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Abstract. We prove that polyharmonic maps Rm ⊃ Ω → N locally minimizing∫
|Dkf |2 dx are smooth on the interior of Ω outside a closed set Σ withHm−2k(Σ) = 0,

provided that the target manifold N ⊂ Rn is smooth, closed, and fulfills

π1(N) = . . . = π2k−1(N) = 0.
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1. Introduction

Polyharmonic maps are a natural generalization of harmonic maps. Given two
Riemannian manifolds M and N , and a bounded domain Ω ⊂ M , a harmonic
map f : Ω→ N is a map which is stationary for the Dirichlet energy

E(f) :=
1

2

∫
Ω

|Df |2 dx.

Here dx means integration with respect to the Riemannian measure on M . In
this paper, we will always assume that M = Rm. Our methods carry over to
the non-flat case, but that would make the paper considerably more difficult to
read.

Assuming that N ⊂ Rn is a sufficiently smooth submanifold of Rn, we
define, for k ∈ N and p > 1, energies

Ek,p(f) :=
1

p

∫
Ω

|Dkf |p dx,
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where here Dkf means the full k-th derivative of f regarded as a mapping
f : Ω → Rn. The problem of understanding maps stationary for Ek,p among
W k,p-maps f : Ω → N generalizes the harmonic map problem for E = E1,2.
The special case k = 1 is that of p-harmonic maps, while the case p = 2, k ≥ 2
gives (extrinsically) k-polyharmonic maps; they are called biharmonic if k = 2.

Most of the regularity theory of harmonic maps has been carried over suc-
cessfully to the biharmonic case. The usual assumptions that ensure regularity
are that the maps are either stationary, i.e. stationary with respect to varia-
tions in the domain, or locally minimizing the corresponding energy. Here is an
overview over the most important results. (We will not mention the sub-critical
domain dimensions, where regularity is relatively easy to prove. Moreover, we
restrict to interior regularity and smooth compact targets. We denote the do-
main dimension by m.)

• All harmonic maps are smooth if m = 2, see [11].

• All biharmonic maps are smooth if m = 4, see [18].

• If m ≥ 3, all stationary harmonic maps are smooth outside a closed sin-
gular set Σ satisfying Hm−2(Σ) = 0, see [3].

• If m ≥ 5, all stationary biharmonic maps are smooth outside a closed
singular set Σ satisfying Hm−4(Σ) = 0, see [6, 17, 19].

• If m ≥ 3, all locally minimizing harmonic maps are smooth outside a
closed singular set Σ of Hausdorff dimension ≤ m− 3, see [16].

• If m ≥ 5, all locally minimizing biharmonic maps are smooth outside a
closed singular set Σ of Hausdorff dimension ≤ m− 5, see [15].

Surprisingly, most of this list cannot be continued for polyharmonic maps,
i.e. for Ek,2 with k ≥ 3. What we have is a result by Scheven and the au-
thor.

• All k-polyharmonic maps are smooth if m = 2k, see [7].

(A simpler proof for sphere targets has been given in [9], and a very different
proof for minimizers in [14]. Boundary regularity can be found in [12].)

The reason for the lack of results in the supercritical dimensions m > 2k
is that no monotonicity formula is known. Such a monotonicity formula allows
one to work in a Morrey space where the nonlinearity of the Euler-Lagrange
equation for Ek,2 is critical in some sense. It is available for k = 1 and k = 2,
the latter formulated in [6] and proven in [1]. The proofs rely on showing that
d
dr

(r2k−n ∫
Br
|Dkf |2 dx) has a sign, up to terms that can be controlled. But

already for k = 3, there seems to be no obvious way in which this continues
to hold. Blatt [4] shows that some monotonicity formula holds if m ≤ 20, but
there are terms that have the wrong sign in higher dimensions. Calculations
show that for k ≥ 4 things are getting even more difficult.
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Without a monotonicity formula as a starting point, there are not many
methods left to prove partial regularity. The aim of this paper is to do so at
least under additional topological assumptions on the target manifold. Here is
what we will prove in Theorem 3.3.

