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Which Functions are
Fractionally Differentiable?
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Abstract. We examine the existence of fractional derivatives of a function in terms of
the pointwise convergence or equiconvergence of certain improper integrals containing
this function. The fractional differentiation operator is treated as the inverse to the
Riemann-Liouville integral operator. Technically, we give a description of the range
of the Riemann-Liouville operator. The results are reformulated also for Riemann-
Liouville and Caputo fractional derivatives.
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1. Introduction

Consider the Riemann-Liouville integral operator Jα : C[0, T ] → C[0, T ] of
order α > 0, α ∈ R, defined by

(Jαu)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, 0 ≤ t ≤ T, u ∈ C[0, T ],

where Γ is the Euler Gamma-function. In particular, (J1u)(t) =
∫ t

0
u(s)ds. For

α = m ∈ N = {1, 2, . . .}, the range of the operator Jm is given by

JmC[0, T ] = {v ∈ Cm[0, T ] : v(k)(0) = 0, k = 0, . . . ,m− 1} =: Cm
0 [0, T ],

and Jm is invertible on it, (Jm)−1v = Dm
0 v, where Dm

0 : Cm
0 [0, T ] → C[0, T ] is

the restriction of the operator Dm =
(
d
dt

)m
: Cm[0, T ] → C[0, T ]. Due to the

semigroup property (see e.g. [1, 3])

JαJβ = JβJα = Jα+β for α > 0, β > 0, (1)
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Jα is invertible on its range JαC[0, T ] also for fractional (noninteger) α > 0.
Indeed, if Jαu = 0 for some u ∈ C[0, T ] then taking m ∈ N, m > α, we have
Jmu = Jm−αJαu = 0, u = 0.

The description of the range JαC[0, T ], α > 0, is closely related to the
description of the class of fractionally differentiable functions. Namely, one
possible definition of the fractional differentiation operator of order α > 0 is
given by

Dα
0 v = (Jα)−1v, v ∈ JαC[0, T ]. (2)

This most natural definition is used e.g. in the Mathematical Encyclopedia [8],
however, the Riemann-Liouville modification Dα

R-L and the Caputo modifica-
tion Dα

Cap of the definition are more suitable in applications and more popular
in literature; in Sections 4 and 5 we examine the relations between Dα

0 , Dα
R-L

and Dα
Cap . In our considerations, the “pure” concept (2) is preferable, since due

to (1), operator Dα
0 has the property that

Dα
0D

β
0 = Dβ

0D
α
0 = Dα+β

0 for α > 0, β > 0, (3)

whereas for Dα
R-L and Dα

Cap this property is lost.

According to (2), a function v ∈ C[0, T ] is Dα
0 -differentiable if and only

if equation Jαu = v has a solution u ∈ C[0, T ]. For m < α < m + 1,
m ∈ N0 = {0, 1, 2, . . .}, this equation is equivalent to Jm+1−αJαu = Jm+1−αv,
or to Jm+1u = Jm+1−αv which is solvable if and only if Jm+1−αv ∈ Cm+1

0 [0, T ];
the solution is given by u = Dα

0 v = Dm+1Jm+1−αv. Thus for m < α < m + 1,
m ∈ N0, it holds that

Dα
0 v = Dm+1Jm+1−αv for v ∈ C[0, T ] such that Jm+1−αv ∈ Cm+1

0 [0, T ]. (4)

This can be considered as a definition of Dα
0 equivalent to (2).

Which functions are Dα
0 -differentiable? Due to (4), an indirect answer is

that a function v ∈ C[0, T ] is Dα
0 -differentiable for an α ∈ (m,m + 1) if and

only if Jm+1−αv ∈ Cm+1
0 [0, T ]. But here a new question arises: for which

v ∈ C[0, T ] it holds Jm+1−αv ∈ Cm+1
0 [0, T ]? We have not found in literature

an exhaustive answer to these essential questions, only some simple sufficient
conditions for the fractional differentiability are known, e.g. that Dα

Capv exists

for v ∈ Cm[0, T ], m < α < m+ 1, if v(m) ∈ Hβ[0, T ], α−m < β ≤ 1. Our main
result, Theorem 2.1, answers these questions to full extent in case 0 < α < 1
in terms of the pointwise convergence, majorized pointwise convergence and
equiconvergence of the Riemann improper integrals∫ t

0

(t− s)−α−1
(
v(t)−v(s)

)
ds := lim

θ↑1

∫ θt

0

(t− s)−α−1
(
v(t)−v(s)

)
ds, 0 < t ≤ T,

complemented by some further conditions on v ∈ C[0, T ]. Theorem 2.2 extends
the results to the case m < α < m+ 1 with an arbitrary m ∈ N0.
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2. Formulation of main results

By Hα[0, T ], 0 < α ≤ 1, we mean the standard Hölder space consisting of
functions v ∈ C[0, T ] such that

‖v‖Hα := max
0≤t≤T

|v(t)|+ sup
0≤s<t≤T

|v(t)− v(s)|
(t− s)α

<∞,

and by Hα
0 [0, T ], 0 < α < 1, we mean the closed [7] subspace of Hα[0, T ]

consisting of functions v ∈ Hα[0, T ] such that

sup
0≤s<t≤T, t−s≤ε

|v(t)− v(s)|
(t− s)α

→ 0 as ε→ 0.

The central results of the article are formulated in the following theorem.

Theorem 2.1. For an α ∈ (0, 1) and a function v ∈ C[0, T ], the following
conditions (i), (ii), (ii′), (iii) and (iii′) are equivalent:

(i) v ∈ JαC[0, T ], i.e. the fractional derivative Dα
0 v := (Jα)−1v ∈ C[0, T ]

exists;

(ii) a finite limit γ0 := limt→0 t
−αv(t) exists, and the Riemann improper inte-

grals
∫ t

0
(t − s)−α−1

(
v(t) − v(s)

)
ds, 0 < t ≤ T , equiconverge in the sense

that

lim
θ↑1

sup
0<t≤T

∣∣∣∣∫ t

0

(t−s)−α−1
(
v(t)−v(s)

)
ds−

∫ θt

0

(t−s)−α−1
(
v(t)−v(s)

)
ds

∣∣∣∣=0; (5)

(ii′) a finite limit γ0 := limt→0 t
−αv(t) exists; the Riemann improper integral∫ t

0
(t − s)−α−1

(
v(t) − v(s)

)
ds =: w(t) converges for any t ∈ (0, T ] and

defines a function w ∈ C(0, T ] which has a finite limit as t → 0 (hence
w ∈ C[0, T ]); moreover, there is a majorant function W ∈ L1(0, T ) such
that ∣∣∣∣∫ θt

0

(t−s)−α−1
(
v(t)−v(s)

)
ds

∣∣∣∣≤W (t) for 0<t<T, 0<θ<1; (6)

(iii) v has the structure v = γ0t
α + v0 where γ0 is a constant, v0 ∈ Hα

0 [0, T ],
v0(0) = 0, and the improper integral

∫ t
0
(t− s)−α−1

(
v(t)− v(s)

)
ds =: w(t)

converges for any t ∈ (0, T ] and defines a function w ∈ C(0, T ] which has
a finite limit w(0) := limt→0w(t) (so w ∈ C[0, T ]);

(iii′) v has the structure v = γ0t
α + v0 where γ0 is a constant, v0 ∈ Hα

0 [0, T ],
v0(0) = 0, and the improper integral

∫ t
0
(t−s)−α−1

(
v0(t)−v0(s)

)
ds=:w0(t)

converges for any t ∈ (0, T ] and defines with w0(0) = 0 a function
w0 ∈ C[0, T ].
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For v ∈ JαC[0, T ], it holds for 0 < t ≤ T that

(Dα
0 v)(t) := ((Jα)−1v)(t)

=
1

Γ(1− α)

(
t−αv(t) + α

∫ t

0

(t− s)−α−1
(
v(t)− v(s)

)
ds
)

;

(Dα
0 v)(0) := ((Jα)−1v)(0) = Γ(α + 1)γ0.

