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A Modification of the Lipschitz Condition
in the Newton-Kantorovich Theorem
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Abstract. We analyse the semilocal convergence of Newton’s method in Banach
spaces under a modification of the classic Lipschitz condition on the first derivative
of the operator involved in Kantorovich’s theory. For this, we use a technique based on
recurrence relations instead of the well-known majorant principle of Kantorovich. We
illustrate this analysis with an application where a Hammerstein nonlinear integral
equation of the second kind is involved.
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1. Introduction

Newton’s method is the most used iterative method to solve nonlinear operator
equations F (x) = 0 in a Banach space. In this case, the equation F (x) = 0
can represent a large number of problems: an ordinary differential equation, a
boundary value problem, an integral equation, a problem of variational calculus,
etc. So, we consider that F is a nonlinear operator, F : Ω ⊆ X −→ Y , defined
on a non-empty open convex domain Ω of a Banach space X with values in a
Banach space Y .

It is well-known that Newton’s method is defined by the following algorithm:

x0 given in Ω, xn+1 = xn − [F ′(xn)]
−1F (xn), n = 0, 1, 2 . . . (1)

In this work, we focus our attention on the analysis of the semilocal convergence
of Newton’s method. The best known semilocal convergence result for Newton’s
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method is the Newton-Kantorovich theorem [9], whose best known variant is the
result given by Ortega in [11], which is also known as the Newton-Kantorovich
theorem and is established under the following conditions:

(A1) There exists Γ0 = [F ′(x0)]
−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤ β

and ‖Γ0F (x0)‖ ≤ η, where L(Y,X) is the set of bounded linear operators
from Y to X,

(A2) There exists a constant L ≥ 0 such that ‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for
x, y ∈ Ω,

(A3) Lβη ≤ 1
2
and B(x0, t

∗) ⊂ Ω, where t∗ = 1−
√
1−2Lβη
Lβ

is the smallest positive

zero of the polynomial p(t) = L
2
t2 − t

β
+ η

β
.

Theorem 1.1 (The Newton-Kantorovich theorem). Let F : Ω ⊆ X −→ Y

be a continuously differentiable operator defined on a non-empty open convex

domain Ω of a Banach space X with values in a Banach space Y . Suppose

that conditions (A1)–(A3) are satisfied. Then Newton’s sequence, given by (1),
converges to a solution x∗ of the equation F (x) = 0, starting at x0, and xn, x

∗ ∈
B(x0, t∗), for all n = 0, 1, 2, . . . Moreover, if Lβη < 1

2
, x∗ is the unique solution

of F (x) = 0 in B(x0, t
∗∗) ∩ Ω, where t∗∗ = 1+

√
1−2Lβη
Lβ

, and if Lβη = 1
2
, x∗ is

unique in B(x0, t∗). Furthermore,

‖xn+1 − xn‖ ≤ tn+1 − tn and ‖x∗ − xn‖ ≤ t∗ − tn, for all 0, 1, 2, . . . ,

where tn = tn−1 −
p(tn−1)
p′(tn−1)

and n ∈ N.

Observe that, as in all results of semilocal convergence (see for example
[1, 3, 5, 6]), there are conditions on the operator involved (condition (A2)), the
starting point (condition (A1)) and the relationship between both (condition
(A3)). If we pay special attention to condition (A3), we observe that if the
value of the parameter L is large, this implies that the starting point x0 must
be very close to a solution of the equation F (x) = 0, so that condition (A3) is
satisfied.

The main aim of this paper is to establish, from a modification of condition
(A2), a new semilocal convergence result for Newton’s method, which modifies
the domain of starting points that is obtained from the Newton-Kantorovich
theorem. In addition, in two particular cases, our new semilocal convergence
result is reduced to the Newton-Kantorovich theorem and the semilocal conver-
gence result given in [8] for operators F ′ Hölder continuous in Ω.

This paper is organized as follows. In Section 2, we study the difficulties
presented by the fulfilment of conditions (A1)–(A3) when considering certain
operators F and propose a consistent alternative to condition (A2). Next, in
Section 3, we prove the semilocal convergence of Newton’s method under the
new convergence conditions and using a technique based on recurrence rela-
tions. Some comments on the previous analysis are given in Section 4. Finally,
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in Section 5, we present a study on certain nonlinear Hammerstein integral
equations of the second kind, where domains of existence and uniqueness of
solution are given, a graphical analysis is done for a particular equation and so-
lutions are approximated by Newton’s method when the Newton-Kantorovich
theorem cannot guarantee the semilocal convergence of the method.

Throughout the paper we denote B(x, ̺) = {y ∈ X; ‖y − x‖ ≤ ̺} and
B(x, ̺) = {y ∈ X; ‖y − x‖ < ̺}.

2. Motivation

We consider nonlinear Hammerstein integral equations of the second kind of
the type [7]

x(s) = u(s) + λ

∫ b

a

G(s, t) x(t)mdt, s ∈ [a, b], λ ∈ R, m ∈ N, (2)

where u is a continuous function and the kernel G is continuous and nonnegative
in [a, b]× [a, b].

Note that if G(s, t) is the Green function in [a, b]× [a, b], then equation (2)
is equivalent to the following boundary value problem:

{
x′′(t) = −λx(t)m,

x(a) = υ(a), x(b) = υ(b).

Observe that solving equation (2) is equivalent to solve F (x) = 0, where
F : C([a, b]) −→ C([a, b]) and

[F (x)](s) = x(s)− u(s)− λ

∫ b

a

G(s, t) x(t)mdt, λ ∈ R, m ∈ N. (3)

In addition, we have

[F ′(x)y](s) = y(s)−mλ

∫ b

a

G(s, t)x(t)m−1y(t) dt,

[(F ′(x)− F ′(y))z](s) = −mλ

∫ b

a

G(s, t)
(
(x(t)m−1 − y(t)m−1

)
z(t) dt.

