Ap), where ρ(Ap) is the resolvent set of Ap. The
asymptotic stability (42) now follows immediately from Theorem 3.5.

Now let us prove (43). Suppose this is not the case so that according to
Theorem 3.6 we have sup<λ>0 ‖(λI − Ap)

−1‖L(X) = ∞. Hence, by the uni-
form boundedness principle, there exists (v, w, z, ψ) ∈ X such that sup<λ>0

‖(λI − Ap)−1(v, w, z, ψ)‖X = ∞, and in particular, there exists a sequence of
complex numbers λm = bm + icm such that bm > 0 for every m and

lim
m→∞

‖(λmI − Ap)−1(v, w, z, ψ)‖X =∞. (44)

Note that, up to an extraction of a subsequence, we have |λm| → ∞. Indeed, if
there exists M > 0 such that |λm| ≤M for every m, then from the fact that the
resolvent is holomorphic in the compact set {λ ∈ C : <λ ≥ 0, |λ| ≤ M}, there
is a constant M0 > 0 such that ‖(λmI−Ap)−1(v, w, z, ψ)‖X ≤M0‖(v, w, z, ψ)‖X
for every m. This is a contradiction to (44).

Introduce the following unit vectors in D(Ap)

Ym = (vm, wm, zm, ψm) :=
(λmI − Ap)−1(v, w, z, ψ)

‖(λmI − Ap)−1(v, w, z, ψ)‖X

and define Um = (fm, gm, hm, φm) := ((bm + icm)I−Ap)Ym. It follows from (44)
that ‖Um‖X → 0.

The equation Um = ((bm + icm)I − Ap)Ym is equivalent to the system

fm = (bm + icm)vm − divwm + a0vm + a1zm(−τ) (45)

gm = (bm + icm)wm −∇vm (46)

hm(θ) = (bm + icm)zm(θ)− zmθ(θ) (47)

φm(s) = (bm + icm + s)ψm(s)− Γvm (48)

with the boundary conditions zm(0) = vm and wm · ν +
∫∞

0
ψm(s) dµ(s) = 0.

According to (47) we have

zm(θ) = e(bm+icm)θvm +

∫ 0

θ

e(bm+icm)(θ−ϑ)hm(ϑ) dϑ, θ ∈ (−τ, 0). (49)
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The dissipativity of Ap, see (6), implies that

<〈Um, Ym〉X = <((bm + icm)− 〈ApYm, Ym〉X)

≥ bm +

∫ ∞
0

∫
Ω

s|ψm|2 dx dµ(s)− k
∫

Ω

|vm|2 dx
(50)

where k = 1
2

(a21
a0
− a0

)
< 0. Since |〈Um, Ym〉| ≤ ‖Um‖X → 0 and all the terms

in (50) are nonnegative it follows that bm → 0 and

vm → 0 strongly in L2(Ω;Cn). (51)

Because |λm| → ∞, we must have |cm| → ∞ as m → ∞. From (49) and the
Cauchy-Schwarz inequality we have∫ 0

−τ

∫
Ω

|zm|2 dx dθ ≤ 2

(∫ 0

−τ
e2bmθ dθ

)∫
Ω

|vm|2 dx

+ 2

(∫ 0

−τ

∫ 0

θ

e2bm(θ−ϑ) dϑ dθ

)∫ 0

−τ

∫
Ω

|hm|2 dx dϑ.

(52)

Since bm is uniformly bounded in m, (51) and (52) imply that

zm → 0 strongly in L2
τ . (53)

Taking the inner product of (45)−(48) with vm, wm, zm and ψm in L2(Ω;Cn),
L2(Ω;Cn×n), L2

τ and L2
µ, respectively, we obtain∫

Ω

fm ·vm dx = (a0+bm+icm)

∫
Ω

|vm|2 dx+

∫
Ω

wm ·∇vm dx

+

∫ ∞
0

∫
∂Ω

ψm ·Γvm dx dµ(s) + a1

∫
Ω

zm(−τ)·vm dx (54)∫
Ω

gm ·wm dx = (bm+icm)

∫
Ω

|wm|2 dx−
∫

Ω

∇vm ·wm dx (55)∫ 0

−τ

∫
Ω

hm ·zm dx dθ = (bm+icm)