(7)

The proof of Theorem 2.1 is presented in Section 6.

Perhaps, the equivalence of conditions (i), (ii) and (iii) is most interesting
and useful. The equivalence of (i) and (ii) tells us that the existence of the
fractional derivative Dα

0 v can be always discovered with the help of equicon-
vergence (5), whereas the equivalence of (i) and (iii) tells us that, with the
reservations formulated in condition (iii), the pointwise convergence of the im-
proper integrals

∫ t
0
(t− s)−α−1

(
v(t)− v(s)

)
ds, 0 < t ≤ T , will also do.

Requiring in (ii), (ii′), (iii) or (iii′) the absolute convergence of the im-
proper integrals we do not obtain the whole range JαC[0, T ]. For instance,
one can check that v(t) = t(1 − t)α log(1 − t)−1 sin log(1 − t), 0 < t < 1,
v(0) = v(1) = 0, satisfies (iii) with γ0 = 0, T = 1, hence v ∈ JαC[0, 1], but∫ 1

0
(1−s)−α−1 |v(1)−v(s)| ds =

∫ 1

0
s(1−s)−1 |log(1−s)|−1 |sin log(1−s)| ds=∞.

It is easy to extend Theorem 2.1 to the case of arbitrary fractional α > 0;
for the sake of brevity, we omit the claims corresponding to (ii’) and (iii’).

Theorem 2.2. For m < α < m+1, m ∈ N0 = {0, 1, 2, . . . . . .}, and v ∈ C[0, T ],
the fractional derivative Dα

0 v ∈ C[0, T ] exists if and only if v ∈ Cm
0 [0, T ] and the

fractional derivative Dα−m
0 v(m) ∈ C[0, T ] exists; in other words, the following

conditions (im), (iim) and (iiim) are equivalent:

(im) v ∈ JαC[0, T ];

(iim) v ∈ Cm
0 [0, T ], a finite limit limt→0 t

m−αv(m)(t) =: γm exists, and

sup
0<t≤T

∣∣∣∣∫ t

θt

(t− s)m−α−1
(
v(m)(t)− v(m)(s)

)
ds

∣∣∣∣→ 0 as θ → 1;

(iiim) v ∈ Cm
0 [0, T ], function v(m) has the structure v(m) = γmt

α−m + vm where
γm is a constant, vm ∈ Hα−m

0 [0, T ], vm(0) = 0, and the Riemann improper
integral

∫ t
0
(t − s)m−α−1

(
v(m)(t) − v(m)(s)

)
ds =: wm(t) converges for any

t ∈ (0, T ] and defines a function wm ∈ C(0, T ] which has a finite limit
wm(0) := limt→0wm(t).

For v ∈ JαC[0, T ], it holds Dα
0 v = Dα−m

0 v(m), i.e. (Dα
0 v)(0) = Γ(α+ 1−m)γm,

(Dα
0 v)(t) =

1

Γ(m+ 1− α)

(
tm−αv(m)(t)

+ (α−m)

∫ t

0

(t− s)m−α−1
(
v(m)(t)− v(m)(s)

)
ds
)
, 0 < t ≤ T.
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Proof. For m = 0, the claims of Theorem 2.2 are contained in Theorem 2.1.
For m ≥ 1, m < α < m + 1, due to (3), it holds that Dα

0 = Dα−m
0 Dm

0 ,
and Theorem 2.2 follows from Theorem 2.1 with Dm

0 v in the role of v and
α−m ∈ (0, 1) in the role of α.

For α = m ∈ N a formal counterpart of Theorem 2.2 does not hold; actually
we do not need it since JmC[0, T ] = Cm

0 [0, T ].

3. Examples

3.1. Functions v ∈ Hβ[0, T ], 0 < α < β ≤ 1, v(0) = 0. Such a function
satisfies condition (ii) of Theorem 2.1, hence Dα

0 v ∈ C[0, T ] is well-defined and
formula (7) holds for it.

This simple observation is useful examining the Dα
0 -differentiability of func-

tions from the Sobolev space

Wm+1,p
0 (0, T ) =

{
v∈Cm[0, T ] : v(m+1)∈Lp(0, T ), v(k)(0) = 0, k = 0, . . . ,m

}
.

Proposition 3.1. For m < α < m+ 1, m ∈ N0, p > 1
m+1−α , it holds

Wm+1,p
0 (0, T )⊂JαC[0, T ], Dα

0 v = Jm+1−αv(m+1) for v∈Wm+1,p
0 (0, T ). (8)

Proof. Consider first the case m = 0. Inequality p > 1
1−α implies that p−1

p
> α.

For v ∈ W 1,p
0 (0, T ), 0 ≤ s < t ≤ T , t− s ≤ 1, we get with the help of Hölder’s

inequality that

| v(t)− v(s) |=
∣∣∣∣∫ t

s

v′(τ)dτ

∣∣∣∣ ≤ ‖v′‖Lp (t− s)
p−1
p ,

thus v ∈ Hβ[0, T ], β = p−1
p
> α. Hence v ∈ JαC[0, T ] and (7) holds. Integration

by parts brings (7) to the form Dα
0 v = J1−αv′, i.e. to (8) for m = 0, completing

so the proof of the Proposition for m = 0. For m < α < m + 1, m ≥ 1, the
Proposition follows from case m = 0 due to the equality Dα

0 = Dα−m
0 Dm

0 .

For v ∈ Cm+1[0, T ], more generally for v ∈ Wm+1,p(0, T )), the Caputo frac-
tional derivative Dα

Capv of an order α ∈ (m,m+ 1) is often defined by Dα
Capv =

Jm+1−αv(m+1) (see e.g. [5, 6]). We see from Proposition 3.1 that Dα
0 v = Dα

Capv

for v ∈ Wm+1,p
0 (0, T ) with p > 1

m+1−α , in particular, for v ∈ Cm+1
0 [0, T ]. In

Section 5 we use somewhat more general concept of Caputo fractional deriva-
tive [1, 3] applicable to a more wide class of functions v ∈ Cm[0, T ] that need
not to be m+ 1 times differentiable; for v ∈ Cm+1[0, T ] the two definitions are
equivalent.
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3.2. Function tα, α > 0. Since (Jα1)(t) = 1
Γ(α+1)

tα, function tα is Dα
0 -

differentiable. By Theorem 2.1 tα satisfies for 0 < α < 1 condition (ii). But
we need an independent establishment of this fact since the proof of Theo-
rem 2.1 itself uses (ii) for tα, 0 < α < 1. A direct proof is relatively simple:
γ0 = limt→0 t

−αtα = 1, and the integration by parts and the change of variables
s = tx yield∫ t

θt

(t− s)−α−1
(
tα − sα

)
ds =

tα − sα

α(t− s)α

∣∣∣∣t
s=θt

+

∫ t

θt

(t− s)−αsα−1ds

= − 1− θα

α(1− θ)α
+

∫ 1

θ

(1− x)−αxα−1dx︸ ︷︷ ︸
→0 as θ↑1

(9)

(we see that the integral is actually independent of t); the L’Hospital’s rule
helps to observe that lims↑t

tα−sα
(t−s)α = 0 and limθ↑1

1−θα
(1−θ)α = 0.

Although function v(t) = (T − t)α − Tα, 0 ≤ t ≤ T , is for 0 < α < 1 of the
same smoothness class as tα (still v ∈ Hα[0, T ] and v(0) = 0), nevertheless, v /∈
JαC[0, T ], since

∫ t
0
(t− s)−α−1

(
v(t)− v(s)

)
ds diverges for t = T and hence (iii)

is violated:∫ T

0

(T − s)−α−1
(
v(T )− v(s)

)
ds = −

∫ T

0

(T − s)−1ds = −∞.