(4)

As a consequence,

‖F ′(x)− F ′(y)‖

≤ m|λ|ℓ
(
‖x‖m−2 + ‖x‖m−3‖y‖+ · · ·+ ‖x‖‖y‖m−3 + ‖y‖m−2

)
‖x− y‖

(5)

where the max-norm is used and ℓ = max[a,b]
∫ b

a
|G(s, t)| dt.
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Obviously, condition (A2) of the Newton-Kantorovich theorem is not sat-
isfied in the previous situation if we cannot locate in advance a solution of the
equation F (x) = 0 in some domain of the form Ω = B(ν, ρ) with ν ∈ C([a, b])
and ρ > 0, where ‖x‖, ‖y‖ ≤ ‖ν‖+ρ. Then, we can only calculate the constant L
appearing in the Newton-Kantorovich theorem, L = m(m−1)|λ|ℓ (‖ν‖+ ρ)m−2,
if we can first locate a solution of F (x) = 0.

In addition, it is clear the fact that the condition Lβη ≤ 1
2
is satisfied

depends on the value of ρ, which leads us to locate a starting point x0 very
close to the solution (this is not easy).

On the other hand, in the worst case, if we cannot locate previously a
solution of the equation, the mentioned difficulty cannot be solved.

To avoid the previous two problems, we consider in this work the following
condition:

‖F ′(x)− F ′(y)‖ ≤ ω(‖x‖, ‖y‖) ‖x− y‖p, x, y ∈ Ω, p ∈ [0, 1], (6)

where ω : R+ × R+ −→ R+ is a nondecreasing continuous function in both
arguments and such that ω(0, 0) ≥ 0. Notice that we include the parameter p
to be considered operators with Hölder continuous Fréchet derivative; namely,
if ω(s, t) = K, F ′ is (K, p)-Hölder continuous in Ω.

From condition (6), we prove the semilocal convergence of Newton’s method
by using an alternative technique to the well-known majorant principle used by
Kantorovich [9] and Ortega [11]. This technique is based on recurrence rela-
tions and requires, from the starting point x0, that Newton’s sequence {xn} is
included in a ball B(x0, R) ⊂ Ω, R > 0, to be determined. The conditions of
our semilocal convergence result do not depend directly on the domain Ω. This
result pays attention to the existence of the value R, which depends on the start-
ing point x0, but it avoids the difficulties set out by the Newton-Kantorovich
theorem.

We analyse all the above mentioned with examples that clarify the different
possibilities that may occur. In addition, we observe the modification of the
domain of starting points given by the Newton-Kantorovich theorem that we
obtain from our semilocal convergence result.

3. Convergence analysis

In this section, we prove the semilocal convergence of Newton’s method under
condition (6). First, we establish a system of recurrence relations, from the real
parameters that are introduced under some conditions for the pair (F, x0), where
a sequence of positive real numbers is involved. After that, we can guarantee
the semilocal convergence of Newton’s method in the Banach space X.



A Modification of the Lipschitz Condition 313

3.1. Recurrence relations. We suppose:

(C1) There exists Γ0 = [F ′(x0)]
−1 ∈ L(Y,X), for some x0 ∈ Ω, with ‖Γ0‖ ≤ β

and ‖Γ0F (x0)‖ ≤ η,

(C2) There exists a function ω : R+ ×R+ −→ R+ such that ‖F ′(x)−F ′(y)‖ ≤
ω(‖x‖, ‖y‖) ‖x − y‖p, x, y ∈ Ω, p ∈ (0, 1], nondecreasing continuous in
both arguments and ω(0, 0) ≥ 0.

In addition, we also suppose that the equation

ϕ(t) = ((1 + p)− (2 + p)Q(t)βηp) t− (1 + p) (1−Q(t)βηp) η = 0,

where Q(t) = ω(‖x0‖+t, ‖x0‖+t), has at least one positive real root and denote
the smallest one by R.

From the above, we denote a0 = Q(R)βηp and define the scalar sequence:

an+1 = anf(an)
1+pg(an)

p, n = 0, 1, 2, . . . , (7)

where

f(x) =
1

1− x
and g(x) =

x

1 + p
. (8)

Note that an obvious problem results if a0 = 0, so that we only consider a0 > 0.
Next, we prove the following recurrence relations for sequences (7) and {xn}:

‖Γ1‖ = ‖[F ′(x1)]
−1‖ ≤ f(a0)‖Γ0‖, (9)

‖x2 − x1‖ ≤ f(a0)g(a0)‖x1 − x0‖, (10)

Q(R)‖Γ1‖‖x2 − x1‖
p ≤ a1, (11)

provided that
x1 ∈ Ω and a0 < 1. (12)

If x1 ∈ Ω, then ‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F

′(x0)− F ′(x1)‖ ≤ β ω(‖x0‖, ‖x1‖)
‖x1−x0‖

p ≤ Q(R)βηp = a0 < 1. In addition, by the Banach lemma on invertible
operators, it follows that there exists the operator Γ1 and

‖Γ1‖ ≤
‖Γ0‖

1− ‖I − Γ0F ′(x1)‖
≤ f(a0)‖Γ0‖.

Next, from Taylor’s series and the sequence {xn}, we have

‖F (x1)‖ =

∥∥∥∥
∫ 1

0

(F ′(x0 + τ(x1 − x0))− F ′(x0))(x1 − x0) dτ

∥∥∥∥

≤

(∫ 1

0

ω(‖x0 + τ(x1 − x0)‖, ‖x0‖)) τ
pdt

)
‖x1 − x0‖

1+p

≤
Q(R)ηp

1 + p
‖x1 − x0‖.
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As a consequence,

‖x2 − x1‖ ≤ ‖Γ1‖‖F (x1)‖ ≤ f(a0)g(a0)‖x1 − x0‖,

Q(R)‖Γ1‖‖x2 − x1‖
p ≤ a0f(a0)

1+pg(a0)
p = a1.