• If m ≥ 2k + 1, all locally minimizing k-polyharmonic maps are smooth
outside a closed singular set Σ satisfying Hm−2k(Σ) = 0, provided that N
satisfies π1(N) = . . . = π2k−1(N) = 0.

Note that this allows, for example, N = S` for any ` ≥ 2k. To the best of the
author’s knowledge, this is the first partial regularity result for k-polyharmonic
maps (k ≥ 3), except for the case k = 3, m ≤ 20 discussed by Blatt [4].
An ε-regularity theorem under maybe slightly unnatural assumptions has been
proven by Angelsberg and Pumberger [2].

The key observation that such a topological condition simplifies the regu-
larity question for minimizers is taken from work by Hardt and Lin [10], where
they prove partial regularity for minimizing p-harmonic maps. In the regularity
proof, it is important to construct suitable comparison maps for minimizers,
and this is much easier if there is a projection Rn → N that is good enough not
to destroy W 1,p-estimates. We adopt this technique, even though we cannot
construct a projection that is well-behaved on W k,2. But combinig the methods
of [10] with rather recent ones by Bousquet, Ponce and Van Schaftingen [5], we
find a projection that is at least well-behaved on W k,2 ∩W 1,2k, which is good
enough for our purposes.

Once we have a good projection, we can use Rn-valued comparison maps,
and the partial regularity proof from here follows well-established lines similar
to [13]. Note, however, that our result does not yield locally finite (m−2k−1)-
dimensional Hausdorff measure of the singular set, as might have been expected
from the harmonic and biharmonic cases. We get stuck at Hm−2k(Σ) = 0,
since the better result would require to perform “Federer’s dimension reduction
argument”, which heavily relies on having a monotonicity formula.

2. Projections to submanifolds

We start our considerations with the question how to project mappings into Rn

to some submanifold N without losing estimates in Sobolev spaces. This follows
ideas by Hardt and Lin [10]. We occasionally write π0(N) = 0 to express the
fact that N is connected. The other πi(N) are the usual homotopy groups (with
any base point in N).

Proposition 2.1. Let N be a smooth compact Riemannian submanifold of Rn

with
π0(N) = π1(N) = . . . = πj(N) = 0
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for some j ∈ {0, . . . , n − 2}. Then there exists a finite union X of closed
(n− j − 2)-dimensional cubes in Rn and a smooth retraction P : Rn \X → N
such that

(i) there is some R > 0 such that |DiP | is bounded on Rn\BR(0), and we have
the estimate |DiP (x)| ≤ C(i)dist(x,X)−i for all i ∈ N and all x ∈ BR(0);

(ii) there is some r > 0 such that the restriction of P to Br(N) is the nearest
point retraction to N .

In order to prove Proposition 2.1, we try to mimic an argument by Hardt
and Lin from [10] for the k = 1 case, which, combined with some assertions
from its proof, reads as follows.

Lemma 2.2 ([10, Lemma 6.1]). If N is a compact smooth submanifold of Rn

with
π0(N) = π1(N) = . . . = πj(N) = 0,

then there exist a compact (n−j−2)-dimensional Lipschitz polyhedron Y in Rn

and a locally Lipschitz retraction P̃ : Rn\Y →N so that |DP (x)|≤Cdist(x, Y )−1

on some BR(0) and so that the restriction of P to some Bs(N) (s > 0) is the
nearest point retraction to N .

The construction of such a P̃ uses several explicit topological arguments
which are concerned with piecewise-linear constructions. We cannot immedi-
ately modify those to construct P for Proposition 2.1. We therefore use a tech-
nique called “thickening”, invented by Bousquet, Ponce, and Van Schaftingen,
to handle higher order Sobolev mappings.