3.3. Functions of type tαv(t). Such functions appear treating singular frac-
tional differential equations [4].

Proposition 3.2. For 0 < α < 1, v ∈ C[0, T ], the function tαv(t) is Dα
0 -

differentiable (i.e. tαv(t) belongs to JαC[0, T ]) if and only if the improper inte-
grals

∫ t
0
tα(t− s)−α−1(v(t)− v(s))ds, 0 < t ≤ T , equiconverge.

Proof. We show that tαv(t) satisfies (ii) iff
∫ t

0
tα(t−s)−α−1(v(t)−v(s))ds, 0<t≤T,

equiconverge. First, the limit limt→0 t
−α(tαv(t)) = v(0) exists. Second,∫ t

0

(t− s)−α−1(tαv(t)− sαv(s))ds

=

∫ t

0

(t− s)−α−1
(
tα − sα

)
v(s)ds+

∫ t

0

tα(t− s)−α−1(v(t)− v(s))ds.

Due to (9),
∫ t

0
(t − s)−α−1

(
tα − sα

)
v(s)ds, 0 < t ≤ T , equiconverge (even ab-

solutely). Thus
∫ t

0
(t − s)−α−1(tαv(t) − sαv(s))ds, 0 < t ≤ T , equiconverge iff∫ t

0
tα(t− s)−α−1(v(t)− v(s))ds, 0 < t ≤ T , equiconverge.
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Proposition 3.3. Assume that, for a v ∈ C[0, T ] and an α ∈ (0, 1), function
tαv(t) is Dα

0 -differentiable (i.e. tαv(t) belongs to JαC[0, T ]). Then function
tα
′
v(t) is Dα′

0 -differentiable for 0 < α′ < α (i.e. tα
′
v(t) belongs to Jα

′
C[0, T ]).

Proof. Assume the conditions of the proposition. According to Proposition 3.2
we have to show that

∫ t
0
tα
′
(t− s)−α′−1(v(t)− v(s))ds, 0 < t ≤ T , equiconverge.

Representing v(t)−v(s) = t−α(tαv(t)−sαv(s))+(t−α−s−α)sαv(s), it is sufficient
to show that the improper integrals I1 =

∫ t
0
tα
′−α(t− s)−α′−1(tαv(t)− sαv(s))ds

and I2 =
∫ t

0
tα
′
(t−s)−α′−1(t−α−s−α)sαv(s)ds, 0 < t ≤ T , equiconverge. Due to

equivalence of conditions (i) and (iii) for tαv(t) this function belongs toHα[0, T ],
resulting to the equiconverge of I1:∫ t

θt

tα
′−α(t− s)−α′−1(tαv(t)− sαv(s))ds ≤ c

∫ t

θt

tα
′−α(t− s)α−α′−1ds

= c

∫ t

θt

t−1
(

1− s

t

)
α−α′−1ds

= c

∫ 1

θ

(1− x)α−α
′−1dx→ 0 as θ ↑ 1.

Also I2 equiconverge:∫ t

θt

tα
′
(t− s)−α′−1(t−α − s−α)sαds =

∫ 1

θ

(1− x)−α
′−1(xα − 1)dx→ 0 as θ ↑ 1,

since (1−x)−α
′−1(xα−1) = xα−1

(1−x)α
(1−x)α−α

′−1 where xα−1
(1−x)α

is bounded in (0, 1)

(note that xα−1
(1−x)α

→ 0 as x→ 1) and (1− x)α−α
′−1 belongs to L1(0, 1).

Remark 3.4. Proposition 3.3 admits an extension: If trv(t) is Dr
0-differentiable

for a v ∈ C[0, T ] and an r ∈ R, r > 0, then t%v(t) is D%
0-differentiable for

0 < % ≤ r.

The proof can be constructed establishing for v ∈ C[0, T ] the following
claims:

1. if tm+αv(t) belongs to Jm+αC[0, T ], m ∈ N, 0 < α < 1, then tm+α′v(t)
belongs for 0 < α′ < α to Jm+α′C[0, T ] (here Proposition 3.3 can be used)
as well as tmv(t) belongs to JmC[0, T ];

2. if tmv(t) belongs to JmC[0, T ] = Cm
0 [0, T ], m ∈ N, then tkv(t) belongs to

Ck
0 [0, T ] = JkC[0, T ] for k ∈ N, k ≤ m;

3. if tkv(t) belongs to JkC[0, T ], k ∈ N, then t%v(t) belongs to J%C[0, T ] for
% ∈ (k − 1, k].

We omit the details. Claim 2 concerns usual (integer order) differentiation.
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4. Reformulation for Riemann-Liouville fractional
derivative

For m < α < m+ 1, m ∈ N0, and v ∈ C[0, T ] such that Jm+1−αv ∈ Cm+1[0, T ],
the Riemann-Liouville fractional derivative of order α is defined [1, 3, 6] by

Dα
R-Lv = Dm+1Jm+1−αv. (10)

The difference between (10) and (4) is that now we assume Jm+1−αv ∈
Cm+1[0, T ] instead of Jm+1−αv ∈ Cm+1

0 [0, T ]. Hence, for m < α < m + 1, a
Dα

0 -differentiable function v is also Dα
R-L-differentiable and Dα

0 v = Dα
R-Lv. The

inverse statement is true for functions v ∈ Cm[0, T ] (Proposition 4.1), whereas
for lesser smooth v the relation between Dα

R-Lv and Dα
0 v is somewhat more

complicated (Propositions 4.2 and 4.3).

Proposition 4.1. For m < α < m + 1, m ∈ N0, a function v ∈ Cm[0, T ] is
Dα

R-L-differentiable if and only if v is Dα
0 -differentiable. Besides Dα

R-Lv = Dα
0 v.

Proof. Let v ∈ Cm[0, T ] be Dα
R−L-differentiable, i.e. Jm+1−αv ∈ Cm+1[0, T ].

We have to establish that Jm+1−αv ∈ Cm+1
0 [0, T ], i.e. (Jm+1−αv)(k)(0) = 0 for

k = 0, 1, . . . ,m. For m = 0, 0 < α < 1, v ∈ C[0, T ], this really holds. For
m ≥ 1, v ∈ C1[0, T ], we transform

Γ(m+ 1− α)(Jm+1−αv)(t) =

∫ t

0

(t− s)m−αv(s)ds =

∫ t

0

sm−αv(t− s)ds;

the last integral admits a differentiation, and we obtain

Γ(m+ 1− α)(Jm+1−αv)′(t) = v(0)tm−α +

∫ t

0

sm−αv′(t− s)ds.

The function tm−α has a singularity at t = 0, whereas the integral term belongs
to C[0, T ]. Since (Jm+1−αv)′ ∈ C[0, T ] by condition, we conclude that v(0) = 0
and

Γ(m+ 1− α)(Jm+1−αv)′(t) =

∫ t

0

sm−αv′(t− s)ds.

If m ≥ 2, we can repeat the argument with differentiation. We obtain recur-
sively that v(k−1)(0) = 0, k = 1, . . . ,m, and

Γ(m+ 1− α)(Jm+1−αv)(k)(t) =

∫ t

0

sm−αv(k)(t− s)ds =

∫ t

0

(t− s)m−αv(k)(s)ds

for k = 0, . . . ,m. We conclude that (Jm+1−αv)(k)(0) = 0, k = 0, 1, . . . ,m.
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It is known (see e.g. [1]) and it is easy to check that

Jαtr =
Γ(r + 1)

Γ(r + α + 1)
tr+α for α > 0, r > −1. (11)

In particular, for m < α < m+ 1 we have

Jm+1−αtα−m−1+k =
Γ(α−m+ k)

k!
tk, k = 0, 1, 2, . . . , (12)

Dα
R-Lt

α−m−1+k = Dm+1Jm+1−αtα−m−1+k = 0, k = 0, . . . ,m, (13)

thus Dα
R-L has an m-dimensional null-space span{tα−m−1+k : k = 1, . . . ,m}

in C[0, T ]; in case 0 < α < 1, i.e. m = 0, the null-space of Dα
R-L in C[0, T ]

is trivial. (In L1(0, T ) operator Dα
R-L has an (m + 1)-dimensional null-space

span{tα−m−1+k : k = 0, . . . ,m}.)
Proposition 4.2. For m < α < m + 1, m ≥ 1, a function v ∈ C[0, T ] has the
fractional derivative Dα

R−Lv ∈ C[0, T ] if and only if v has the structure

v = v0 +
m∑
k=1

γkt
α−m−1+k, γk = const, (14)

where v0 ∈ C[0, T ] is Dα
0 -differentiable, i.e. v0 ∈ JαC[0, T ], implying Jm+1−αv0

∈ Cm+1
0 [0, T ]. Besides Dα

R−Lv = Dα
0 v0.