Moreover, if f(a0)g(a0) < 1, then

‖x2 − x0‖ ≤ (1 + f(a0)g(a0))‖x1 − x0‖ <
(1 + p)(1− a0)

(1 + p)− (2 + p)a0
η = R. (13)

Later, we generalize the previous recurrence relations to every point of the
sequence {xn}, so that we can guarantee that {xn} is a Cauchy sequence from
them. For this, we first analyse the sequence {an} in the next section.

3.2. Analysis of the scalar sequence. Now, we analyse the scalar sequence
defined in (7) in order to prove later the semilocal convergence of the sequence
{xn} in the Banach space X. For this, it suffices to see that {xn} is a Cauchy
sequence and (12) is true for all xn and an−1 with n ≥ 2. First, we give a
technical lemma whose proof is trivial.

Lemma 3.1. Let f and g be the two real functions given in (8). Then

(a) f is increasing and f(x) > 1 in (0, 1),

(b) g is increasing,

(c) for γ ∈ (0, 1), we have f(γx) < f(x) if x ∈ [0, 1) and g(γx) = γg(x).

Then, we prove some properties of scalar sequence (7). For this, we consider
the auxiliary function

h(x) = (1 + p)p(1− x)1+p − xp, p ∈ (0, 1], (14)

which has only one zero ξ in the interval (0, 1
2
], since h(0) = (1 + p)p > 0,

h(1
2
) ≤ 0 and h′(x) < 0 in (0, 1

2
]. Notice that function (14) arises from the

analysis of the value f(a0)
1+pg(a0)

p =
a
p
0

(1+p)p(1−a0)1+p .

Lemma 3.2. Let f and g be the two scalar functions defined in (8). If a0∈(0, ξ),
then

(a) f(a0)
1+pg(a0)

p < 1,

(b) the sequence {an} is strictly decreasing,

(c) an < 1, for all n ≥ 0.

If a0 = ξ, then an = a0 < 1 for all n ≥ 1.

Proof. We first consider the case a0 ∈ (0, ξ). Then, item (a) follows with strict
inequality, since h(a0) > 0. Item (b) is proved by mathematical induction on n.
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As f(a0)
1+pg(a0)

p < 1, we have a1 < a0. If we now suppose that aj < aj−1, for
j = 1, 2, . . . , n, then

an+1 = anf(an)
1+pg(an)

p < anf(a0)
1+pg(a0)

p < an,

since f and g are increasing. As a result, the sequence {an} is strictly decreasing.
To see item (c), we have an < a0 < 1, for all n ≥ 0, from the fact that the
sequence {an} is strictly decreasing and a0 ∈ (0, ξ).

Furthermore, if a0 = ξ, then f(a0)
1+pg(a0)

p = 1 and, consequently, an =
a0 = ξ < 1, for all n ≥ 0.

Lemma 3.3. Let f and g be the two scalar functions defined in (8). If a0 ∈
(0, ξ), we define γ = a1

a0
, and then

(a) an < γ(1+p)n−1
an−1 and an < γ

(1+p)n−1
p a0, for all n ≥ 2,

(b) f(an)g(an) < γ
(1+p)n−1

p f(a0)g(a0) =
γ

(1+p)n

p

f(a0)
1
p

, for all n ≥ 1.

If a0 = ξ, then f(an)g(an) = f(a0)g(a0) = f(a0)
− 1

p , for all n ≥ 1.

Proof. We only prove the case a0 ∈ (0, ξ), since the case a0 = ξ follows analo-
gously to the former. The proof of item (a) follows by an induction process. If
n = 2, by item (b) of Lemma 3.1, we have

a2 = a1f(a1)
1+pg(a1)

p = γa0f(γa0)
1+pg(γa0)

p < γ1+pa1 = γ2+pa0.

We now suppose that

an−1 < γ(1+p)n−2

an−2 < γ
(1+p)n−1

−1
p a0.

Then, by the same reasoning,

an = an−1f(an−1)
1+pg(an−1)

p

< γ(1+p)n−2

an−2f
(
γ(1+p)n−2

an−2

)1+p

g
(
γ(1+p)n−2

an−2

)p

< γ(1+p)n−1

an−1

< γ
(1+p)n−1

p a0.

To prove item (b), we observe, for n ≥ 1,

f(an)g(an) < f
(
γ

(1+p)n−1
p a0

)
g
(
γ

(1+p)n−1
p a0

)
< γ

(1+p)n−1
p f(a0)g(a0) =

γ
(1+p)n

p

f(a0)
1
p

.

The proof is complete.
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3.3. A semilocal convergence result. Notice that the equation ϕ(t) = 0
arises from imposing that all the points xn are in the ball B(x0, R). In addition,
we consider the following condition:

(C3) a0 = Q(R)βηp ∈ (0, ξ], where R is the smallest positive real root of
ϕ(t) = 0, ξ is the unique zero of function (14) in the interval (0, 1

2
],

p ∈ (0, 1], and B(x0, R) ⊂ Ω.

We are now ready to prove the semilocal convergence of Newton’s method
when is applied to differentiable operators F such that F ′ satisfies a condition
of type (6).

Theorem 3.4. Let X and Y be two Banach spaces and F : Ω ⊆ X −→ Y

a continuously differentiable operator on a nonempty open convex domain Ω.
Suppose that (C1)–(C3) are satisfied. Then, Newton’s sequence {xn} converges

to a solution x∗ of F (x) = 0 starting at x0 and xn, x
∗ ∈ B(x0, R). Moreover, if

the equation

β ω(‖x0‖, ‖x0‖+ t)
(
t1+p −R1+p

)
= 1 + p

has at least one positive real root and the smallest positive one is denoted by r,

then x∗ is unique in B (x0, r)∩Ω. Furthermore, the sequence {xn} has R-order

of convergence at least 1 + p if a0 ∈ (0, ξ), or at least one if a0 = ξ, and

‖x∗ − xn‖ ≤

(
γ

(1+p)n−1

p2

)
∆n

1− γ
(1+p)n

p ∆
η, n ≥ 0, (15)

where γ = a1
a0

and ∆ = (1− a0)
1
p .