Lemma 2.3 (Thickening; [5, Proposition 4.1]). Let ` ∈ {0, . . . ,m − 1},
η > 0, 0 < ρ < 1, Sn be a cubication of Rn of radius η, Un be a subskele-
ton of Sn, and T n−`−1 be the dual skeleton of U `. There exists a smooth map
Φ : Rn \ T n−`−1 → Rn such that

(a) Φ is injective;

(b) for every σn ∈ Sn, Φ(σn \ T n−`−1) ⊂ σn \ T n−`−1;

(c) Φ(x) = x for every x outside Un + [−ρη, ρη]n;

(d) Φ(Un \ T n−`−1) ⊂ U ` + [−ρη, ρη]n;

(e) for every i ∈ N and every x ∈ Rn \ T n−`−1,

|DiΦ(x)| ≤ Cη dist(x, T n−`−1)−i

for some constant C > 0 depending on i, n and ρ;

(f) for every 0 < β < `+ 1, for every i ∈ N and for every x ∈ Rn \ T n−`−1,

ηi−1|DiΦ(x)| ≤ C(jac Φ(x))
i
β

for some constant C > 0 depending on β, i, n and ρ.
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Proof of Proposition 2.1. We start with the mapping P̃ from Lemma 2.2 and
smoothen it the following way. Let φ : Rn \Y → R be a smooth function whith
φ ≡ 0 on B s

2
(N) and 0 < φ(x) < dist(x, Y ) elsewhere, η : Rn → R a standard

mollifier with support in Bn. For 0 < τ < 1
2
, we let

Pτ (x) := −
∫
Bτφ(x)(x)

P̃ (y)η
( x− y
τφ(x)

)
dy

and estimate

dist(Pτ (x), N) ≤ dist(Pτ (x), P̃ (x)) ≤ C−
∫
Bτφ(x)(x)

|P̃ (y)− P̃ (x)| dy ≤ Cτ,

where C comes from the bounds on η, |DP̃ | (from Lemma 2.2) and on φ. We
choose τ > 0 small enough that the nearest point retraction Π : BCτ (N) → N

is well-defined and smooth. Then we let P̂ := Π ◦ Pτ : Rn \ Y → N . This is a
smooth map, but we do not get estimates on higher derivatives.

In order to obtain those, we are ready to modify P̂ further using Lemma 2.3.
To this end observe that, by the compactness and Lipschitz regularity of Y ,
and the compactness and smoothness of N , we find a cubications Sn of Rn with
arbitrarily small radius for which the skeleton Sj+1 does not intersect Y and
hence has positive distance to Y . By Un we mean the subskeleton generated
by the n-cells of Sn that intersect Y . By choosing the radius η > 0 of Sn and
some r ∈ (0, s

2
) sufficiently small, we can assume

Un + [−η, η]n ∩Br(N) = ∅. (1)

Now we choose ρ > 0 small enough that

(U j+1 + [−ρη, ρη]n) ∩ Y = ∅. (2)

We apply Lemma 2.3 with ` = j + 1, which gives us Φ : Rn \ T n−j−2 =:
Rn \ X → Rn with the properties (a)–(f). By (c), Φ is the identity outside a
small neighbourhood of Y , and where it is not, by (d), it maps to the compact

set ⊂ U j+1+[−ρη, ρη]n where P is smooth because of (2). Therefore, P := P̂ ◦Φ
is a smooth mapping BR(0) \X → N, for any R > 0. Because of (c) and (1), P
is the nearest point retraction when retricted to Br(N). This proves part (ii)
of the proposition.