Proof. Assume the representation (14) where v0 ∈ C[0, T ] is Dα
0 -differentiable.

From (13) and (14) it follows immediately that Dα
R-Lv = Dα

R-Lv0 = Dα
0 v0.

Conversely, if v ∈ C[0, T ] is Dα
R-L-differentiable then Jm+1−αv ∈ Cm+1[0, T ]

according to (10). Put v0 = v −
∑m

k=1 γkt
α−m+k ∈ C[0, T ], γk = (Jm+1−αv)(k)(0)

Γ(α−m+k)
,

k = 0, . . . ,m; observe that γ0 = 0 since (Jm+1−αv)(0) = 0. Due to (12)

Jm+1−αv0 = Jm+1−αv−
m∑
k=1

γk
Γ(α−m+k)

k!
tk = Jm+1−αv−

m∑
k=1

(Jm+1−αv)(k)(0)

k!
tk,

(Jm+1−αv0)(k)(0) = 0, k = 0, . . . ,m.

Thus we have for v representation (14) such that Jm+1−αv0 ∈ Cm+1
0 [0, T ], hence

Dα
0 v0 is well defined (see (4)) and Dα

0 v0 = Dα
R-Lv0 = Dα

R-Lv due to (13.

For a Dα
R-L-differentiable function v ∈ C the representation (14) is unique.

Proposition 4.3. For m < α < m + 1, m ≥ 2, 1 ≤ ` ≤ m − 1, a function
v ∈ C`[0, T ] has the fractional derivative Dα

R-Lv ∈ C[0, T ] if and only if v has
the structure

v = v0 +
m∑

k=`+1

γkt
α−m−1+k, γk = const, (15)

where v0 ∈ C`[0, T ] is Dα
0 -differentiable, i.e. v0 ∈ JαC[0, T ], implying Jm+1−αv0

∈ Cm+1
0 [0, T ]. Besides Dα

R−Lv = Dα
0 v0.
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(The case ` = m is covered by Proposition 4.1, and the case ` = 0 is
covered by Proposition 4.2). The proof of Proposition 4.3 can be easily con-
structed combining the proof arguments of Propositions 4.1 and 4.2. For a
Dα

R−L-differentiable function v ∈ C`[0, T ] the representation (15) is unique.

Due to Proposition 4.1, the reformulation of Theorem 2.2 for Dα
R-Lv,

m < α < m+1, v ∈ Cm[0, T ], m ≥ 0, contains no essential changes, except that
condition (im) now reads as follows: The fractional derivative Dα

R-Lv ∈ C[0, T ]
exists.

Using Propositions 4.2 and 4.3 it is easy to reformulate Theorem 2.2 also
for Dα

R-Lv, v ∈ C`[0, T ], 0 ≤ ` ≤ m− 1.

Remark 4.4. Form < α < m+1, m ≥ 1, f ∈ L1(0, T ) (then Jαf ∈ Cm−1[0, T ],
(Jαf)(i)(0) = 0, i = 0, . . . ,m− 1), formula (14) with v0 = Jαf presents the ge-
neral solution of equation Dα

R-Lv = f in C[0, T ]; the general solution in L1(0, T )
contains also the term γ0t

α−m−1, corresponding to k = 0. Similarly, formula (15)
with v0 = Jαf presents the general solution of Dα

R-Lv = f in C`[0, T ].

5. Reformulation for Caputo fractional derivative

For v ∈ Cm[0, T ], denote (Πmv)(t) =
∑m

k=0
v(k)(0)
k!

tk. For m < α < m + 1,
m ∈ N0, and v ∈ Cm[0, T ] such that Jm+1−α(v − Πmv) ∈ Cm+1[0, T ], the
Caputo fractional derivative of order α is defined [1, 3] by

Dα
Capv = Dm+1Jm+1−α(v − Πmv) = Dα

R−L(v − Πmv). (16)

In particular, for v ∈ Cm+1[0, T ] the condition Jm+1−α(v − Πmv) ∈ Cm+1[0, T ]
is fulfilled, and an equivalent formulation of (16) can be given by (cf. [5, 6])
Dα

Capv = Jm+1−αDm+1v commented in the end of Section 3.1.

Proposition 5.1. A function v ∈ Cm[0, T ] has the Caputo fractional derivative
Dα

Capv ∈ C[0, T ], m < α < m + 1, m ∈ N0, if and only if v − Πmv has the
fractional derivative Dα

0 (v − Πmv) ∈ C[0, T ]. Besides Dα
Capv = Dα

0 (v − Πmv).

Proof. For m < α < m+ 1, conditions u ∈ Cm[0, T ], u(k)(0) = 0, k = 0, . . . ,m,
imply that (Jm+1−αu)(k)(0) = 0, k = 0, . . . ,m. Therefore the preassumption
Jm+1−α(v − Πmv) ∈ Cm+1[0, T ] in (16) is equivalent to Jm+1−α(v − Πmv) ∈
Cm+1

0 [0, T ], thus Dα
0 (v−Πmv) is well defined by (4), and (16) can be continued

as follows: Dα
Capv = Dm+1Jm+1−α(v − Πmv) = Dα

0 (v − Πmv).

Taking into account that (v − Πmv)(m) = v(m) − v(m)(0) we obtain the
following reformulation of Theorem 2.2 for Dα

Capv, v ∈ Cm[0, T ].
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Theorem 5.2. For m < α < m + 1, m ∈ N0, and v ∈ Cm[0, T ], the following
conditions (im), (iim) and (iiim) are equivalent:

(im) the fractional derivative Dα
Capv ∈ C[0, T ] exists;

(iim) a finite limit limt→0 t
m−α(v(m)(t)− v(m)(0)

)
=: γm exists, and

sup
0<t≤T

∣∣∣∣∫ t

θt

(t− s)m−α−1
(
v(m)(t)− v(m)(s)

)
ds

∣∣∣∣→ 0 as θ ↑ 1;

(iiim) v(m) has the structure v(m) − v(m)(0) = γmt
α−m + vm where γm is a cons-

tant, vm ∈ Hα−m
0 [0, T ], and

∫ t
0
(t− s)m−α−1

(
v(m)(t)− v(m)(s)

)
ds =: wm(t)

converges for every t ∈ (0, T ] defining a function wm ∈ C(0, T ] which has
a finite limit limt→0wm(t) =: wm(0).

For v ∈ Cm[0, T ] with Dα
Capv ∈ C[0, T ], it holds (Dα

Capv)(0) = Γ(α+ 1−m)γm,

(Dα
Capv)(t) =

1

Γ(m+ 1− α)

(
tm−α

(
v(m)(t)− v(m)(0)

)
+ (α−m)

∫ t

0

(t− s)m−α−1
(
v(m)(t)− v(m)(s)

)
ds
)
, 0 < t ≤ T.

6. Proof of Theorem 2.1

6.1. Differentiation of J1−αv0. The proof of implication (iii’)→(i) is based
on Proposition 6.3 about the differentiation of the fractional integral J1−αv0.
First we establish some auxiliary results (Lemmas 6.1 and 6.2).