Proof. We start proving the case a0 ∈ (0, ξ). First, we prove that the following
four items are satisfied, for n ≥ 2, by the sequence {xn}:

(I) There exists Γn−1 = [F ′(xn−1)]
−1 and ‖Γn−1‖ ≤ f(an−2)‖Γn−2‖,

(II) ‖xn − xn−1‖ ≤ f(an−2)g(an−2)‖xn−1 − xn−2‖,

(III) Q(R)‖Γn−1‖‖xn − xn−1‖
p ≤ an−1,

(IV) xn ∈ Ω.

First, as η < R, then x1 ∈ Ω. Then, from (9), (10), (11) and (13), we have
that the previous items hold for n = 2. If we now suppose that (I)–(III) are true
for some n−1, it follows by analogy to the case where n = 2, by induction, that
(I)–(III) also hold for n. Notice that an < 1 for all n ≥ 0. Now, we prove (IV).
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Observe

‖xn − x0‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖x1 − x0‖

(II)
≤

(
1 +

n−2∑

i=0

(
i∏

j=0

f(aj)g(aj)

))
‖x1 − x0‖

<

(
1 +

n−2∑

i=0

(
i∏

j=0

f(a0)g(a0)γ
(1+p)j−1

p

))
‖x1 − x0‖ (Lemma 3.3(b))

=

(
1 +

n−2∑

i=0

(
i∏

j=0

(
γ

(1+p)j

p ∆

)))
‖x1 − x0‖

=

(
1 +

n−2∑

i=0

(
γ

(1+p)1+i
−1

p2 ∆1+i

))
‖x1 − x0‖,

where γ = a1
a0

< 1 and ∆ = f(a0)g(a0)

γ
1
p

= 1

f(a0)
1
p

= (1 − a0)
1
p < 1. By Bernoulli’s

inequality, it follows γ
(1+p)1+i

−1

p2 = γ
1
pγ

1+p

p2
((1+p)i−1)

≤ γ
1
pγ

1+p

p
i
, and therefore

‖xn − x0‖ <

(
1 + γ

1
p∆

n−2∑

i=0

γ
1+p

p
i∆i

)
‖x1 − x0‖ <

η

1− γ
1
p∆

= R,

so that xn ∈ B(x0, R). As B(x0, R) ⊂ Ω, then xn ∈ Ω, for all n ≥ 0. Note that
the conditions required in (12) are now satisfied for all xn and an−1, with n ≥ 2.

Second, we prove that {xn} is a Cauchy sequence. For this, we follow an
analogous procedure to the latter. So, for m ≥ 1 and n ≥ 1, we have

‖xn+m − xn‖ ≤

n+m−1∑

i=n

‖xi+1 − xi‖

(II)
≤

n+m−2∑

i=n−1

(
i∏

j=0

f(aj)g(aj)

)
‖x1 − x0‖

<

n+m−2∑

i=n−1

(
i∏

j=0

f(a0)g(a0) γ
(1+p)j−1

p

)
‖x1 − x0‖ (Lemma 3.3(b))

=
n+m−2∑

i=n−1

(
i∏

j=0

(
γ

(1+p)j

p ∆

))
‖x1 − x0‖

=
m−1∑

i=0

(
γ

(1+p)n+i
−1

p2 ∆n+i

)
‖x1 − x0‖.
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Taking into account Bernoulli’s inequality, it follows

γ
(1+p)n+i

−1

p2 = γ
(1+p)n−1

p2 γ
(1+p)n

p2
((1+p)i−1)

≤ γ
(1+p)n−1

p2 γ
(1+p)n

p
i
,

so that

‖xn+m − xn‖ <

(
m−1∑

i=0

(
γ

(1+p)n

p
i∆i
))

γ
(1+p)n−1

p2 ∆n‖x1 − x0‖

<
1−

(
γ

(1+p)n

p ∆
)m

1− γ
(1+p)n

p ∆
γ

(1+p)n−1

p2 ∆nη.

(16)

Thus, {xn} is a Cauchy sequence.
Third, we prove that x∗ is a solution of equation F (x)=0. As ‖ΓnF (xn)‖→0

when n → ∞, if we take into account that ‖F (xn)‖ ≤ ‖F ′(xn)‖‖ΓnF (xn)‖ and
{‖F ′(xn)‖} is bounded, since

‖F ′(xn)‖≤‖F ′(x0)‖+ω(‖x0‖, ‖xn‖)‖xn−x0‖
p<‖F ′(x0)‖+ω(‖x0‖, ‖x0‖+R)Rp,

it follows that ‖F (xn)‖ → 0 when n → ∞. As a consequence, we obtain
F (x∗) = 0 by the continuity of F in B(x0, R).