In order to finish the proof of (i), we denote the interior of Un + [−ρη, ρη]n

by Z and observe that P = P̂ on BR(0) \ Z if we have chosen R large enough.
Here BR(0) \ Z is a compact set, which means that |DiP | is bounded there for
every i ∈ N. On Z, on the other hand, the bound |DiP (x)| ≤ C(i)dist(x,X)−i

follows from the smoothness of P̂ on the compact set U j+1 + [−ρη, ρη]n and
the estimates in (e). Therefore, all that is left to do is to define P properly on
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Rn \BR(0). This is done by letting P (x) := P ( R|x| x). This mapping P will most

probably not be smooth along ∂BR(0), which we can, however, easily repair by
smoothing around that sphere, by the same technique we used at the beginning
of the proof. �

As long as it does not require any additional effort, we will allow for general
p > 1, while for the proof of our main theorem we will only need p = 2.

Choosing j sufficiently large, we can use Proposition 2.1 to project mappings
f ∈ W k,p ∩ W 1,kp(U,Rn) to mappings in P ◦ f ∈ W k,p ∩ W 1,kp(U,N), with
controlled energy. This is not as straightforward as it seems, since the set X
where P is singular, must be in general position with respect to f . The idea is
taken from [10, Theorem 6.2].

Proposition 2.4 (Generic projection of W k,p-mappings). Let V ⊂⊂ U ⊂ Rn be
open and smooth subsets, and let N ⊂ Rn be a smooth closed submanifold with

π0(N) = π1(N) = . . . = πbkpc−1(N).

Let k ∈ N, p > 1, and let a map f ∈ W k,p ∩W 1,kp(U,Rn) ∩W k,p(U \ V,N) be
given. Then there is a map g ∈ W k,p ∩W 1,kp(U,N) with g = f on U \ V and

k∑
i=1

‖Dig‖
kp
i

L
kp
i (V )

≤ C
k∑
i=1

‖Dif‖
kp
i

L
kp
i (V )

.

(Note that W k,p ∩W 1,kp ⊂ W i, kp
i for 1 ≤ i ≤ k.)

Proof. Let P be the projection from Proposition 2.1, then

CP := sup{|DiP (y)| : y ∈ Rn \BR(0), 1 ≤ i ≤ k} <∞.

For a ∈ Rn, we define the translates Xa := {y + a : y ∈ X}, and the mapping
Pa : Rn \Xa → N by Pa(y) := P (y − a).

We pick some small r > 0 which will be determined later. Iterating the
chain rule and using Young’s inequality, we have

|Dk(Pa ◦ f)| ≤ C

k∑
i,j=1

|(DjPa) ◦ f | |Dif |
k
i .

Therefore, Pa◦f ∈ W k,p(U,N) for almost all a ∈ Br(0), and by Fubini’s theorem
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∫
Br(0)

∫
U

|Dk(Pa◦f)|p dx da≤C
k∑

i,j=1

∫
U

|Dif |
kp
i

∫
Br(0)

|(DjPa)(f(x))|p da dx

≤C
k∑

i,j=1

∫
U

|Dif |
kp
i

∫
Br(0)

|(DjP )(f(x)−a)|p da dx

≤C
( k∑
i=1

∫
U

|Dif |
kp
i dx

)(
Cp
P r

m+
k∑
j=1

∫
BR(0)

|DjP (y)|p dy
)
.

By part (i) of Proposition 2.1 and the choice of j = bkpc − 1, the last integral
is finite, and we therefore have

∫
Br(0)

∫
U

|Dk(Pa ◦ f)|p dx da ≤ C
k∑
i=1

∫
U

|Dif |
kp
i dx.

This means that there exists a constant C and an a ∈ Br(0) such that

∫
U

|Dk(Pa ◦ f)|p dx ≤ C
k∑
i=1

∫
U

|Dif |
kp
i dx. (3)