Lemma 6.1. For 0 < α < 1, t > 0, 0 < h < t it holds that

0 ≤
∫ t−h

0

(
(t−s)−α−1− (t+h−s)−α−1

)
(t−s)αds ≤ c+

α :=
1

α

(
1−2−α

)
+ log 2. (17)

For 0 < α < 1, t > 0, 0 < 2h < t it holds that

0 ≤
∫ t−2h

0

(
(t−h−s)−α−1 − (t−s)−α−1

)
(t−s)αds ≤ c−α :=

1

α
2α + log 2. (18)

Proof. To establish (17), integrate the term
∫ t−h

0
(t + h − s)−α−1(t − s)αds by

parts and estimate the result from below:∫ t−h

0

(t+h−s)−α−1(t−s)αds=
1

α

(
2−α−

(
t

t+h

)α)
+

∫ t−h

0

(t+h−s)−α(t−s)α−1ds

≥ 1

α

(
2−α−

(
t

t+h

)α)
+

∫ t−h

0

(t+h−s)−1ds.
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Now (17) follows:

0 ≤
∫ t−h

0

(
(t− s)−α−1 − (t+ h− s)−α−1

)
(t− s)αds

≤ − 1

α

(
2−α −

(
t

t+ h

)α)
+

∫ t−h

0

(
(t− s)−1 − (t+ h− s)−1

)
ds

=
1

α

((
t

t+ h

)α
− 2−α

)
+ log 2− log

t+ h

t

≤ 1

α

(
1− 2−α

)
+ log 2.

To establish (18), integrate the term
∫ t−2h

0

(
(t − h − s)−α−1(t − s)αds by parts

and estimate the result from above:∫ t−2h

0

(t−h−s)−α−1(t−s)αds=
1

α

(
2α−

(
t

t−h

)α)
+

∫ t−2h

0

(t−h−s)−α(t−s)α−1ds

≤ 1

α

(
2α−

(
t

t−h

)α)
+

∫ t−2h

0

(t−h−s)−1ds.

Now (18) follows:

0 ≤
∫ t−2h

0

(
(t− h− s)−α−1 − (t− s)−α−1

)
(t− s)αds

≤ 1

α

(
2α −

(
t

t− h

)α)
+

∫ t−2h

0

(
(t− h− s)−1 − (t− s)−1

)
ds

=
1

α

(
2α −

(
t

t− h

)α)
+ log 2− log

t

t− h

≤ 1

α
2α + log 2.

Lemma 6.2. Let v0 ∈ Hα
0 [0, T ], 0 < α < 1. Assume that the improper integral∫ t

0
(t − s)−α−1

(
v0(t) − v0(s)

)
ds converges for a t ∈ (0, T ]. Then for this t and

for

V+(t, h) :=

∫ t

0

(t+ h− s)−α − (t− s)−α

h

(
v0(t)− v0(s)

)
ds, 0 < h < T − t,

V−(t, h) :=

∫ t−h

0

(t− s)−α − (t− h− s)−α

h

(
v0(t)− v0(s)

)
ds, 0 < h < t,

it holds that

lim
h→0

V+(t, h) = lim
h→0

V−(t, h) = −α
∫ t

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds (19)

(for t = T the claim concerns only limh→0 V−(t, h) ).
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Proof. Note that
∫ t
t−h(t − s)−α−1

(
v0(t) − v0(s)

)
ds → 0 as h → 0 since, by

assumption, the improper integral
∫ t

0
(t− s)−α−1

(
v0(t)− v0(s)

)
ds converges. To

prove (19) for V+(t, h), it is sufficient to establish the relation

V+(t, h) + α

∫ t−h

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds→ 0 as 0 < h→ 0.

To this end, represent

V+(t, h) + α

∫ t−h

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds

=

∫ t

t−h

(t+ h− s)−α − (t− s)−α

h

(
v0(t)− v0(s)

)
ds

+

∫ t−h

0

(
(t+ h− s)−α − (t− s)−α

h
+ α(t− s)−α−1

)(
v0(t)− v0(s)

)
ds

and show that∫ t

t−h

∣∣∣∣(t+ h− s)−α − (t− s)−α

h

∣∣∣∣∣∣v0(t)− v0(s)ds
∣∣→ 0, (20)

∫ t−h

0

∣∣∣∣(t+ h− s)−α − (t− s)−α

h
+ α(t− s)−α−1

∣∣∣∣ |v0(t)− v0(s)| ds→ 0 (21)

as 0 < h → 0. Indeed, fix an arbitrary small ε > 0. Since v0 ∈ Hα
0 (0, T ], there

is a δ > 0 such that

|v0(t)− v0(s)| ≤ ε(t− s)α for 0 ≤ t− s ≤ δ. (22)

Hence, for 0 < h ≤ δ we obtain
∫ t
t−h

∣∣∣ (t+h−s)−α−(t−s)−α
h

∣∣∣ |v0(t)− v0(s)| ds ≤

ε
∫ t
t−h

(t−s)−α−(t+h−s)−α
h

(t − s)αds = ε 1
h

∫ t
t−h

(
1−

(
t−s

t+h−s

)α)
ds ≤ ε 1

h

∫ t
t−h ds = ε

proving (20). To prove (21), represent

(t+ h− s)−α − (t− s)−α

h
= −α (t+ h′ − s)−α−1, with some h′ ∈ (0, h),

and using (22) and (17) estimate∫ t−h

0

∣∣∣∣(t+ h− s)−α − (t− s)−α

h
+ α(t− s)−α−1

∣∣∣∣ |v0(t)− v0(s)| ds

≤ εα

∫ t−h

0

(
(t− s)−α−1 − (t+ h′ − s)−α−1

)
(t− s)αds

≤ εα

∫ t−h

0

(
(t− s)−α−1 − (t+ h− s)−α−1

)
(t− s)αds

≤ c+
ααε for 0 < h < δ.
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This completes the proof of (19) for V+(t, h).
Similarly, to prove (19) for V−(t, h), it is sufficient to establish the relation

V−(t, h) + α

∫ t−2h

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds→ 0 as 0 < h→ 0.

Representing

V−(t, h) + α

∫ t−2h

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds

=

∫ t−h

t−2h

(t− s)−α − (t− h− s)−α

h

(
v0(t)− v0(s)

)
ds

+

∫ t−2h

0

(
(t− s)−α − (t− h− s)−α

h
+ α (t− s)−α−1

)(
v0(t)− v0(s)

)
ds

it is easy to verify that∫ t−h

t−2h

∣∣∣∣(t− s)−α − (t− h− s)−α

h

∣∣∣∣∣∣v0(t)− v0(s)
∣∣ds→ 0,∫ t−2h

0

∣∣∣∣(t− s)−α − (t− h− s)−α

h
+ α (t− s)−α−1

∣∣∣∣ ∣∣v0(t)− v0(s)
∣∣ds→ 0

as 0 < h→ 0. The proof of the latter relation exploits (18) instead of (17).

Proposition 6.3. Assume that v0 ∈ Hα
0 [0, T ], 0 < α < 1, and that the improper

integral
∫ t

0
(t − s)−α−1

(
v0(t)− v0(s)

)
ds is convergent for a t ∈ (0, T ]. Then for

this t, the derivative (J1−αv0)′(t) (the left-hand derivative if t = T ) exists, and

(J1−αv0)′(t) =
1

Γ(1− α)

(
v0(t)t−α + α

∫ t

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds
)
. (23)

Proof. Let us analyse the existence of the right-hand derivative of (J1−αv0)(t).
For 0 < h ≤ T − t we have

(J1−αv0)(t+ h)− (J1−αv0)(t)

h

=
1

Γ(1− α)

1

h

{∫ t+h

0

(t+ h− s)−αv0(s)ds−
∫ t

0

(t− s)−αv0(s)ds

}
=

1

Γ(1− α)

1

h

{∫ t+h

0

(t+ h− s)−α
(
v0(s)− v0(t)

)
ds

−
∫ t

0

(t− s)−α
(
v0(s)− v0(t)

)
ds+

v0(t)

1− α
(
(t+ h)1−α − t1−α

)}
=

1

Γ(1− α)

{∫ t

0

(t+ h− s)−α − (t− s)−α

h

(
v0(s)− v0(t)

)
ds

+
1

h

∫ t+h

t

(t+ h− s)−α
(
v0(s)− v0(t)

)
ds+ v0(t)

(t+ h)1−α − t1−α

(1− α)h

}
.
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Here (t+h)1−α−t1−α
(1−α)h

→ 1
1−α

d
dt
t1−α = t−α as h→ 0. Further, due to (22),∣∣∣∣1h

∫ t+h

t

(t+ h− s)−α
(
v0(s)− v0(t)

)
ds

∣∣∣∣ ≤ ε

h

∫ t+h

t

( t− s
t+ h− s

)α
ds ≤ ε.