To prove the uniqueness of the solution x∗, we suppose that y∗ is another
solution of F (x) = 0 in B(x0, r) ∩ Ω. Then, from the approximation

0 = F (y∗)− F (x∗) =

∫ y∗

x∗

F ′(x)dx =

∫ 1

0

F ′(x∗ + τ(y∗ − x∗)) dτ(y∗ − x∗),

it follows that x∗ = y∗, provided that the operator
∫ 1

0
F ′(x∗+τ(y∗−x∗)) dτ is in-

vertible. To prove this, we prove equivalently that there exists the operator J−1,

where J = Γ0

∫ 1

0
F ′(x∗ + τ(y∗ − x∗)) dτ . Indeed, as

‖I − J‖ ≤ ‖Γ0‖

∫ 1

0

‖F ′(x0)− F ′(x∗ + τ(y∗ − x∗))‖ dτ

≤ β

∫ 1

0

ω(‖x0‖, ‖x
∗ + τ(y∗ − x∗)‖) ‖x0 − (x∗ + τ(y∗ − x∗))‖pdτ

≤ β ω(‖x0‖, ‖x0‖+ r)

∫ 1

0

((1− τ)‖x∗ − x0‖+ τ‖y∗ − x0‖)
p
dτ

< β ω(‖x0‖, ‖x0‖+ r)

∫ 1

0

((1− τ)R + τr)p dτ

= 1,

the operator J−1 exists by the Banach lemma on invertible operators.
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Finally, by letting m → ∞ in (16), we obtain (15) for all n ≥ 0. Moreover,
from (15), it follows that the R-order of convergence of sequence {xn} is at least
1 + p, since

‖x∗ − xn‖ ≤
η

γ
1
p2

(
1− γ

1
p∆
)
(
γ

1
p2

)(1+p)n

, n ≥ 0.

For the second case, a0 = ξ, we have an = a0 = ξ, for all n ≥ 0. Then,
following an analogous procedure to the previous one, we obtain the same re-
sults, now taking into account that γ = 1 and ∆ = f(a0)g(a0) < 1, except for
the R-order of convergence; in this case, the R-order of convergence is at least
one.

4. Comments

In this section, some remarkable comments are given. First, we provide a con-
vergence result for Newton’s method when p = 0 in (6), which was not included
in Section 3. Second, we discuss the case p = 1 in (6). Third, the assumptions
required in Theorem 3.4 are compared with those required by Keller in [10]
for the convergence of Newton’s method. Finally, we give another analysis of
scalar sequence (7), different from that appearing in Section 3.2, that leads to
the same results.

4.1. Case p = 0. If p = 0, condition (C2) is reduced to

(C̃2) ‖F ′(x) − F ′(y)‖ ≤ ω(‖x‖, ‖y‖), x, y ∈ Ω, where ω : R+ × R+ −→ R+

is a nondecreasing continuous function in both arguments and such that
ω(0, 0) ≥ 0.

In this case, a0 = Q(R)β, where Q(t) = ω(‖x0‖ + t, ‖x0‖ + t) and R, if there
exists, is the smallest positive real root of the equation ϕ(t) = 0 with p = 0.
Following a procedure similar to that of case p ∈ (0, 1], we have

• if a0 < 1 and xn ∈ Ω (n ≥ 1), then ‖Γn‖ ≤ ‖Γ0‖
1−a0

, for all n ≥ 1,

• ‖xn+1 − xn‖ ≤
(

a0
1−a0

)n
‖x1 − x0‖, n ≥ 0,

so that the semilocal convergence result for Newton’s method is now the follow-
ing.

Theorem 4.1. Let X and Y be two Banach spaces and F : Ω ⊆ X −→ Y

a continuously differentiable operator on a nonempty open convex domain Ω.
Suppose that (C1), (C̃2), (C3) with p = 0 are satisfied. Suppose also that

a0 = Q(R)β ∈
(
0, 1

2

]
and B(x0, R) ⊂ Ω. Then, Newton’s sequence {xn} con-

verges to a solution x∗ of F (x) = 0 starting at x0. Moreover, xn, x
∗ ∈ B(x0, R)

and x∗ is unique in B (x0, r)∩Ω, where r, if there exists, is the smallest positive

real root of the equation β ω(‖x0‖, ‖x0‖+ t) = 1.
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4.2. F ′ is Lipschitz continuous. If ω(s, t) is a constant L and p = 1 in
the study carried out in Section 3, Theorem 3.4 is reduced to the Newton-
Kantorovich theorem, see [11].

In addition, inequalities (I)–(III) appeared in the proof of Theorem 3.4 are
reduced to equalities for the polynomial

ζ(x) =
L

2
x2 −

x

β
+

η

β
,

so that (I)–(III) are optimal for it; namely (I)–(III) can be written with equal-
ities. Taking into account this, we can improve the a priori error bounds given
by other authors. Observe that the polynomial ζ is just the quadratical Kan-
torovich polynomial p(t), which appears in condition (A3).

4.3. F ′ is Hölder continuous. We compare the conditions required for the
convergence of Newton’s method in Theorem 3.4 if ω(s, t) = K and those ap-
pearing in Keller’s theorem (Theorem 4 of [10]).

Under the same conditions (C1)–(C3) with ω(s, t) = K, Keller’s theorem
requires that

a0 ≤
1

2 + p

(
p

1 + p

)p

,

and, in Theorem 3.4, we require

a0 ≤ ξ,

where ξ is the unique zero of function (14) in (0, 1
2
]. Note that the former

condition for a0 is more restrictive than the latter one if p ∈ (0.2856 . . . , 1],
since

1

2 + p

(
p

1 + p

)p

< ξ.

As a consequence, the chances of finding starting points in the application
of Newton’s method for operators with (K, p)-Hölder continuous first Fréchet-
derivative and p ∈ (0.2856 . . . , 1], is higher if Theorem 3.4 is applied.

4.4. Scalar sequence. We can also analyse the scalar sequence (7) by studing
the fixed points of the function q(x) = xf(x)1+pg(x)p. If q(x) = x, x is a fixed
point of q, i.e. if x 6= 0, 1:

x1+p

(1 + p)p(1− x)1+p
= x ⇐⇒ (1 + p)p(1− x)1+p − xp = 0,

this agrees with h(x) = 0, where h is defined in (14).
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y = q(x)

y = x
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Figure 1: Fixed points of q when p = 1

As we can see in Figure 1, x = 0 and x = 1
2
are fixed points of q in [0, 1] if

p = 1. It is easy to prove that the sequence {an = q(an−1)} only converges if
a0 ≤

1
2
, so that

an ց 0 (n → ∞) if a0 <
1

2
,

an =
1

2
(n ≥ 0) if a0 =

1

2
.