Note that C depends on r, but r will be fixed soon. Now Pa ◦ f is almost the
map we are looking for, but it does not coincide with f where f happens to
take values in N . Therefore we define

g := (Pa|N)−1 ◦ Pa ◦ f,

which has that additional property. Since P = P0 has full rank near N , the
inverse function theorem says that (Pa|N)−1 : N → N exists and is smooth
for all sufficiently small a ∈ Rn. Therefore, if we choose r > 0 small enough,
for all a ∈ Br(0) the (Pa|N)−1 are Ck-diffeomorphisms with uniformly bounded
constants, hence g satisfies an estimate similar to (3), which is the assertion
of the proposition for the highest-order term on the left-hand side. The other
estimates follow from the same inequality with (k, p) replaced by (i, kp

i
). �

In what follows, we consider W k,p-mappings from Bm to N , k ≥ 1. Their
image must be (essentially) in one component of N , even if N is not connected.
Therefore we will not have to bother whether or not N is connected and can
skip the assumption π0(N) = 0 in the theorems we are going to prove.
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3. Partial regularity

The proofs in this section use ideas from Hardt and Lin [10] concerning projec-
tions and Luckhaus [13] for the overall strategy.

The first step towards partial regularity is a compactness theorem, stating
that the limit of minimizers is a minimizer, even if we blow up the target
manifold while approaching the limit.

Theorem 3.1 (Compactness). Let N ⊆ Rn be a smooth closed submanifold
with

π1(N) = . . . = πbkpc−1(N) = 0.

Define submanifolds Ni (i ∈ N ∪ {∞}) in one of the following ways.

(i) Ni := N for all i ∈ N ∪ {∞}.
or

(ii) Ni := δ−1
i (N − yi) (i ∈ N) for given sequences δi ↘ 0 and yi ∈ Rn, which

are chosen in such a way that all Ni intersect some compact set Z ⊂ Rn.
Then the Ni converge locally in Hausdorff distance to some affine subspace
of Rn which we denote by N∞. (Actually, N∞ is the limit of the affine
tangent spaces zi + TziNi for any sequence of zi ∈ Ni ∩ Z.)

Now assume we are given a sequence (ui)i∈N of maps ui ∈ W k,p(Bm, Ni) which

are Ek,p-minimizing with respect to their boundary values. We also assume

that the sequence ui is bounded in W j, kp
j (Bm, Ni) for every j ∈ {1, . . . , k}. If

ui → u∞ weakly in
⋂n
j=1W

j, kp
j (Bm,Rn) for some u∞ ∈ W k,p(Bm, N∞), then u∞

is also Ek,p-minimizing with respect to its boundary values, and the ui actually

converge to u∞ in W k,p on every compact subset of Bm.

Proof. In order to prove that u∞ is Ek,p-minimizing, it is enough to show that
Ek,p(u∞) ≤ Ek,p(v) for any v ∈ W k,p(B,N∞) which coincides with u∞ outside
a compact subset of B. Let such a v be given, then there is ρ0 < 1 such that
u∞ = v on B \Bρ0 , and we can assume ρ0 ∈ (3

4
, 1).

Every v ∈ W k,p(Bm, N∞) is the W k,p(Bm,Rn)-limit of a sequence (vi)i∈N
of maps vi ∈ W k,p(Bm, Ni). This is trivial under assumption (i). If we as-
sume (ii) instead, N∞ is an affine space, hence bounded functions are dense in
W k,p(Bm, N∞). Moreover, every bounded function b ∈ W k,p(Bm, N∞) is the
W k,p-limit of bi ∈ W k,p(Bm, Ni) which can simply be defined as the nearest-
point projection of Ni applied to b. This proves the asserted approximability
also under assumption (ii).

In what follows, all choices and constants are allowed to depend on v, and

hence also on ρ0. Weak convergence of the ui in
⋂k
j=1W

j, kp
j (Bm,Rn) gives

convergence in
⋂k
j=1W

j−1, kp
j (Bm,Rn). Hence, we can assume not only the
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existence of K such that∫
Bm

(|Dhui|
kp
j + |Dhvi|

kp
j ) dx ≤ K

kp
j

for all i ∈ N and h ≤ j ∈ {1, . . . , k}, but also

k∑
j=1

∫
Bm\Bρ0

|Dh−1ui −Dh−1vi|
kp
j dx ≤ ε

kp
j

i K
kp
j

for all i ∈ N and h ≤ j ∈ {1, . . . , k} with a sequence εi ↘ 0. Let ρ̄ := 1
2
(1 + ρ0).