Hence 1
h

∫ t+h
t

(t+h−s)−α
(
v0(t)−v0(s)

)
ds→ 0 as h→ 0. Finally, by Lemma 6.2∫ t

0

(t+ h− s)−α − (t− s)−α

h

(
v0(s)− v0(t)

)
ds

= −V+(t, h)→ α

∫ t

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds as 0 < h→ 0.

Thus the right-hand derivative of (J1−αv0)(t) exists and formula (23) holds for
it.

The treatment of the left-hand derivative of J1−αv at t ∈ (0, T ] is similar:

(J1−αv0)(t)− (J1−αv0)(t− h)

h

=
1

Γ(1− α)

{∫ t−h

0

(t− s)−α − (t− h− s)−α

h

(
v0(s)− v0(t)

)
ds

+
1

h

∫ t

t−h
(t− s)−α

(
v0(s)− v0(t)

)
ds+ v0(t)

t1−α − (t− h)1−α

(1− α)h

}
.

Again t1−α−(t−h)1−α

(1−α)h
→ t−α, 1

h

∫ t
t−h(t− s)

−α(v0(t)− v0(s)
)
ds→ 0 as 0 < h→ 0,

and by Lemma 6.2 the term
∫ t−h

0
(t−h−s)−α−(t−s)−α

h

(
v0(s)− v0(t)

)
ds = −V−(t, h)

is convergent as 0 < h→ 0 and its limit is α
∫ t

0
(t− s)−α−1

(
v0(t)− v0(s)

)
ds.

For both one-side derivatives we get expression (23), thus the one-side
derivatives coincide, the derivative (J1−αv0)′(t) exists, and formula (23) holds.
This finishes the proof.

6.2. Some properties of fractional integral Jαu. The following proposition
collects the properties of Jαu, u ∈ C[0, T ], needed in the proof of implications
(i)⇒ (ii) and (i)⇒ (iii′).

Proposition 6.4. For u ∈ C[0, T ], 0 < α < 1, the function v = Jαu has the
structure

v = γ0t
α + v0, where γ0 =

u(0)

Γ(α + 1)
, v0 = Jα(u− u(0)) ∈ Hα

0 [0, T ], (24)

implying that limt→0 t
−αv(t)=γ0. Moreover,

∫ t
0
(t−s)−α−1

(
v(t)−(v(s)

)
ds=:w(t)

equiconverge for t ∈ (0, T ], i.e. (5) holds true, and w ∈ C[0, T ] with

w(0) := lim
t→0

w(t) =
1

α

(
Γ(1− α)− 1

Γ(α + 1)

)
u(0) =

γ0

α

(
Γ(1− α)Γ(α + 1)− 1

)
.



480 G. Vainikko

Finally, u ∈ C[0, T ] can be recovered from v = Jαu by inversion formula (7):
u(0) = Γ(α + 1)γ0,

u(t) =
1

Γ(1− α)

(
t−αv(t)+α

∫ t

0

(t−s)−α−1
(
v(t)−v(s)

)
ds
)
, 0 < t ≤ T. (25)

Proof. Representing u = u(0) + (u− u(0)) and exploiting (11) we immediately

get the representation Jαu = u(0)
Γ(α+1)

tα+Jα(u−u(0)). To obtain (24), it remains

to show that Jα(u− u(0)) ∈ Hα
0 [0, T ]. Introducing the operator

Kαu = Jα(u− u(0)), u ∈ C[0, T ],

it is sufficient to observe that Kα ∈ L(C[0, T ],Hα
0 [0, T ]), i.e. that Kα is a linear

bounded operator from C[0, T ] into Hα
0 [0, T ]. An elementary well-known fact is

that Jα ∈ L(C[0, T ],Hα[0, T ]) (see e.g. [1] or, in a more suitable form, [2, Satz
3.4.9]), hence also Kα ∈ L(C[0, T ],Hα[0, T ]). To see that actually it holds
Kα ∈ L(C[0, T ],Hα

0 [0, T ]), approximate a given u ∈ C[0, T ] by un ∈ C1[0, T ] so
that un(0) = u(0) and ‖un − u‖C → 0 as n→∞. Integrating by parts we get

(
Kαun

)
(t) =

1

Γ(α)

∫ t

0

(t−s)α−1
(
un(s)−un(0)

)
ds =

1

Γ(α + 1)

∫ t

0

(t−s)αu′n(s)ds,

and taking into account that u 7−→
∫ t

0
(t−s)αu′(s)ds is a bounded linear operator

in C1[0, T ] (observe that d
dt

∫ t
0
(t − s)αu′(s)ds = α

∫ t
0
(t − s)α−1u′(s)ds ), we

obtain that Kαun = Jα(un − un(0)) ∈ C1[0, T ] ⊂ Hα
0 [0, T ]. Due to equality

un(0)− u(0) = 0, it holds that Kαun −Kαu = Jα(un − u), and

‖Kαun −Kαu‖Hα = ‖Jα(un − u)‖Hα ≤
∥∥Jα∥∥L(C,Hα)

‖un − u‖C → 0.

Since Hα
0 [0, T ] is a closed subspace of Hα[0, T ], we can conclude that together

with Kαun also Kαu belongs to Hα
0 [0, T ]. Hence Kα ∈ L(C[0, T ],Hα

0 [0, T ]).
Observe that (24) really implies that limt→0 t

−αv(t) = γ0 since, due to
inclusion v0 ∈ Hα

0 [0, T ], it holds t−αv0(t) = t−α
(
v0(t) − v0(0)

)
→ 0 as t → 0,

and limt→0 t
−αv(t) = limt→0 t

−α(γ0t
α) = γ0.

The proof of the claims about the integral
∫ t

0
(t − s)−α−1

(
v(t) − (v(s)

)
ds,

v = Jαu, is more labour-consuming. Introduce the integral operators A and Aθ
by

(Aθu)(t) :=

∫ θt

0

(t− s)−α−1
(
(Jαu)(t)− (Jαu)(s)

)
ds, 0 < t ≤ T, 0 < θ < 1,

(Au)(t) :=

∫ t

0

(t− s)−α−1
(
(Jαu)(t)− (Jαu)(s)

)
ds, 0 < t ≤ T.
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For u ∈ C[0, T ], it holds Aθu ∈ C(0, T ] (observe that t − s ≥ (1 − θ)t under
the integral). The domain of operator A consists of functions u ∈ C[0, T ] for
which the improper integrals

∫ t
0
(t− s)−α−1

(
(Jαu)(t)− (Jαu)(s)

)
ds converge for

0 < t ≤ T . Below we prove that Aθ, A ∈ L(C[0, T ]) and
∥∥Aθu− Au∥∥C → 0 for

any u ∈ C[0, T ] as θ ↑ 1 establishing so (5) for v = Jαu. Let us transform

(Aθu)(t) =

∫ θt

0

(t− s)−α−1ds (Jαu)(t)−
∫ θt

0

(t− s)−α−1(Jαu)(s)ds

=
1

αΓ(α)

((
(1− θ)−α − 1

)
t−α
∫ t

0

(t− σ)α−1u(σ)dσ

− α
∫ θt

0

(t− s)−α−1

∫ s

0

(s− σ)α−1u(σ)dσds

)
.