∫ 0

−τ

∫
Ω

|zm|2 dx dθ (56)

−
∫ 0

−τ

∫
Ω

zmθ ·zm dx dθ∫ ∞
0

∫
∂Ω

φm ·ψm dx dµ(s) = (bm+icm)

∫ ∞
0

∫
∂Ω

|ψm|2 dx dµ(s)

+

∫ ∞
0

∫
∂Ω

s|ψm|2 dx dµ(s) (57)

−
∫ ∞

0

∫
∂Ω

Γvm ·ψm dx dµ(s).
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All of these terms tend to 0 as m tends to infinity. Dividing (56) by cm, taking
the imaginary part and then passing to the limit we obtain∫ 0

−τ

∫
Ω

|zm|2 dx dθ − 1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0.

Invoking (53) we have

1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0. (58)

Taking the real part of (56) and letting m→∞ we have bm
∫ 0

−τ

∫
Ω
|zm|2 dx dθ−∫

Ω
|vm|2 dx +

∫
Ω
|zm(−τ)|2 dx→ 0. Using (51) and (53) the latter limit implies

that
zm(−τ)→ 0 strongly in L2(Ω;Cn). (59)

Adding (55)–(57) and then subtracting (54) we obatin

%m := (bm + icm)

(
1− 2

∫
Ω

|vm|2 dx

)
− a0

∫
Ω

|vm|2 dx− a1

∫
Ω

zm(−τ) · vm dx

+

∫ ∞
0

∫
Ω

s|ψm|2 dx dµ(s)−
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ

− 2<
∫ ∞

0

∫
∂Ω

ψm · Γvm dx dµ(s)− 2<
∫

Ω

wm · ∇vm dx

where %m → 0 as m → ∞. Dividing by cm, taking the imaginary part and
passing to the limit yield

1− 2

∫
Ω

|vm|2 dx− a1

cm
=
∫

Ω

zm(−τ) · vm dx− 1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0.

From this result together with (51), (58), and (59) we obtain the contradiction
1 = 0. Therefore (43) must hold. This completes the proof of the theorem.

4. Boundary delay: stability via the energy method

In this section we use the energy method to prove the exponential stability of
the solution of (4) under the condition â(0) < c. We refer to [12] for a related
problem. For this purpose, we recall the total energy

E(t) = Ew(t) +
1

2

∫ ∞
0

∫
ΓN

∣∣∣∣∫ t

0

e−s(t−r)ut(r − τ, x) dr

∣∣∣∣2dx dµ(s)

+
c

2

∫ 0

−τ

∫
ΓN

|ut(t+ θ, x)|2 dx dθ.

The first step is to prove the following decay property of the energy.
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Theorem 4.1. Suppose that â(0) < c. Every solution of (4) with initial data
in D(Ã) has a decreasing energy. More precisely,

d

dt
E(t) ≤ −1

2
(c− â(0))D(t), t > 0, (60)

where

D(t) =

∫
ΓN

|ut(t, x)|2 + |ut(t− τ, x)|2 dx.

Proof. Taking the derivative of E and defining ψ by (18) we have

d

dt
E(t) =

∫
Ω

(ututt +∇u · ∇ut) dx−
∫ ∞

0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s)

+

∫ ∞
0

∫
ΓN

ψ(t, s, x)ut(t− τ, x) dx dµ(s) (61)

+ c

∫ 0

−τ

∫
ΓN

ut(t+ θ, x)utt(t+ θ, x) dx dθ.

Applying Green’s identity and Young’s inequality to the first integral on the
right hand side of (61) we obtain the estimate∫

Ω

(ututt +∇u · ∇ut) dx =

∫
ΓN

ut
∂u

∂ν
dx

= −
∫

ΓN

ut(t, x)

(∫ ∞
0

ψ(t, s, x) dµ(s) + cut(t, x)

)
dx

≤ − c
∫

ΓN

|ut(t, x)|2 dx+
1

2

∫
ΓN

∫ ∞
0

(
1

s
|ut(t, x)|2 + s|ψ(t, s, x)|2

)
dµ(s) dx

= −
(
c− â(0)

2

)∫
ΓN

|ut(t, x)|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s). (62)

On the other hand, we also have∫ ∞
0

∫
ΓN

ψ(t, s, x)ut(t− τ, x) dx dµ(s)

≤ â(0)

2

∫
ΓN

|ut(t− τ, x)|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s).