Fix a sequence λi ↘ 0, to be determined later; we may assume λi < 1− ρ̄. For
every i, there is some ρi ∈ (ρ0, ρ̄) such that∫

Bρi+λi\Bρi

(
|Dhui|

kp
j + |Dhvi|

kp
j

)
dx ≤ CλiK

kp
j

for all i ∈ N and h ≤ j ∈ {1, . . . , k}, with c independent of h, i and j.
Fix a nondecreasing C∞-function η : [0, 1]→ R which is ≡0 near 0 and ≡1

near 1. Define wi : Bρi+λi \Bρi → Rn by

wi(x) := ui(x) + η

(
|x| − ρi
λi

)
(vi(x)− ui(x)).

It is straightforward to check that∫
Bρi+λi\Bρi

|Djwi|
kp
j dx ≤ CK

kp
j

(
λi + ε

kp
j

i λ
−kp
i

)
for all i ∈ N and j ∈ {1, . . . , k}. Now we use Proposition 2.4 to project wi back
into Ni. Note that even under the assumptions (ii) this can be applied with
constants independent on i, since the projections only get better if the target
is enlarged. The projected maps zi : Bρi+λi \Bρi → Ni satisfy the estimate∫

Bρi+λi\Bρi

|Dkzi|p dx ≤ CKp
(
λ

1
k
i + εpiλ

−kp
i

)
.

This means that we can choose λi := ε
1
2k
i (which is small enough for almost all

i), then we have ∫
Bρi+λi\Bρi

|Dkzi|p dx ≤ CKp

(
ε

1
2k2

i + ε
p
2
i

)
.

Note that

zi(x) :=


ui(x) for x ∈ B1 \Bρi+λi ,
the zi(x) from above for x ∈ Bρi+λi \Bρi ,
vi(x) for x ∈ Bρi
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fits together as a W k,p(Bm, Ni)-function. Remember that every ui is minimizing
on Bm with respect to its own boundary values, and that zi is admissible for
being compared with ui, even on Bρi+λi . Therefore we have

‖Dkv‖pLp(B1) = lim
i→∞

(
‖Dku∞‖pLp(B1\Bρi+λi )

+‖Dkv‖pLp(Bρi+λi )

)
= lim
i→∞

(
‖Dku∞‖pLp(B1\Bρi+λi )

+‖Dkvi‖pLp(Bρi+λi )

)
≥ lim
i→∞

(
‖Dku∞‖pLp(B1\Bρi+λi )

+‖Dkvi‖pLp(Bρi )
+CKp

(
ε

1
2k2

i +ε
p
2
i

))
≥ lim
i→∞

(
‖Dku∞‖pLp(B1\Bρi+λi )

+‖Dkzi‖pLp(Bρi+λi )

)
≥ lim
i→∞

(
‖Dku∞‖pLp(B1\Bρi+λi )

+‖Dkui‖pLp(Bρi+λi )

)
≥‖Dku∞‖pLp(B1),

(4)

the last “≥” being the weak lower semicontinuity of u 7→ ‖Dku‖Lp . This proves
that u∞ is Ek,p-minimizing on Bm. Moreover, we may choose v := u∞ and ρ0

arbitrarily close to 1 in (4), in which case all “≥” must be “=”. This proves
‖ui‖Wk,p(Bρ0 ) → ‖u∞‖Wk,p(Bρ0 ), and thereby ui → u∞ in W k,p(Bρ0 ,Rn), which is
the final step in the proof of Theorem 3.1. �

Before we prove our partial regularity theorem, we need a version of the
Gagliardo-Nirenberg interpolation inequality.