In the last integral we change the integration order; this is legitimate since the
function (t − s)−α−1(s − σ)α−1 has for fixed t ∈ (0, T ] and θ ∈ (0, 1) in the
closure of the region 0 < σ < s < θt only a weak singularity on the diagonal
s = σ, whereas t− s ≥ (1− θ)t. We obtain∫ θt

0

(t−s)−α−1

∫ s

0

(s−σ)α−1u(σ)dσds =

∫ θt

0

(∫ θt

σ

(t−s)−α−1(s−σ)α−1ds
)
u(σ)dσ.

The change of variables s = (t − σ)x + σ (then x = s−σ
t−σ , s − σ = (t − σ)x,

t− s = (t− σ)(1− x), ds = (t− σ)dx) yields∫ θt

σ

(t− s)−α−1(s− σ)α−1ds =
1

t− σ

∫ θt−σ
t−σ

0

xα−1(1− x)−α−1dx.

The last integral can be computed by the formula α
∫ ξ

0
xα−1(1 − x)−α−1dx =

ξα(1 − ξ)−α, 0 < ξ < 1, which can be checked by differentiation with respect
to ξ. We get

α

∫ θt−x
t−σ

0

xα−1(1− x)−α−1dx =

(
θt−σ
t−σ

)α(
1− θt−σ

t−σ

)−α
= (1−θ)−αt−α(θt−σ)α.

Thus α
∫ θt

0
(t−s)−α−1

∫ s
0

(s−σ)α−1u(σ)dσ = (1−θ)−αt−α
∫ θt

0
(θt−σ)α

t−σ u(σ)dσ, and

(Aθu)(t) =
(1−θ)−α

Γ(α+1)
t−α
∫ θt

0

(t−σ)α−1

(
1− (θt−σ)α

(t−σ)α

)
u(σ)dσ

− 1

Γ(α+1)
t−α
∫ t

0

(t−σ)α−1u(σ)dσ +
(1−θ)−α

Γ(α+1)
t−α
∫ t

θt

(t−σ)α−1u(σ)dσ,

or after the change of variables σ = tx,

(Aθu)(t)=
(1−θ)−α

Γ(α+1)

∫ θ

0

(1−x)α−1

(
1−
(
θ−x
1−x

)α)
u(tx)dx

− 1

Γ(α+1)

∫ 1

0

(1−x)α−1u(tx)dx+
(1−θ)−α

Γ(α+1)

∫ 1

θ

(1−x)α−1u(tx)dx,

(26)
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where 0 < t ≤ T . Herefrom we see that for a fixed θ ∈ (0, 1) it holds

(Aθu)(0) := lim
t→0

(Aθu)(t)

=
(1− θ)−α

Γ(α + 1)

∫ θ

0

(1− x)α−1

(
1−

(
θ − x
1− x

)α)
dx u(0);

(27)

the other two integrals in (26) reduce as t→ 0 since

1

Γ(α + 1)

∫ 1

0

(1− x)α−1dx =
1

Γ(α + 1)α
,

(1− θ)−α

Γ(α + 1)

∫ 1

θ

(1− x)α−1dx =
1

Γ(α + 1)α
.

So for u ∈ C[0, T ], θ ∈ (0, 1), we have Aθu ∈ C[0, T ]. The boundedness and
even the uniform boundedness of Aθ ∈ L(C[0, T ]), 0 < θ < 1, follows from (26)
since, as we soon show,

0 ≤ (1− θ)−α

Γ(α + 1)

∫ θ

0

(1− x)α−1

(
1−

(θ − x
1− x

)α)
dx ≤ Γ(1− α)

α
(28)

(observe that 1−
(
θ−x
1−x

)α ≥ 0 for 0 ≤ x ≤ θ); this results to

‖Aθ‖L(C) ≤
Γ(1− α)

α
+

2

Γ(α + 1)α
, 0 < θ < 1. (29)

Claim (5) for v = Jαu means that ‖Aθu− Au‖C → 0 as θ → 1. By the Banach-
Steinhaus theorem, in view of (29), we obtain the convergence ‖Aθu−Au‖C → 0
as θ → 1 for any u ∈ C[0, T ] by checking that this convergence takes place on
a dense set of C[0, T ], concretely, for any u ∈ C1[0, T ]: then also v = Jαu ∈
C1[0, T ], and the integration by parts yields

(Aθu)(t)− (Au)(t) =

∫ t

θt

(t− s)−α−1
(
v(t)− v(s)

)
ds

=
1

α

(
v(t)− v(θt)

(t− θt)α
+

∫ t

θt

(t− s)−αv′(s)ds
)
,

| (Aθu)(t)− (Au)(t) | ≤ 1

α

(
1 +

1

1− α

)
(t− θt)1−α ‖ v′ ‖C , 0 < t ≤ T,

max
0≤t≤T

| (Aθu)(t)− (Au)(t) |→ 0 as θ → 1. (30)

It remains to establish (28). For u1(t) ≡ 1, the latter two integrals in (26)

reduce, and (Aθu1)(t) = (1−θ)−α
Γ(α+1)

∫ θ
0

(1− x)α−1
(
1−

(
θ−x
1−x

)α)
dx. We can compute

(Aθu1)(t) also directly from the definition of Aθ: now

(Jαu1)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ds =
1

Γ(α + 1)
tα,
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and integrating by parts we obtain

(Aθu1)(t) =
1

Γ(α + 1)

∫ θt

0

(t− s)−α−1(tα − sα)ds

=
1

Γ(α + 1)

( 1

α
(t− s)−α(tα − sα)

∣∣θt
s=0

+

∫ θt

0

(t− s)−αsα−1ds
)

=
1

Γ(α + 1)α

( 1− θα

(1− θ)α
− 1
)

+
1

Γ(α + 1)

∫ θ

0

(1− x)−αxα−1dx.

The two representations of Aθu1 imply that

(1− θ)−α

Γ(α + 1)

∫ θ

0

(1− x)α−1

(
1−

(θ − x
1− x

)α)
dx

=
1

Γ(α + 1)α

( 1− θα

(1− θ)α
− 1
)

+
1

Γ(α + 1)

∫ θ

0

(1− x)−αxα−1dx.

(31)

Since 1−θα
(1−θ)α ≤ 1 for 0 < θ < 1 and

∫ 1

0
(1 − x)−αxα−1dx = Γ(α)Γ(1 − α),

inequality (28) follows.

The continuity of w = Au in [0, T ] follows from the continuity of wθ = Aθu
and the uniform convergence (30). In particular, due to (27) and (31)

w(0) = lim
θ→1

(Aθu)(0)

= lim
θ→1

(1− θ)−α

Γ(α+1)

∫ θ

0

(1− x)α−1

(
1−

(
θ − x
1− x

)α)
dx u(0)

= lim
θ→1

(
1

Γ(α+1)α

(
1− θα

(1− θ)α
− 1

)
+

1

Γ(α+1)

∫ θ

0

(1− x)−αxα−1dx

)
u(0)

=
1

Γ(α+1)

(
− 1

α
+ Γ(α)Γ(1−α)

)
u(0)

=
1

α

(
Γ(1−α)− 1

Γ(α+1)

)
u(0).

This completes the proof of the claims concerning
∫ t

0
(t− s)−α−1

(
v(t)− (v(s)

)
ds

for v = Jαu.