Observe that both situations appear in Lemma 3.2.
On the other hand, note that if the value p ∈ (0, 1) varies, the fixed points

which appear are x = 0 and x = ξ (zero of h) with ξ < 1
2
, see Figure 2.

In both cases, it is interesting to observe that if a0 > ξ = 1
2
(p = 1) or

a0 > ξ (0 < p < 1), n0 ∈ N exists such that an0 > 1, see Figure 3, so that the
condition an < 1 for all n ≥ 0 is not met.

5. Application to a nonlinear integral equation of Ham-
merstein type

In this section, we study an application where a nonlinear Hammerstein inte-
gral equations of the second kind is involved. First, we provide some results
of existence and uniqueness of solution for the nonlinear Hammerstein integral
equations of the second kind of type (2). Second, we analyse a particular equa-
tion of (2) from a graphical point of view, where we show that the domain of
starting points given by the Newton-Kantorovich theorem for Newton’s method
is modified from Theorem 3.4. Third, we locate solutions of the particular equa-
tion. And, finally, fromTheorem 3.4, we guarantee the convergence of Newton’s
method and approximate two solutions.
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Figure 2: Fixed points of q when p ∈ (0, 1)

5.1. Existence and uniqueness of solution. Remenber that solving equa-
tion (2) is equivalent to solve F (x) = 0, where F is defined in (3). Now, we
apply the study of Section 3 to obtain results on the existence and uniqueness
of solution of equation (2).

We start calculating the parameters β and η that appear in the study.
Firstly, from (4) and once x0(s) is fixed, we have

‖I − F ′(x0)‖ ≤ m|λ|‖xm−1
0 ‖ℓ.

By the Banach lemma on invertible operators, if m|λ|‖xm−1
0 ‖ℓ < 1, we obtain

that there exists Γ0 = [F ′(x0)]
−1 and

‖Γ0‖ ≤
1

1−m|λ|‖xm−1
0 ‖ℓ

.

From (3), we have ‖F (x0)‖ ≤ ‖x0 − u‖+ |λ|‖xm
0 ‖ℓ and, therefore,

‖Γ0F (x0)‖ ≤
‖x0 − u‖+ |λ|‖xm

0 ‖ℓ

1−m|λ|‖xm−1
0 ‖ℓ

.

On the other hand, from (5), it follows ‖F ′(x)−F ′(y)‖ ≤ ω(‖x‖, ‖y‖)‖x−y‖,
where

ω(s, t) = m|λ|ℓ
(
sm−2 + sm−3t+ · · ·+ stm−3 + tm−2

)
. (17)

Once the parameters β and η are calculated and the function ω is known,
we can already establish the following result on the existence of solution of
equation (2) from Theorem 3.4.
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Figure 3: Situation when a0 > ξ

Theorem 5.1. Let F be the operator defined in (3) and x0 ∈ Ω a point such

that there exists [F ′(x0)]
−1. If m|λ|‖xm−1

0 ‖ℓ < 1, the equation

(2− 3Q(t)βη) t− 2 (1−Q(t)βη) η = 0 (18)

where Q(t) = ω(‖x0‖ + t, ‖x0‖ + t) and ω is defined in (17), has at least one

positive real root and the smallest positive real root, denoted by R, satisfies that

Q(R)βη ∈ (0, ξ], where ξ = 1
2
is the unique zero of function (14) with p = 1 in

the interval
(
0, 1

2

]
, and B(x0, R) ⊂ Ω, then a solution of (2) exists at least in

B(x0, R). Moreover, if the equation

β ω(‖x0‖, ‖x0‖+ t)
(
t2 −R2

)
= 2,

has at least one positive real root and the smallest positive one is denoted by r,

then x∗ is unique in B(x0, r).

5.2. Graphical analysis of a particular case. If we consider the following
particular case of equation (2)

x(s) = s+
1

2

∫ 1

0

G(s, t) x(t)5 dt, (19)

where G(s, t) is the Green function in [0, 1] × [0, 1], and take into account the

reasonable choice of the initial approximation x0(s)=θu(s), with θ∈R, [2,4], we

see that the condition m|λ|‖xm−1
0 ‖ℓ < 1, that must be held to the operator Γ0

exists, is reduced to |θ| < 4

√
16
5
= 1.3374 . . ., since m = 5, λ = 1

2
, ℓ = 1

8
, u(s) = s

and ‖x0‖ = |θ|‖u‖ = |θ|. See Figure 4, the values of ‖x0‖ are represented in the

horizontal axis.
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On the one hand, for the Newton-Kantorovich theorem can be applied, we
have previously to locate a solution of integral equation (19) in order to obtain
the value L and be able to apply the theorem. So, taking into account that a
solution x∗(s) of (19) in C([a, b]) must satisfy:

‖x∗‖ − 1−
1

16
‖x∗‖5 ≤ 0,

it follows that ‖x∗‖≤σ1=1.1012 . . . or ‖x∗‖≥σ2=1.5382 . . ., where σ1 and σ2

are the two real positive roots of t5

16
− t + 1 = 0. Thus, from the Newton-

Kantorovich theorem, we can only approximate one solution x∗(s) by Newton’s
method, that which satisfies ‖x∗‖ ∈ [0, σ1], since we can consider Ω = B(0, σ),
with σ ∈ (σ1, σ2), where F ′(x) is Lipschitz continuous, and takes x0 ∈ B(0, σ)
as starting point.