Lemma 3.2 (Gagliardo-Nirenberg interpolation). For any u ∈ W k,2∩L∞(Rn),
every 1 ≤ j < k, and every smooth positive η with compact support, we have∫

η2k|Du|2k dx ≤ C‖u‖2k−2
∞

(∫
η2k|Dku|2 dx+ ‖∇η‖2−2k

∞

∫
η2|Du|2 dx

)
.

Proof. By partial integration and Young’s inequality, we have∫
η2k|Du|2k dx =

∫
η2k|Du|2k−2〈Du,Du〉 dx

≤ C

∫
η2k|Du|2k−2|D2u||u| dx+

∫
η2k−1|Du|2k−1|∇η||u| dx

≤ ε

∫
η2k|Du|2k dx+ C(ε)‖u‖k∞

∫
η2k|D2u|k dx

+ C‖u‖∞‖∇η‖∞
∫
η2k−1|Du|2k−1 dx

≤ ε

∫
η2k|Du|2k dx+ C(ε)‖u‖k∞

∫
η2k|D2u|k dx

+ ε

∫
η2k|Du|2k dx+ C(ε)‖u‖2k−2

∞ ‖∇η‖2k−2
∞

∫
η2|Du|2 dx.
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In the last line, we have used Young’s inequality in the less usual form

ab2k−1 = b2k−1− 1
k−1

(
ab

1
k−1

)
≤ εb2k + C(ε)a2k−2b2

with exponents 2k−2
2k−3

and 2k − 2. Absorbing the terms of order ε into the left-
hand side, we find∫

η2k|Du|2k dx ≤ C‖u‖k∞
∫
η2k|D2u|k dx+ C‖u‖2k−2

∞ ‖∇η‖2k−2
∞

∫
η2|Du|2 dx.

Iterating this argument, we inductively prove∫
η2k|Du|2k dx ≤ C‖u‖

2k− 2k
j

∞

∫
η2k|Dju|

2k
j dx+ C‖u‖2k−2

∞ ‖∇η‖2k−2
∞

∫
η2|Du|2 dx

for j = 2 . . . k, and the j = k case is the assertion of the lemma. �

Theorem 3.3 (Partial regularity). Let k ∈ N, m > 2k, and let N be a smooth
closed submanifold of Rn satisfying

π1(N) = . . . = π2k−1(N) = 0.

Then every u : Bm → N which is locally minimizing Ek,2 is smooth in the
interior of Bm outside a closed set Σ with Hm−2k(Σ) = 0.

Proof. Since k = 1 is the well-known harmonic map case, we assume k ≥ 2.
Note that better statements are available for k ∈ {1, 2}. Let us prove the
following “discrete Morrey space estimate”.

(M) For every α ∈ (0, 1), there exist θ ∈ (0, 1
2
), δ0 > 0, and r0 ∈ (0, 1

4
) such

that for any Ek,2-minimizing u ∈ W k,2(Bm, N), the smallness condition

k∑
j=1

r2j−m
∫
Br(y)

|Djf |2 dx ≤ δ2
0

for some r ∈ (0, r0) and y ∈ B 3
4

implies

k∑
j=1

(θr)2j−m
∫
Bθr(y)

|Djf |2 dx ≤ θ2α

k∑
j=1

r2j−m
∫
Br(y)

|Djf |2 dx.

Assume that (M) does not hold for some α ∈ (0, 1). Then, for all θ ∈ (0, 1),
we find sequences xi ∈ B 3

4
, (0, 1

4
) 3 ri ↘ 0, and Ek,2-minimizing mappings

fi ∈ W k,2(Bm, N) such that

k∑
j=1

r2j−m
i

∫
Bri (xi)

|Djfi|2 dx =: δ2
i ↘ 0,
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but
k∑
j=1

(θri)
2j−m

∫
Bθri (xi)

|Djfi|2 dx > θ2αδ2
i

for all i. Let fi be the mean value of fi on Bri(xi). We define rescaled mappings

ui(x) :=
fi(xi + rix)− fi

δi
.

and rescaled target manifolds Ni := δ−1
i (N−fi). Then every ui ∈ W k,2(Bm, Ni)

has mean value 0 and fulfills
∑k

j=1

∫
Bm
|Djui|2 dx = 1. By Lemma 3.2, the

derivatives Djui are even controlled in L
2k
j (B 1

2
),∫

B 1
2

|Djui|
2k
j dx ≤ C for j = 1, . . . , k.