Finally, let us establish formula (25). According to (24) and (4), it holds
u = (Jα)−1v = γ0D

α
0 t
α + Dα

0 v0 = γ0Γ(α + 1) + (J1−αv0)′. Since v0 ∈ Hα
0 and

improper integrals
∫ t

0
(t − s)−α−1

(
v0(t) − (v0(s)

)
ds, 0 < t ≤ T , converge (even

equiconverge), Proposition 6.3 is applicable to confirm the differentiability of
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J1−αv0, and according to (23) we have

u(t) = γ0Γ(α + 1) +
1

Γ(1− α)

(
v0(t)t−α + α

∫ t

0

(t− s)−α−1
(
v0(t)− v0(s)

)
ds
)

= γ0Γ(α + 1) +
1

Γ(1− α)

(
v(t)t−α + α

∫ t

0

(t− s)−α−1
(
v(t)− v(s)

)
ds
)

− γ0

Γ(1− α)

(
1 + α

∫ t

0

(t− s)−α−1
(
tα − sα

)
ds
)
.

Herefrom (25) follows, since (apply the equality part of (9) with θ = 0)

α

∫ t

0

(t− s)−α−1
(
tα − sα

)
ds = Γ(1− α)Γ(α + 1)− 1.

The proof of Proposition 6.4 is complete.

The following proposition will be used in the proof of implication (ii′)⇒ (i).

Proposition 6.5. If v ∈ C[0, T ] satisfies (ii′), and

tαv(t) + α

∫ t

0

(t− s)−α−1
(
v(t)− v(s)

)
ds = 0 for 0 < t ≤ T, (32)

then v(t) = 0 for 0 ≤ t ≤ T .

Proof. Since the improper integral
∫ t

0
(t− s)−α−1

(
v(t)− v(s)

)
ds converges, con-

dition (32) implies that, for any (fixed) t ∈ (0, T ],

t−αv(t) + α

∫ θt

0

(t− s)−α−1
(
v(t)− v(s)

)
ds→ 0 as θ → 1.

Together with (6) this implies by Lebesgue’s theorem that, for any t′ ∈ (0, T ],∫ t′

0

(
t−αv(t) + α

∫ θt

0

(t− s)−α−1
(
v(t)− v(s)

)
ds
)
dt→ 0 as θ → 1,

or (1− θ)−α
∫ t′

0

t−αv(t)dt− α
∫ t′

0

∫ θt

0

(t− s)−α−1v(s)dsdt→ 0 as θ → 1.

In the last integral, the change of the order of integrations is legitimate, and we
get

α

∫ t′

0

∫ θt

0

(t− s)−α−1v(s)dsdt =

∫ θt′

0

α

∫ t′

s
θ

(t− s)−α−1dt v(s)ds

= θα(1− θ)−α
∫ t′

0

s−αv(s)ds−
∫ θt′

0

(t′ − s)−αv(s)ds.

Thus 1−θα
(1−θ)α

∫ t′
0
s−αv(s)ds+

∫ θt′
0

(t′−s)−αv(s)ds→ 0, or, since limθ→1
1−θα

(1−θ)α = 0,

also
∫ θt′

0
(t′− s)−αv(s)ds→ 0 as θ → 1. This means that

∫ t′
0

(t′− s)−αv(s)ds = 0

for 0 < t′ ≤ T , implying v(s) ≡ 0.
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6.3. Equivalence of conditions (i), (ii), (ii′), (iii) and (iii′). We establish
the implications (i)⇒ (ii)⇒ (ii′)⇒ (i), (i)⇒ (iii′)⇒ (i) and (iii)⇔ (iii′).

(i) ⇒ (ii). This implication holds due to Proposition 6.4.

(ii) ⇒ (ii′). This implication is clear.

(ii′)⇒ (i). Let v ∈ C[0, T ] satisfy (ii′), i.e. vα(t) = t−αv(t) has a continuous

extension to t = 0, w ∈ C[0, T ] for w(t) :=
∫ t

0
(t − s)−α−1

(
v(t) − v(s)

)
ds, and

|wθ(t)| ≤ W (t), 0 < t < T , for wθ(t) :=
∫ θt

0
(t − s)−α−1

(
v(t) − v(s)

)
ds, where

W ∈ L1(0, T ). We have to show that v ∈ JαC[0, T ]. The function

u(t) :=
1

Γ(1− α)

(
t−αv(t) + α

∫ t

0

(t− s)−α−1
(
v(t)− v(s)

)
ds

)
is continuous in [0, T ] as the sum of two continuous functions. Denoting ṽ :=Jαu
we have by Proposition 6.4 that a finite limit γ̃0 := limt→0 t

−αṽ(t) exists and
condition (5) is fulfilled for ṽ, hence also w̃θ(t) :=

∫ θt
0

(t− s)−α−1
(
ṽ(t)− ṽ(s)

)
ds

has an integrable (even bounded) majorant. Inversion formula (25) yields

u(t) =
1

Γ(1− α)

(
t−αṽ(t) + α

∫ t

0

(t− s)−α−1
(
ṽ(t)− ṽ(s)

)
ds

)
.

From the two formulas for u(t) we conclude that

t−α (v(t)− ṽ(t)) + α

∫ t

0

(t− s)−α−1
[(
v(t)− ṽ(t)

)
−
(
v(s)− ṽ(s)

)]
ds ≡ 0,

and since also
∫ θt

0
(t−s)−α−1

[(
v(t)− ṽ(t)

)
−
(
v(s)− ṽ(ts)

)]
ds has an integrable

majorant, we obtain v(t) − ṽ(t) ≡ 0 by Proposition 6.5. Thus v = ṽ = Jαu ∈
JαC[0, T ].

(i) ⇒ (iii′). Also this implication holds due to Proposition 6.4.

(iii′) ⇒ (i). Assume (iii′): v ∈ C[0, T ] has the representation v = γ0t
α+v0,

0 < α < 1, where γ0 = const, v0 ∈ Hα
0 [0, T ], v0(0) = 0, and the improper in-

tegral
∫ t

0
(t − s)−α−1

(
v0(t) − v0(s)

)
ds =: w0(t) converges for any t ∈ (0, T ]

defining a function w0 ∈ C[0, T ] with w0(0) = 0. We have to show that
v ∈ JαC[0, T ]. For tα this is clear, so we have to show that v0 ∈ JαC[0, T ].
By (4) for m = 0, α ∈ (0, 1), this means that J1−αv0 ∈ C1

0 [0, T ]. This in-
clusion really holds. Indeed, by Proposition 6.3, J1−αv0 is differentiable and
formula (23) holds for (J1−αv0)′(t), t ∈ (0, T ]. Assumption (iii’) yields that
both terms in the r.h.s. of (23) belong to C[0, T ], since also limt→0t

−αv0(t) = 0
for v0 ∈ Hα

0 [0, T ] with v0(0) = 0. So J1−αv0 ∈ C1[0, T ]. Clearly (J1−αv0)(0) = 0,
thus J1−αv0 ∈ C1

0 [0, T ].

(iii) ⇔ (iii′). This equivalence relation is a consequence of (9).
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The fractional differentiation formula (7) for v ∈ JαC[0, T ] is established in
Proposition 6.4, see formula (25).

The proof of Theorem 2.1 is complete.

7. Future work: fractional differentiation in Lp(0, T )

It is of interest to describe also the set JαLp(0, T ), 0 < α < 1, 1 ≤ p ≤ ∞,
modifying so Theorem 2.1 and other results for the fractional differentiation in
spaces Lp(0, T ). In particular, the following conjecture seems to be true.

Conjecture 7.1. A function v ∈ Lp(0, T ), 1 < p ≤ ∞, has the fractional
derivative Dα

0 v ∈ Lp(0, T ), 0 < α < 1, if and only if the function t−αv(t)
belongs to Lp(0, T ), the Lebesgue integral

∫ t
0
(t− s)−α−1(v(t)− v(s))ds =: w(t)

is for almost every t ∈ (0, T ) well defined, and w ∈ Lp(0, T ). For v satisfying
these conditions, formula (7) holds almost everywhere.

For p = 1 the formulation is more complicated, this is connected with the
unboundedness of the operator t−αJα in L1(0, T ), a consequence of (11). In
Lp(0, T ), 1 < p ≤ ∞, this operator occurs to be bounded.

We hope to continue elsewhere.
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