(63)

Since ut(t + θ, x) = uθ(t + θ, x) and utt(t + θ, x) = uθθ(t + θ, x) we have, by
Fubini’s Theorem,∫ 0

−τ

∫
ΓN

ut(t+θ, x)utt(t+θ, x) dx dθ =
1

2

∫
ΓN

(|ut(t, x)|2−|ut(t−τ, x)|2) dx. (64)

Combining (61)–(64) proves the decay property (60).
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Using Theorem 4.1 and a standard density argument, we have the following
a priori trace regularity on ut and ut(· − τ).

Corollary 4.2. The map U0 7→ (ut, ut(· − τ)) : D(Ã)→ L2(0, T ;L2(ΓN)2) has
a unique continuous extension to X̃.

The next step is the following inverse observability estimate as in [15].

Theorem 4.3. There exists T ∗ > 0 such that for all T > T ∗ there is a constant
CT > 0 satisfying

E(0) ≤ CT

∫ T

0

D(t) dt. (65)

Proof. According to the observability estimate in [13, Proposition 6.3] there is
T̃ > 0 such that for all T > T̃ there exists a constant cT > 0 such that

Ew(0) ≤ cT

∫ T

0

∫
ΓN

( ∣∣∣∣∂u∂ν
∣∣∣∣2+ |ut|2

)
dx dt+ cT‖u‖2

L2(0,T ;H
1
2+ε(Ω))

(66)

for any ε > 0. For s ≥ 0, we have the embedding

Hs((0, T )× Ω) = L2(0, T ;Hs(Ω)) ∩Hs(0, T ;L2(Ω)) ⊂ L2(0, T ;Hs(Ω))

according to [14, Remark 2.2, pp. 6–7] and the classical extension theorems for
Sobolev spaces. Thus, there exists a constant c̃T > 0 independent of u such
that

‖u‖
L2(0,T ;H

1
2+ε(Ω))

≤ c̃T‖u‖H 1
2+ε((0,T )×Ω)

. (67)

The boundary condition on ΓN implies that∫ T

0

∫
ΓN

∣∣∣∣∂u∂ν
∣∣∣∣2dx dt

=

∫ T

0

∫
ΓN

∣∣∣∣ ∫ ∞
0

ψ(t, s, x) dµ(s) + cut(t, x)

∣∣∣∣2dx dt

≤ 2

∫ T

0

∫
ΓN

∣∣∣∣ ∫ ∞
0

ψ(s, t, x) dµ(s)

∣∣∣∣2dx dt+ 2c2

∫ T

0

∫
ΓN

|ut(t, x)|2 dx dt.

(68)

By Hölder’s inequality it holds that∫ T

0

∫
ΓN

∣∣∣∣∫ ∞
0

ψ(s, t, x) dµ(s)

∣∣∣∣2dx dt ≤ â(0)

∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt. (69)

Multiplying the equation ψt(t, s, x) = −sψ(t, s, x) + ut(t − τ, x) by ψ(t, s, x),
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integrating over (0, T )× (0,∞)× ΓN and using ψ(0, s, x) = 0 we have

1

2

∫ ∞
0

∫
ΓN

|ψ(T, s, x)|2 dx dµ(s)

=

∫ T

0

∫ ∞
0

∫
ΓN

ψt(t, s, x)ψ(t, s, x) dx dµ(s) dt

=

∫ T

0

∫ ∞
0

∫
ΓN

(−s|ψ(s, t, x)|2 + ut(t− τ, x)ψ(t, s, x)) dx dµ(s) dt

≤
∫ T

0

∫ ∞
0

∫
ΓN

(
−s

2
|ψ(s, t, x)|2 +

1

2s
|ut(t− τ, x)|2

)
dx dµ(s) dt

= −1

2

∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt+
â(0)

2

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt.

Therefore it follows that∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt ≤ â(0)

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt. (70)

The change of variable t = θ + τ implies that

Ed(0) =
c

2

∫ 0

−τ

∫
ΓN

|ut(θ, x)|2 dx dθ =
c

2

∫ τ

0

∫
ΓN

|ut(t− τ, x)|2 dx dt.