After that, taking into account what we have just mentioned, we consider
Ω = B(0, σ) with σ ∈ (σ1, σ2) and choose σ = 3

2
. Then, as ‖x0(s) − u(s)‖ =

|θ−1|‖u(s)‖ = |θ−1| in the upper bound of ‖Γ0F (x0)‖, we observe in Figure 5,
where the horizontal axis represents the values of ‖x0‖, that the starting point
x0(s) is such that ‖x0‖ = |θ| ≥ 2.1710 . . . for the condition Lβη ≤ 1

2
of the

Newton-Kantorovich theorem is true. Therefore, it is clear that there is no
starting point which satisfies the two conditions simultaneously, so that the
Newton-Kantorovich theorem is not applicable in this situation.

0.5 1.0 1.5 2.0

-1

1

2

3

4

Figure 4: ‖x0‖ = |θ| < 1.3374 . . . for
the existence of Γ0.

0.5 1.0 1.5 2.0 2.5

-10

-5

5

10

15

20

25

Figure 5: ‖x0‖ = |θ| ≥ 2.1710 . . . for
Kantorovich’s condition Lβη ≤ 1

2
.

On the other hand, if we consider Theorem 3.4, we see that, mainly, two
conditions have to be held: first, the existence of at least one positive real root
of the equation ϕ(t) = 0; and second, the condition a0 = Q(R)βηp ∈ (0, ξ]
on the smallest positive real root R of ϕ(t) = 0, which now is reduced to
a0 = Q(R)βη ∈

(
0, 1

2

]
, since p = 1.

If, firstly, we focus our attention on the existence of at least one positive
real root of the equation ϕ(t) = 0, from Figures 6 and 7, we suspect that
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‖x0‖ = |θ| > 0.9 (more or less), so that the equation ϕ(t) = 0 has positive real
roots.

0.1 0.2 0.3 0.4 0.5 0.6

-0.3

-0.2

-0.1

0.1

Figure 6: ϕ(t) with ‖x0‖ =
|θ| = 0.85, 0.875, 0.9, 0.925 (respec-
tively: blue, red, yellow and green).

0.2 0.4 0.6 0.8

-0.2

-0.1

0.1

0.2

Figure 7: ϕ(t) with ‖x0‖ =
|θ| = 0.925, 0.95, 0.975, 1 (respec-
tively: blue, red, yellow and green).

If we now focus our attention on the condition on R of Theorem 3.4,
Q(R)βη ≤ 1

2
, we see graphically in Figures 8–11, where the curve is the function

ϕ(t) and the vertical line is Q(t)βη = 1
2
, which represents the condition a0 ≤

1
2
,

four different situations where the last condition is satisfied.
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Figure 8: ϕ(t) with ‖x0‖ = |θ| =
0.925: R = 0.2128 . . . and Q(R)βη =
0.2948 . . . ≤ ξ = 1

2
.
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Figure 9: ϕ(t) with ‖x0‖ = |θ| =
0.95: R = 0.1704 . . . and Q(R)βη =
0.2921 . . . ≤ ξ = 1

2
.

As a result, we have just seen four specific situations in which we can apply
Theorem 3.4, but not the Newton-Kantorovich theorem. In addition, from the
previous graphical analysis, the modification of the domain of starting points
for Newton’s method given by the Newton-Kantorovich theorem is seen.
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Figure 10: ϕ(t) with ‖x0‖ = |θ| =
0.975: R = 0.1363 . . . and Q(R)βη =
0.2668 . . . ≤ ξ = 1

2
.
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Figure 11: ϕ(t) with ‖x0‖ = |θ| =
1, R = 0.1062 . . . and Q(R)βη =
0.2237 . . . ≤ ξ = 1

2
.

5.3. Localization of solutions of equation (19). If we now choose the
starting point x0(s) = s, choice analysed in the previous section, we have

β =
16

11
, η =

1

11
, ω(s, t) =

5

16

(
s3 + s2t+ st2 + t3

)
,

so that the smallest positive real root of equation (18), which is

−(0.1517 . . .)+(1.5942 . . .)t− (1.3974 . . .)t2− (1.4575 . . .)t3− (0.4958 . . .)t4 = 0,

is R = 0.1062 . . . As a consequence, Q(R) = 1.6921 . . ., Q(R)βη = 0.2237 . . . ≤
ξ = 1

2
and the hypotheses of Theorem 5.1 are then satisfied. Then (19) has a

solution x∗ in the region {ν ∈ C([0, 1]) : ‖ν − s‖ ≤ 0.1062 . . .}, which is unique
in {ν ∈ C([0, 1]) : ‖ν − s‖ < 0.6685 . . .}.

On the other hand, as we have seen in the previous graphic study for
the Newton-Kantorovich theorem, if we consider Ω = B

(
0, 3

2

)
, then condi-

tion Lβη ≤ 1
2
is not satisfied if x0(s) = s, since Lβη = 0.5578 . . . > 1

2
, so that

we cannot apply the Newton-Kantorovich theorem in this case to guarantee the
convergence of Newton’s method to a solution of (19). In addition, we cannot
draw conclusions about existence and uniqueness of solution for equation (19)
from the Newton-Kantorovich theorem.

Moreover, if we want to approximate a solution x∗∗(s) such that ‖x∗∗‖ ≥
σ2 = 1.5382 . . ., we cannot apply the Newton-Kantorovich theorem because
we cannot choose a domain where x∗∗(s) lies, since if the domain is chosen at
random, the domain could not contain x∗∗(s) or cut it, in which case F ′(x) is
not Lipschitz continuous.

We see in this example that we can consider the two situations from Theo-
rem 3.4 if conditions (C1)–(C3) are assumed.
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5.4. An arithmetic model. After that, we apply Newton’s method for ap-
proximating a solution with the features mentioned above. For this, we use a
discretization process. So, we approximate the integral of (19) by the following
Gauss-Legendre quadrature formula with 8 nodes:

∫ 1

0

υ(t) dt ≃
8∑

j=1

wjυ(tj),

where the nodes tj and the weights wj are known. Moreover, we denote x(ti) by
xi, i = 1, 2, . . . , 8, so that equation (19) is now transformed into the following
system of nonlinear equations:

xi = ti +
1

2

8∑

j=1

aij x
5
j , where aij =

{
wjtj(1− ti), j ≤ i,

wjti(1− tj), j > i.