A subsequence (again denoted by ui) then converges weakly in
⋂k
j=1 W

j, 2k
j (B 1

2
)

and almost everywhere to some u∞ : B 1
2
→ N∞, where N∞ is a linear subspace

of Rn. By Theorem 3.1, u∞ is Ek,2-minimizing. Hence u∞ is k-polyharmonic,
i.e. ∆ku∞ = 0. A standard estimate for polyharmonic maps (see [7, Lemma 6.2])
says that for all σ ∈ (0, 1

4
), we have∫

Bσ

|Dju∞|2 dx ≤ Cσm
∫
B 1

2

|Dju∞|2 dx

for all j ∈ {1, . . . , k}, with C not depending on σ.
Since we have W k,2-norm convergence ui → u∞ on Bθ for all θ ∈ (0, 1

2
) and

weak convergence on B 1
2
, we have

lim
i→∞

δ−2
i

k∑
j=1

(θri)
2j−m

∫
Bθri (xi)

|Djfi|2 dx = lim
i→∞

k∑
j=1

θ2j−m
∫
Bθ

|Djui|2 dx

=
k∑
j=1

θ2j−m
∫
Bθ

|Dju∞|2 dx

≤ C
k∑
j=1

θ2j

∫
B 1

2

|Dju∞|2 dx

≤ Cθ2

k∑
j=1

∫
B 1

2

|Dju∞|2 dx

≤ Cθ2 lim
i→∞

k∑
j=1

∫
B 1

2

|Djui|2 dx

≤ C0θ
2.
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Choose θ small enough to have C0θ
2 ≤ θ2α

2
, then

lim
i→∞

k∑
j=1

(θri)
2j−m

∫
Bθri (xi)

|Djfi|2 dx ≤
θ2α

2
δ2
i ,

which contradicts the assumption that (M) does not hold. Hence we have
proven (M).

Now (M) is built in such a way that once its smallness condition is satisfied
on Br(y), it also holds on Bθir(y) for all i ∈ N. Hence we can iterate the assertion
of (M). Even better, there is δ1 ∈ (0, δ0) such that if the smallness condition
holds on Br(y) with δ1 instead of δ0, the original smallness condition is satisfied
on every B r

2
(z) ⊂ Br(y), and we can iterate from there. This means that, once

we have
k∑
j=1

r2j−m
∫
Br(y)

|Djf |2 dx ≤ δ2
1

for some r > 0, the function f will obey∫
Bs(z)

|Df |2 dx ≤ Cδ2
0s
m−2+2α

for all z ∈ B r
2
(y), s ∈ (0, r

2
). Hence f is C0,α-Hölder continuous on B r

2
(y) by

Morrey’s Dirichlet growth criterion, for any α ∈ (0, 1). By [7, Proposition 7.1],
any Hölder continuous weakly polyharmonic map is smooth.

Summarizing, we have proved that our polyharmonic map is smooth in the
neighborhood of any point where

inf
r

k∑
j=1

r2j−m
∫
Br(y)

|Djf |2 dx ≤ δ2
1. (5)

Let Σ(f, δ1) be the set of all points where this does not hold. Then the singu-

lar set of f is contained in Σ(f, δ1). And from a standard argument, see e.g.

[8, Chapter IV] and note that r2k−m ∫
Br(y)

|Du|2k dx is controlled by the left-

hand side of (5), we know that Hm−2k(Σ(f, δ1)) = 0. This proves our partial

regularity theorem. �
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