In particular, if T > τ then

Ed(0) ≤ c

2

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt ≤ c

2

∫ T

0

D(t) dt. (71)

Taking T ∗ = max(T̃ , τ) it follows from (66)–(71) that

E(0) = Ew(0) + Ed(0) ≤ CT

∫ T

0

D(t) dt+ CT‖u‖2

H
1
2+ε((0,T )×Ω)

(72)

for all T > T ∗ and for some constant CT > 0. To finish the proof of the theorem,
we use a standard compactness-uniqueness argument as in [15, Proposition 4.2]
to prove that (65) holds.

Suppose in the contrary that there is a sequence of initial data
U0n = (u0n, v0n, z0n, 0) ∈ D(Ã) such that

En(0) > n

∫ T

0

Dn(t) dt (73)

where En and Dn are the respective energy and dissipation terms of the solution
(un, vn, zn, ψn) with data U0n. By normalization, we can assume that

‖un‖H 1
2+ε((0,T )×Ω)

= 1. (74)
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for each n. As a consequence, we obtain from (72) that

En(0) ≤ CT

∫ T

0

Dn(t) dt+ CT . (75)

Combining (73) and (75) yields∫ T

0

Dn(t) dt <
CT

n− CT
(76)

provided that n > CT . On the other hand, using the fact that En is decreasing

‖un‖2
H1((0,T )×Ω) =

∫ T

0

∫
Ω

|unt|2 + |∇un|2 dx dt ≤ TEn(0) ≤ TCT

(
CT

n− cT
+ 1

)
.

The last inequality implies that the sequence (un)n is bounded in H1((0, T )×Ω).

By the compactness of the embedding H1((0, T )× Ω) ⊂ H
1
2

+ε((0, T )× Ω), for

ε ∈ (0, 1
2
), we have up to a subsequence un → u in H

1
2

+ε((0, T ) × Ω). Hence,
from (74)

‖u‖
H

1
2+ε((0,T )×Ω)

= 1. (77)

Since En is uniformly bounded on [0, T ], we have un → u and unt → ut
weakly-star in L∞(0, T ;H1

ΓD
(Ω)) and L∞(0, T ;L2(Ω)), respectively. The in-

equality (76) yields the convergence unt → 0 in L2((0, T ) × ΓN). Because
a ? unt(· − τ) =

∫∞
0
ψn(s, t, x) dµ(s), we obtain from (69), (70) and (76) that

a ? unt(· − τ)→ 0 in L2((0, T )×ΓN). Thus ∂u
∂ν

= 0 on ΓN , and therefore v = ut
is a distributional solution of the over-determined wave equation

vtt −∆v = 0 in Ω, v = 0 on ∂Ω,
∂u

∂ν
= 0 on ΓN .

By the Holmgren’s uniqueness principle, v must be identically zero. This means
that u must be independent of t and thus it satisfies the elliptic problem

∆u = 0 in Ω, u = 0 on ΓD,
∂u

∂ν
= 0 on ΓN .

whose solution is given by u = 0. This is a contradiction to (77). Therefore, (65)
must be true and this completes the proof of the theorem.

From the proof of the previous theorem, one can obtain the following trace
regularity.

Corollary 4.4. The map U0 7→ a ? ut(· − τ) : D(Ã)→ L2(0, T ;L2(ΓN)) admits
a unique continuous extension to X̃. As a consequence, the map U0 7→ ∂u

∂ν
:

D(Ã)→ L2(0, T ;L2(ΓN)) admits a unique continuous extension to X̃.
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Proof. The first statement follows from (69), (70) and Corollary 4.2. The second
part follows from the first one together with the estimates (68)–(70).

Theorem 4.5. Suppose that â(0) < c. Then there exist M ≥ 1 and α > 0 such
that for every solution of (4) we have

E(t) ≤Me−αtE(0), t > 0. (78)

Proof. Let U0 ∈ D(Ã). Using Theorem 4.1 and Theorem 4.3 one obtains

E(T ) ≤ E(0) ≤ CT

∫ T

0

D(t) dt ≤ 2CT
c− â(0)

(E(0)− E(T ))

for every T > T ∗. Therefore, for T > T ∗ it holds that

E(T ) ≤ 2CT
2CT + c− â(0)

E(0). (79)

Since 2CT (2CT + c − â(0))−1 < 1, a standard argument shows that (79) im-
plies (78).
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