Then, we write the above system in the following matrix form:

F (x) ≡ x− y−
1

2
A x̂ = 0, F : R8 −→ R

8, (20)

where x = (x1, x2, . . . , x8)
T , y = (t1, t2, . . . , t8)

T , A = (ajk)
8
j,k=1 and

x̂ = (x5
1, x

5
2, . . . , x

5
8)

T
. Besides

F ′(x) = I −
5

2
A diag{x4

1, x
4
2, . . . , x

4
8}.

Since x0(s) = s has been chosen as starting point for the theoretical study, a
reasonable choice of initial approximation for Newton’s method seems to be the
vector x0 = y. After three iterations, we obtain the numerical approximation
to the solution x∗ = (x∗

1, x
∗
2, . . . , x

∗
8)

T shown in Table 1 with a tolerance 10−16.
Observe that ‖x∗‖ = 0.9816 . . . ≤ σ1 = 1.1012 . . .

i x∗
i i x∗

i

1 0.02010275. . . 5 0.59887545. . .
2 0.10293500. . . 6 0.77066535. . .
3 0.24019309. . . 7 0.90392935. . .
4 0.41336490. . . 8 0.98160632. . .

Table 1: Numerical solution x∗ of (20)

In Table 2 we show the errors ‖x∗ − xn‖, using the stopping criterion
‖xn − xn−1‖ < 10−16, and the sequence {‖F (xn)‖}. Notice that the vector
shown in Table 1 is a good approximation of the solution of system (20), since
‖F (x∗)‖ ≤ C × 10−16.
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n ‖x∗ − xn‖ ‖F (xn)‖
0 7.8991 . . .× 10−3 7.5595 . . .× 10−3

1 6.7668 . . .× 10−6 6.4814 . . .× 10−6

2 5.2591 . . .× 10−12 5.0502 . . .× 10−12

Table 2: Absolute errors and {‖F (xn)‖}

We now interpolate the points of Table 1. Taking into account that the
solution of (19) satisfies x(0) = 0 and x(1) = 1, an approximation xI of the
numerical solution is obtained, see Figure 12. Notice that the interpolated
approximation xI lies within the existence domain of the solutions obtained
previously.

1

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

x0(s) +R = s+ 0.1062 . . .

x0(s)−R = s− 0.1062 . . .

xI

Figure 12: Approximated solution of equation (19)

We have seen previously that equation (19) can have a solution x∗∗(s) such
that ‖x∗∗(s)‖ ≥ σ2 = 1.5382 . . ., but the convergence of Newton’s method
cannot be guaranteed from Kantorovich’s theory, since a domain where x∗∗(s)
lies and F ′ is Lipschitz continuous cannot be fixed. However, the convergence
of Newton’s method can be guaranteed from Theorem 3.4, as we see in the
following.

For example, if we choose the starting point x0(s) = 3s, we observe that
‖x0(s)‖ = 3 > σ2 = 1.5382 . . . In addition, a reasonable choice of initial ap-
proximation for Newton’s method seems to be the vector x0 = 3y, but we can-
not apply Theorem 3.4 either, since the real function ϕ(t) cannot be defined.
However, it seems clear that the conditions of Theorem 3.4 can be satisfied if
the starting point is improved. So, starting at x0, by iterating with Newton’s
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method, we obtain the following approximation

z0 =




0.081669 . . .
0.418183 . . .
0.975714 . . .
1.667559 . . .
2.199495 . . .
1.906819 . . .
1.406840 . . .
1.080048 . . .




,

which is now used as new starting point for Newton’s method. For this new
starting point, we obtain

ϕ(t)=−(0.0108 . . .)+(0.9986 . . .)t−(1.3726 . . .)t2−(0.6250 . . .)t3−(0.0948 . . .)t4,

and R = 0.0110 . . ., so that the hypotheses of Theorem 3.4 are then satisfied
for z0. Observe that z0 satisfies ‖z0‖ = 2.1994 . . . > σ2 = 1.5382 . . . Choosing
now the starting point z0 and iterating again with Newton’s method, we obtain
the approximated solution x∗∗ = (x∗∗

1 , x∗∗
2 , . . . , x∗∗

8 )T given in Table 3, which
is a solution that is beyond the scope of Kantorovich’s theory. Observe that
‖x∗∗‖ = 1.8986 . . . > σ2 = 1.5382 . . .

i x∗∗
i i x∗∗

i

1 0.081556. . . 5 2.192901. . .
2 0.417603. . . 6 1.898637. . .
3 0.974358. . . 7 1.403096. . .
4 1.665051. . . 8 1.079315. . .

Table 3: Numerical solution of (20)

In Table 4 we show the errors ‖x∗ − xn‖, using the stopping criterion
‖xn − xn−1‖ < 10−16, and the sequence {‖F (xn)‖}. Notice that the vector
shown in Table 3 is a good approximation of the solution of system (20), since
‖F (x∗)‖ ≤ C × 10−16.

By interpolating the values of Table 3 and taking into account that the
solutions of (20) satisfy x(0) = 0 and x(1) = 1, we obtain the solution denoted
by x̂ and drawn in Figure 13.
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n ‖x∗ − xn‖ ‖F (xn)‖
0 8.1819 . . .× 10−3 1.7865 . . .× 10−2

1 7.9964 . . .× 10−5 1.5537 . . .× 10−4

2 7.2936 . . .× 10−9 1.5207 . . .× 10−8

Table 4: Absolute errors and {‖F (xn)‖}

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

x̂

Figure 13: Approximated solution of equation (19)
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